Adversarial robustness and attacks in Deep Learning

dc.contributor.advisorШвай, Надія
dc.contributor.authorКузьменко, Дмитро
dc.date.accessioned2024-04-11T12:45:58Z
dc.date.available2024-04-11T12:45:58Z
dc.date.issued2022
dc.description.abstractThe theoretical underpinnings for this field involve the notions of robustness and astuteness, local Lipschitzness, r-separability of datasets, robustness-accuracy tradeoff, and L-inf distance. This work will cover all the preliminaries, explain the choice of CIFAR-10 with L-inf metric space and eps=8/255 as a main dataset for the task, make use of already well-known attacks and defenses, introduce new ones, and try different ensembles on the 3 most robust models available on the benchmark – Adversarial Weight Perturbation, Augmentations and weight averaging, and Self-COnsistent Robust Error (SCORE-based model).uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/28873
dc.language.isoukuk_UA
dc.relation.organisationНаУКМАuk_UA
dc.statusfirst publisheduk_UA
dc.subjectLocal Lipschitznessuk_UA
dc.subjectCarlini-Wagneruk_UA
dc.subjectSelf-COnsistent Robust Erroruk_UA
dc.subjectScale and std hyperparameters in Jitteruk_UA
dc.subjectмагістерська роботаuk_UA
dc.titleAdversarial robustness and attacks in Deep Learninguk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Kuzmenko_Mahisterska_robota.pdf
Size:
1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Kuzmenko_Mahisterska_robota 2.pdf
Size:
926.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: