Видалення тіней із зображення за допомогою генеративних змагальних мереж та навчання без учителя

dc.contributor.advisorБучко, Олена
dc.contributor.authorАндронік, Владислав
dc.date.accessioned2020-11-12T20:49:35Z
dc.date.available2020-11-12T20:49:35Z
dc.date.issued2020
dc.description.abstractThis material presents the solution for shadow removal task using generative adversarial networks. Our approach is trained in unsupervised fashion which means it does not depend on time-consuming data collection and annotation. This together with training in a single end-to-end framework significantly raises its practical relevance. Taking the existing method for unsupervised image transfer between different domains we researched its applicability to the shadow removal problem. By exploiting attention modules and multi context feature aggregation using dilated convolutions our method gives significant results compared to existing solutions in the field.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/18658
dc.language.isoenuk_UA
dc.statusfirst publisheduk_UA
dc.subjectgenerative adversarial networksuk_UA
dc.subjectunsupervised learninguk_UA
dc.subjectshadow removaluk_UA
dc.subjectshadow generationuk_UA
dc.subjectattention moduleuk_UA
dc.subjectdilated convolutionsuk_UA
dc.subjectкурсова роботаuk_UA
dc.titleВидалення тіней із зображення за допомогою генеративних змагальних мереж та навчання без учителяuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Andronik_Kursova_robota.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Andronik_Prezentatsiia.pdf
Size:
445.79 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: