Адаптація контексту у задачах класифікації зображень

dc.contributor.advisorШвай, Надія
dc.contributor.authorКрошин, Олександр
dc.date.accessioned2022-01-17T21:18:11Z
dc.date.available2022-01-17T21:18:11Z
dc.date.issued2021
dc.description.abstractRapid developments in the Deep Learning domain in recent years let researchers and practitioners shift their focus from training machine learning models itself to transferring the already-learnt knowledge and applying it in different applications. This paper discusses Domain Adaptation, a subdomain of transfer learning, primarily aimed at applying knowledge from a given source domain to an unknow target one. It discusses various Domain Adaptation settings under the context of Computer Vision, introduces self-ensembling Domain Adaptation methods for semi-supervised learning and illustrates its capabilities with proper experiments. Experiments were implemented with Python 3.6 using libraries pytorch, numpy, pandas, opencv, matplotlib, torch-salad, etc.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/22284
dc.language.isoenuk_UA
dc.statusfirst publisheduk_UA
dc.subjectадаптаціяuk_UA
dc.subjectкласифікація зображеньuk_UA
dc.subjectмагістерська роботаuk_UA
dc.titleАдаптація контексту у задачах класифікації зображеньuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kroshyn_Adaptatsiia_kontekstu_u_zadachakh_klasyfikatsii_zobrazhen.pdf
Size:
653.6 KB
Format:
Adobe Portable Document Format
Description:
магістерська робота
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: