Sensor based on molecularly imprinted polymer membranes and smartphone for detection of Fusarium contamination in cereals

dc.contributor.authorSergeyeva, Tetyana
dc.contributor.authorYarynka, Daria
dc.contributor.authorDubey, Larysa
dc.contributor.authorDubey, Igor
dc.contributor.authorPiletska, Elena
dc.contributor.authorLinnik, Rostyslav
dc.contributor.authorAntonyuk, Maksym
dc.contributor.authorTernovska, Tamara
dc.contributor.authorBrovko, Oleksandr
dc.contributor.authorPiletsky, Sergey
dc.contributor.authorEl’skaya, Anna
dc.date.accessioned2020-11-22T19:32:46Z
dc.date.available2020-11-22T19:32:46Z
dc.date.issued2020
dc.description.abstractThe combination of the generic mobile technology and inherent stability, versatility and cost-e ectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with Fusarium contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element. The recorded image is further processed using a mobile application. It shows here a first example of the zearalenone-specific MIP membranes synthesised in situ using “dummy template”-based approach with cyclododecyl 2, 4-dihydroxybenzoate as the template and 1-allylpiperazine as a functional monomer. The novel smartphone sensor system based on optimized MIP membranes provides zearalenone detection in cereal samples within the range of 1–10 g mL��1 demonstrating a detection limit of 1 g mL��1 in a direct sensing mode. In order to reach the level of sensitivity required for practical application, a competitive sensing mode is also developed. It is based on application of a highly-fluorescent structural analogue of zearalenone (2-[(pyrene-l-carbonyl) amino]ethyl 2,4-dihydroxybenzoate) which is capable to compete with the target mycotoxin for the binding to zearalenone-selective sites in the membrane’s structure. The competitive mode increases 100 times the sensor’s sensitivity and allows detecting zearalenone at 10 ng mL��1. The linear dynamic range in this case comprised 10–100 ng mL��1. The sensor system is tested and found e ective for zearalenone detection in maize, wheat and rye flour samples both spiked and naturally contaminated. The developed MIP membrane-based smartphone sensor system is an example of a novel, inexpensive tool for food quality analysis, which is portable and can be used for the “field” measurements and easily translated into the practice.en_US
dc.identifier.citationSensor based on molecularly imprinted polymer membranes and smartphone for detection of Fusarium contamination in cereals [electronic resource] / Sergeyeva T., Yarynka D., Dubey L., Dubey I., Piletska E., Linnik R., Antonyuk M., Ternovska T., Brovko O., Piletsky S., El’skaya A. // Sensors. - 2020. - Vol. 20, Issue 15. - Article number 4304. - P. 1-20. - https://doi.org/10.3390/s20154304en_US
dc.identifier.urihttps://doi.org/10.3390/s20154304
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/18796
dc.language.isoenen_US
dc.relation.sourceSensorsen_US
dc.statusfirst publisheden_US
dc.subjectbiosensorsen_US
dc.subjectmolecularly imprinted polymer membranesen_US
dc.subjectsmartphone-based sensorsen_US
dc.subjectfluorescenceen_US
dc.subjectmycotoxinsen_US
dc.subjectzearalenoneen_US
dc.subjectarticleen_US
dc.titleSensor based on molecularly imprinted polymer membranes and smartphone for detection of Fusarium contamination in cerealsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sensor_based_on_molecularly_imprinted_polymer_membranes_and_smartphone_for_detection_of_Fusarium_contamination_in_cereals.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: