Sparse matrices in computer algebra when using distributed memory: theory and applications: [preprint]

dc.contributor.authorMalaschonok, Gennadi
dc.contributor.authorIlchenko, E.
dc.date.accessioned2018-07-02T14:15:32Z
dc.date.available2018-07-02T14:15:32Z
dc.date.issued2017
dc.description.abstractWe consider the class of block-recursive matrix algorithms. The most famous of them are standard and Strassen’s block matrix multiplication, Schur and Strassen’s block-matrix inversion. We demonstrate the results of experiments with parallel programms on the base of multidispatching.en_US
dc.identifier.citationMalaschonok G. I. Sparse matrices in computer algebra when using distributed memory: theory and applications / G. Malaschonok, E. Ilchenko // 23rd Conference on Applications of Computer Algebra, Jerusalem, July 17-21. - 2017. - P. 280-285.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/13476
dc.language.isoenen_US
dc.relation.source23rd Conference on Applications of Computer Algebra, Jerusalem, July 17-21en_US
dc.statusfirst publisheden_US
dc.subjectcomputer algebraen_US
dc.subjectmatrix algorithmsen_US
dc.subjectblock-recursive matrix algorithmsen_US
dc.subjectmatricesuk_UA
dc.subjectcluster menagementen_US
dc.subjectsparse matricesen_US
dc.subjectthesisen_US
dc.subjectpreprinten_US
dc.titleSparse matrices in computer algebra when using distributed memory: theory and applications: [preprint]en_US
dc.typePreprinten_US
dc.typeConference materialsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sparse_matrices_in_computer_algebra_when_using_distributed_memory.pdf
Size:
81.38 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: