Interpolation problems for random fields on Sierpinski's carpet

dc.contributor.authorBoichenko, Viktoriia
dc.contributor.authorShchestyuk, Nataliia
dc.contributor.authorFlorenko, Anastasiia
dc.date.accessioned2024-05-13T08:27:55Z
dc.date.available2024-05-13T08:27:55Z
dc.date.issued2023
dc.descriptionПрогнозування випадкових процесiв та оцiнка випадкових полiв рiзної природи стає все бiльш поширеним напрямом дослiджень серед науковцiв рiзних спецiальностей. Проте аналiз статей щодо рiзних проблем оцiнювання показує, що динамiчний пiдхiд до iтерацiйної та рекурсивної iнтерполяцiї випадкових полiв на фракталi все ще є вiдкритою сферою дослiдження. Є багато робiт, пов’язаних з iнтерполяцiєю стацiонарних послiдовностей, оцiнкою випадкових полiв, навiть на перфорованих площинах, але виникають новi виклики для дослiдження на бiльш складнiй структурi, як фрактал, що може бути бiльш корисним у застосуваннях в окремих галузях промисловостi. Наприклад, було розроблено фрактальну антену мобiльного телефону та WiFi на основi перших кiлькох iтерацiй килима Серпiнського. У цiй статтi ми представляємо динамiчну процедуру для оцiнювання випадкових полiв на килимi Серпiнського на основi використання вiдомої спектральної щiльностi та розрахунку спектральної характеристики, що дозволяє оцiнити оптимальний лiнiйний функцiонал вiд пропущених точок випадкових полiв для кожної iтерацiї. Спочатку ми представляємо пiдхiд Колмогорова для забезпечення базового розумiння iдеї, що використовується в задачах iнтерполяцiї одного чи набору пропущених значень стацiонарних послiдовностей. Пiсля цього поширюємо цей пiдхiд на випадковi поля, що дає нам змогу надалi вивести формули для динамiчного оцiнювання випадкових полiв на перших кiлькох iтерацiях килима Серпiнського. Ми описуємо чисельнi результати початкових крокiв iтерацiї та демонструємо повторювану закономiрнiсть як у матрицi коефiцiєнтiв ряду Фур’є спектральної щiльностi, так i в формулах оптимальної оцiнки лiнiйного функцiоналу вiд випадкових полiв. Таким чином, ця закономiрнiсть забезпечує залежнiсть мiж формулами рiзних початкових розмiрiв поля, а також можливе узагальнення рiшення для N-крокiв у килимi Серпiнського. Ми очiкуємо, що дослiдження середньоквадратичної помилки цiєї оцiнки може бути використано для визначення можливого кроку iтерацiї, коли подальша оцiнка стає нерелевантною, що дозволить нам зменшити вартiсть обчислень.uk_UA
dc.description.abstractThe prediction of stochastic processes and the estimation of random fields of different natures is becoming an increasingly common field of research among scientists of various specialties. However, an analysis of papers across different estimating problems shows that a dynamic approach over an iterative and recursive interpolation of random fields on fractal is still an open area of investigation. There are many papers related to the interpolation problems of stationary sequences, estimation of random fields, even on the perforated planes, but all of this still provides a place for an investigation of a more complicated structure like a fractal, which might be more beneficial in appliances of certain industry fields. For example, there has been a development of mobile phone and WiFi fractal antennas based on a first few iterations of the Sierpinski carpet. In this paper, we introduce an estimation for random fields on the Sierpinski carpet, based on the usage of the known spectral density, and calculation of the spectral characteristic that allows an estimation of the optimal linear functional of the omitted points in the field. We give coverage of an idea of stationary sequence estimating that is necessary to provide a basic understanding of the approach of the interpolation of one or a set of omitted values. After that, the expansion to random fields allows us to deduce a dynamic approach on the iteration steps of the Sierpinski carpet. We describe the numerical results of the initial iteration steps and demonstrate a recurring pattern in both the matrix of Fourier series coefficients of the spectral density and the result of the optimal linear functional estimation. So that it provides a dependency between formulas of the different initial sizes of the field as well as a possible generalizing of the solution for N-steps in the Sierpinski carpet. We expect that further evaluation of the mean squared error of this estimation can be used to identify the possible iteration step when further estimation becomes irrelevant, hence allowing us to reduce the cost of calculations and make the process viable. en_US
dc.identifier.citationBoichenko V. Interpolation problems for random fields on Sierpinski's carpet / V. Boichenko, N. Shchestyuk, A. Florenko // Могилянський математичний журнал. - 2023. - T. 6. - C. 28-34. - https://doi.org/10.18523/2617-70806202328-34 en_US
dc.identifier.issn2617-7080
dc.identifier.issn2663-0648
dc.identifier.urihttps://doi.org/10.18523/2617-70806202328-34
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/29510
dc.language.isoen en_US
dc.relation.sourceМогилянський математичний журналuk_UA
dc.statusfirst publisheduk_UA
dc.subjectinterpolation en_US
dc.subjectSierpinski carpet en_US
dc.subjectspectral characteristic en_US
dc.subjectspectral density en_US
dc.subjectrandom fields en_US
dc.subjectarticle en_US
dc.subjectiнтерполяцiяuk_UA
dc.subjectкилим Серпiнськогоuk_UA
dc.subjectспектральна характеристикаuk_UA
dc.subjectспектральна щiльнiстьuk_UA
dc.subjectвипадковi поляuk_UA
dc.titleInterpolation problems for random fields on Sierpinski's carpet en_US
dc.title.alternativeПроблеми iнтерполяцiї для випадкових полiв на килимi Серпiнськогоuk_UA
dc.typeArticleuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Boichenko_Interpolation_problems_for_random_fields_on_Sierpinskis_carpet.pdf
Size:
471.25 KB
Format:
Adobe Portable Document Format