MiHICTEpPCTBO OCBITH 1 HAYKH Y KpaiHU
HAHIOHAHBHI/Iﬁ YHIBEPCUTET «<KNE€EBO-MOT'MJIAIHCBKA AKAJTEMIS»

Kadenpa marematuku pakyiabTeTy IHPOPMATUKH

AjanTanisi KOHTEKCTY y 3aja4ax kjaacudikanii 300pakeHb
Kypcosa podora

3a cneniaabHicTIO L IIpukiaagna matemaTnka ” 113

KepiBHuK KypcoBoi poboTu

K.(}.-m.H., cT.B. [1IBait H.O.

(nionuc)

“ ” 2021 p.

Bukonas
ctyaeHt 1 kypcy MII
(bakynpTeTy 1HHOPMATUKH

Kpomms O. A.

_ MinicrepcTBO OCBITH | HAyKH YKpaiHu
HAIIIOHAJIbBHUM YHIBEPCUTET «KMEBO-MOTI'MJIAHCBKA AKAIEMIS»
Kadenpa inpopmatuku daxynprery inhopmaTuku

3ATBEPIXKXVYIO
3aB. kadeapu MaTeMaTUKU,

npod., 1.¢.-M.H.
b. B. Oniiinux

(mmimuc)

. 2020 p.

[HAMBIAYAJIbHE 3ABJIAHH
Ha KypCOBY poOOTYy

ctynenty Kpommny O. A. pakynbrery iHdbopmatuku 1-ro kypey MIIT
TEMA Apanraitisi KOHTEKCTY Y 3a/iayax kiaacudikailii 300pakeHb
3MiCT KypCcoBOi poOOTH:

1. InguBinyanbHe 3aBJaHHS
Kanennapuuii rian
AHoTars
Beryn
PO3AUI 1: Deep Visual domain adaptation, an overview
PO31JI 2: Self-ensembling for visual domain adaptation
BucHoBku
Cnucok BUKOPUCTAHUX JKEPE

el A S

2

JlaTa Bujadui ,, 2020 p. KepiBHuk

(miamuc)
3aBIaHHs OTPUMAB
(mmiamuc)

KanenxapHuii njiaH BUKOHAHHA Po0OTH:

Ne Ha3Ba etany KypcoBoi poboTu Tepmin | IIpumiTka
n/m BUKOHAHHS
eTamny
1. | OrpumaHHS TeMH KypCOBOi poOOTH. 10.10.2020
2. | Ornsag 3agayi 12.12.2020
3. | 361p maHux JJIst IPOBEJCHHS 1OCTIIKEHb 01.03.2021
4. | HanucaHHs nepiioro po3aury 01.04.2021
5. | IIpoBeneHHs TOCTIIKEHD 15.04.2021
6. | Hammmcanus apyroro po3ainy 01.05.2021
8. | KoperyBanHs poO0OTH 3TiIHO 13 3ayBaXKCHHSIMHU 10.05.2021
KEp1BHHKA
Crynenry Kpommny O.A.

Kepisuuk [IBait H.O.

(13

2

Table of contents

TADIC Of CONLENLS........ceeeeeeeeeeeeeeeenceeeeeincereteenieseeeensesesnasssseesasssssesssssssssnssssssssnssssnssnssssnssnnnssnnes 1
Y L1 oo SRR 3
o Lo [V ol o [T 4
1. Deep Visual Domain adaptation, QN OVEIVieWccceevveeeeeeussisssnnissesssssssssssssssssssssssnns 5
1.1. Domain adaptation in a context of transfer [earNiNg.cccevivciei i 5
1.2. Classification of Domain Adaptation SETLINGSccvveeiiiiiie i aare e 6
1.3 Deep Domain Adaptation: APPrO@CNESuuieiii it erree e e e e e s e e e e e e e esnbaaeeeeeeeeas 8
1.3.1 One-Step Domain Adaptation ... e e e e e e e e e e 8
1.3.2 Multi-Step Domain Adaptationocciiee it e e 11

1.4 Deep domain adaptation and image classification........cccccoeeeciiiiiiiei i 11

2. Self-ensembling for visual domain adaptation................eeeeeeeeeeeerenreereennrseereennseereensseeeennnns 13
% o o] o [T g 1o [Ty ol o d [Y o SRR 13
2.2 Self-ensembling for semi-supervised [arNiNg........cceoieccciiiiiii e 13
2.2.1 Self-ensembling LOSS fFUNCLION ...cccuviiiiiiiie et e e 14
B R U 4T o [PP P PP PPT PRSP 15
2.2.2 Temporal ensembling MOE!ccocviiiiiiiiiie e e e e rree e e e e e eareeas 16
2.2.3 Mean Teacher MOTElcooiiiiiiii e s s 17

2.3. Adopting Self-ensembling to Domain Adaptationccccuviieiii i 18
0 T8 Y 1T T o T = Yol =T o' To Yo 1= SR 18
2.3.1. Confidence threSholdiNgGc..ueii i e e e e e 18
2.3.2. Class DAlaNCe 0SSueiiieiiiiieeee ettt e 19

I B o (7 o 1 (ol | I = =1 [4 o Ut 20
I U LY=o I - | - 1Y =1 PO RUUPTO PSR 20
0t 00t O 1Y/ 11) OSSO PP PP PP PP P PP PPPPPPPPPPPPPPOE 20
3120 SVHN ettt et et b e bt b e b e e nhe e shb e eanesabe s b e e b e b e reen 21

N 0 1= 10 011 0 PPN 21
3.2.1. General NeUral arChitECUIE...c..ei ittt e e s re e s 22
0 B T - T A = =Y o) o o S 23
3.2,] EXPOIIMENTS SO NS ettt bt bt ba bt banannrnne 23

3.2.2 Results COMPAriSON tADI@uiiiiciiee et e e e et e e e et e e e e ebe e e eanaaees 24

3.3. Results

Summary

L2 0=] (=7 (=1 Lo =

Abstract

Rapid developments in the Deep Learning domain in recent years let
researchers and practitioners shift their focus from training machine learning
models itself to transferring the already-learnt knowledge and applying it in
different applications. This paper discusses Domain Adaptation, a subdomain of
transfer learning, primarily aimed at applying knowledge from a given source
domain to an unknow target one. It discusses various Domain Adaptation
settings under the context of Computer Vision, introduces self-ensembling
Domain Adaptation methods for semi-supervised learning and illustrates its
capabilities with proper experiments.

Experiments were implemented with Python 3.6 using libraries pytorch,

numpy, pandas, opencv, matplotlib, torch-salad, etc.

Introduction

Recent developments in machine learning world have greatly improved
usability of created models in everyday tasks. However, due to the costs,
retraining and annotating unseen data for a particular solution remains a huge
obstacle for researchers and practitioners.

The aim of this paper is to review Deep Domain Adaptation, a set of
techniques, aimed at adopting models to new tasks and datasets without fully
retraining them from scratch, give an overview for a variety of different
Domain Adaptation tasks, as well as to provide intuition behind Domain
Adaptation methods to be used under particular settings.

First part of the paper is focused on an overview of various Domain
Adaptation settings, specifically in context of Computer Vision subdomain and
from a narrower perspective of an Image Classification problem. Second part
introduces a variety of self-ensembling methods for semi-supervised visual
domain adaptation in a setting of image classification. The final, third part,
describes datasets and certain tricks necessary for a successful training before
interpreting results of different self-ensembling DA methods using SVHN and
MNIST datasets.

1. Deep Visual Domain adaptation, an overview

1.1. Domain adaptation in a context of transfer learning.

The problem of unlabeled data is one of the scourges of the machine
learning world. Collecting, transforming and annotating new data of high-
quality is one of the toughest obstacles between a data science team and a
production-ready machine learning solution. Retraining a model from scratch is
another regular challenge: modern state-of-the-art solutions in challenging
domains are built on complex neural-based architectures with lots of layers.
Another aspect of their success is pre-training on datasets containing millions of
training pairs. In example, latest solutions used in an image captioning domain
are pre-trained on millions of images. Adopting such models for new
distributions of the unseen data using simple fine-tuning may be also a
challenge, as it will require labels and lots of computational power in the first
place.

Using knowledge learnt by machine learning model while training for a
particular task in order to apply it to another machine learning task is a sphere
of transfer learning (TL) research problem. Given a domain D, which consists
of feature space F and marginal probability distribution P(X),X € F. For a
given D = {F, P(X)}, the learning task is definedas T = {Y, f: F = Y}, where
Y is a label space, and f is an objective function which may be seen as P(Y|X).
The machine learning model learns how to predict y; € Y given training pairs
{x;, y:}. With source domain and task Dy, T, the aim of transfer learning is to
enhance performance for the objective function f; for a target task T; in a

domain D;.

According to Pan et al [6], transfer learning approaches may be categorized
into three main categories: transductive, inductive, and unsupervised.

In a situation when Ps(X) = Pp(X) and Ty # T, transfer learning tasks are
defined as inductive. Alternatively, given that P¢(X) # Pp(X) and Ty = Ty,
transfer learning approaches are categorized as transductive. Finally, in
situations where P;(X) # Pp(X) and T; # T, unsupervised transfer learning
techniques are applied.

The field of Domain Adaptation (DA) is associated with transductive
transfer learning, and focuses on adapting machine learning model for a new
source distribution. The examples of Domain Adaptation may be applying
diagnostic systems to identify new diseases based on experience of identifying
similar ones, adopting sales forecasting model to a new region, etc.

Deep Domain Adaptation is a set of methods that use deep networks to

improve DA performance.

1.2. Classification of Domain Adaptation settings

Depending on whether the source and target domains are directly related,
adapting to an intermediate (transitive) domain may be necessary in a domain
adaptation process. Based on the necessity of transitive domain adaptation step,
DA may be classified as one-step or multi-step.

Based on whether source and target feature spaces F;, F; are identical or not,
DA ca be classified as homogeneous (F; = F;, d; = d;, where d represents
feature space dimensionality), and heterogeneous (F; # F;).

Finally, DA may be classified as supervised, semi-supervised or

unsupervised based on the nature of target domain training data:

¢ In the supervised DA, some labeled target data D;; is present. However,
Dy, 1s insufficient to reach great level of performance.

e In the semi-supervised DA, Dy, is present along with target domain
unlabeled data D;,,, which is sufficient for learning D, structure
information.

e In the unsupervised DA, only D, is available.

DA classification diagram is given on a figure 1

-
Supervised]
"

Semi-supervised]

Multi-step DA \ -
Unsupervised]

Homogeneous

DA

One-step DA Supervised]

Heterogeneous
Semi-supervised
Unsupervised]

Figure I - Domain Adaptation Classification diagram

It may be seen that with the increase of K grows the computational resource
to reach the stable state of the system. Kauffman demonstrated that the system
becomes more chaotic. Note that in this paper we assume that T=2 unless other

value of T is specified.

1.3 Deep Domain Adaptation: Approaches

1.3.1 One-Step Domain Adaptation

The basic idea behind one-step deep DA lies in utilizing deep networks in
order to learn “good” and domain invariant feature space using available source
and target domain data.

Deep approaches in one-step DA can be categorized into three subgroups:

e Discrepancy-based approaches focus on fine-tuning the network in
order to reduce the distributional shift between the domains.

e Reconstruction-based approaches use techniques of data
reconstruction in order to reduce variance between feature as much as
possible

e Adversarial-based approaches

Each group of the approaches has its own group of techniques for

performing an assigned task.

1.3.1.1 Discrepancy-based DA

Discrepancy-based DA consists of four major techniques for performing
fine-tuning;:

1. Architecture criterion — adapts neural networks to learning wider
sets of features, which are less domain-specific and may
potentially be used among multiple domains. Such techniques
include adaptive batch normalization, domain-guided dropout, etc.

2. Class criterion — transfers interdomain knowledge via relying on

data labels. When Dy; are available, metric learning under soft

labels is almost always efficient. Otherwise, one may use methods
of assigning pseudo labels, or using certain features as labels.

3. Geometric criterion — is used under the assumption that
relationship of source and target domain may be explained under
some geometrical properties. Can narrow the gap between source
and target domains via exploiting some of its geometric properties.

4. Statistic criterion — uses statistical methods to adapt source and
target domains to one another via minimizing the calculated
metric. Among possible methods are correlation alignment
(CORAL), KL-divergence, and other criteria that measure
similarity between two probability distributions.

In heterogeneous DA scenarios, images in different domains have to be
resized into same dimensions in order for Class or Statistic Criterions to be

utilized.

1.3.1.2 Reconstruction-based DA

Given its name, Reconstruction-based DA is based on an assumption of the
utility of data reconstruction for source and/or target samples. Reconstruction-
based DA approaches can be classified as follows:

1. Adversarial reconstruction — minimizes the reconstruction error — a
difference between original and reconstructed images in each domain.
Utilizes a discriminator like a cycle GAN.

2. Encoder-Decoder Reconstruction: encoder-decoder reconstruction
methods utilize the encoder for representation learning, and the

decoder for data reconstruction.

1.3.1.3 Adversarial-based DA

In Adversarial-based DA, a domain discriminator classifies if a point

belongs to a D or D;, and an adversarial objective is designed to minimize the gap

between D and D, distributions. Its approaches can be categorized into two types

of techniques:

1. Generative models — generative adversarial networks (GANs) may be

used to generate samples that similar to ones from target distribution,

and yet store the labels of the source distribution at the same time.

2. Non-Generative models — given labels from Dg;, an image feature

extractor is trained a discriminative representation to create domain-

invariant features, which are then used to map the target data to the

source distribution.

1.3.1.4 One-step DA approach comparison table

Supervised | Unsupervised
DA DA

Adversarial- Generative Models +
based Non-generative models +
Reconstruction- | Adversarial Models +
based Encoder-Decoder Models +
Discrepancy- Architecture Criterion + +
based Class Criterion +

Geometric Criterion +

Statistic Criterion +

Table 1 — DA approaches comparison table

11

1.3.2 Multi-Step Domain Adaptation

When working with multi-step DA, the initial step is to identify intermediate
domains that are “closer” to D¢ and D, than source and target domains are with
each other. Naturally, one-step DA will be applied on each step between source,
target and transitive domains. The most challenging part of multi-step DA lies
in identifying the most useful intermediate domains possible and applying them
correctly.

Multi-step DA can be classified into three categories:

e Hand-crafted: intermediate domains are selected by the users.

e Instance-based: intermediate domains are enriched with additional
data from auxiliary datasets.

e Representation-based: firstly, pretrained network is freezed, and then

its output is used as an input to the new deep network.

1.4 Deep domain adaptation and image classification

Lots of the techniques described above may be used in a wide variety of
computer vision applications, among those in object detection, semantic
segmentation, style transfer, etc. However, image classification is the basic
problem for which most of the deep DA approaches were proposed.

One may define an image classification problem as a task of selecting the
most probable label(s) from a pre-defined set of labels given an image as an

input.

12

Image classification problem provides lots of benchmarks for different tasks.
In example, for deep DA different techniques are compared by analyzing
certain metrics (mainly, accuracy) using different datasets as D and D;. Among
those benchmark datasets are so-called digits dataset, mainly MNIST, USPS
and SVHN, which will be described in more detail in part 3 of this work.
Another important benchmark is the Office-31 dataset, which consists of
images from three different domains: Amazon (A), DSLR (D), and Webcam
(W). There are 31 object classes. The A domain consists of images of office
objects taken from online stores, The D domain contains photos of high-quality
office objects, ant the W domain consists of low-quality images with lots of

noise and artifacts.

13

2. Self-ensembling for visual domain adaptation

2.1 Problem description

Among different practical settings available for visual deep DA, one of the
most common scenarios 1s when a source domain dataset is fully labeled, and a
target dataset consist of a small labeled part and lots of unlabeled examples.
This setting is called semi-supervised domain adaptation. In this section we will
review some recent state-of-the-art solutions in the area and discuss them in

detail.

2.2 Self-ensembling for semi-supervised learning

The problem behind semi-ensembling learning techniques is closely related
to the connection between vision and perception. When a human sees an object
under different conditions, it typically still recognizes object class correctly.
Similar to a human, a machine learning algorithm should also be able to
correctly identify objects after some perturbations and changes. Methods that
are focused on enhancing model’s ability to detect objects correctly under
different conditions are known as consistency-enforcing approaches,

Application of regularization techniques such as Dropout or augmentations
1s a simple way to improve stability of model predictions. In a semi-supervised
setting model stability may be improved via evaluating labeled examples with
and without regularization. The approach, originally proposed as I'-model, used
the same model as two parts: a teacher model would generate targets, and a
student model would use generated targets for training. An immediate problem
would be the quality of targets, as generating too inconsistent augmentations

would change training examples too much and only worsen classification

14

performance. Other than carefully selecting regularization steps to be used, one
could improve teacher’s network to generate better examples and tune student
network to learn faster. This class of semi-supervised learning methods is
known as self-ensembling.

Below we will describe state-of-the-art methods that use the aforementioned
approach. We will start with analyzing the I1-model and Temporal ensembling,
proposed by Laine & Aila [5], and examine possible additional improvements
under the Mean Teacher model, introduced by French et al. [4].

General idea behind all three models lies in getting separate class probability
distributions z; and Z; from teacher and student networks given a single input
image, and then minimizing a “distance” between two distributions given a

label, which matches target distribution to a source domain.

2.2.1 Self-ensembling Loss function

A loss function used in proposed methods is called consistency loss. It
consists of supervised an unsupervised part. It is worth mentioning that the
original problem focuses on image classification task with partially labeled
data. In context of DA, labeled subsets from D; and D; may be used and
evaluated separately in order to preserve separate normalization statistics for
each domain.

In a traditional classification setting, labels from source are evaluated on
cross-entropy, and all source and target labels are evaluated on consistency loss,
which is calculated using mean square difference between z; and Z;. Supervised
and unsupervised loss are then combined via applying weighting function w(t),

dependent on time.

15

Let us define cross-entropy and consistency losses for a classification
problem given minibatch B, a total of C classes and a parameter A which

controls importance of consistency part:

lCE(Zuyl - |B|Zlog Zl[yl

~ - 112
leons(2i,Z;) = mzhz - Zill
i

We may define total loss as:
L(ws) = leg (2,) + aw(®)leons (21, 27)
Given a number of ramp-up steps n,, a weighting function w(t) is defined
as: w(t) = r * Wy,4,, Where 1 is a Gaussian ramp-up scaling factor and w;,, 4, is

a number of labeled training inputs divided by total number of training inputs:

hy .
=Dl {exp(—sz),p = 1 — max (0, ep:C),1f epoch < n,
max — \p 1on 1’ e
IDstl +1D¢] 1, otherwise
Note that in practice for different datasets and models w,,,, parameter may

be chosen arbitrarily.

2.2.1 II-model

Cross- W)
Vi R entropy '
x-<: Stochastic Network T~_. Weighted e loss
: augmentation [—» | Squared sum

difference

Figure 2 - pi-model training structure

16

The first of the approaches, the II-model uses a single network both for a
teacher and student. Each training step consists of applying two different

random perturbation sets to an input image x; in order to get class distribution

vectors z; and Z;.

A proposed consistency loss utilizes A = 1:

L(Wf) = lcg(z;, y;) + wW()loons (2i, Z;)

Structure of I1-model training pass is summarized on Figure x:

2.2.2 Temporal ensembling model

Cross- w(t)
Vi entropy
. Weigh
, Stochastic Network | eighted —» loss
Xi—» . sum
augmentation \A Squared
A »| difference
| Zi

Figure 3 - Temporal ensembling model training scheme
In order to store information about previous training results, the evaluation
of z; and Z; can be split into two steps. Given that input images are noised after
every pass through a model input, we can calculate z; only once per epoch
(input will be noised anyway), and then mix z; with previous evaluation output.
Using temporal ensembling in favor of I1-model may be beneficial in several
ways:
1. Training targets will be less noisy, which will benefit inference
performance on cleaner inputs

2. Calculating z; only once will speed up training

17

3. Storing z; at different timesteps enables collecting different statistics
and possibly using it in future enhancements (i.e., select only steps
with lower variance)

As of the downsides of the model, learnt information is absorbed by a
student network slowly (only once per epoch), and utilizing predicted
distributions in case of large datasets with lots of training epochs is
questionable.

Temporal ensembling training pass is summarized on Figure 3.

2.2.3 Mean Teacher model

t
Cross- w(t)
Y N entropy
x = Stochastic Student \i Weighted loss
T augmentation [~a| Teacher |—l Squared sum
difference

Figure 4 — Mean Teacher model training structure

Limitations of temporal ensembling model made Tarvainen & Valpola [3]
propose an approach of averaging model weights instead of class prediction
distribution. As the approach focuses on presenting a teacher model as an
average of consecutive student models, an approach was called a Mean Teacher
method.

For a student model with weights 8 and a teacher model with weights 8" and
a given smoothing coefficient a,we update teacher model weights at step t as

an exponential moving average of student weights:

6{ = (l@é_l + (1 - (X)Qt

18

Note that in this approach teacher weights 8’ are treated as a constant in

terms of optimization.

2.3. Adopting Self-ensembling to Domain Adaptation

2.3.1. Mean Teacher model

Cross-
. entropy
Xg;i—» Stochastic Student Weighted > Joss
augmentation |_, ?quared sum
xn'_[: —»| Teacher » difference

Figure 5 — Mean Teacher model adopted to DA
In order to use Mean Teacher model in DA setting, it has to be adapted in a
following way:
e Labeled samples from Dg are trained via cross-entropy
e Samples from Dy are trained in an unsupervised manner via

consistency loss, mentioned at 2.2.1

2.3.1. Confidence thresholding

Experiments, conducted by French et. al. [6], demonstrated that using
confidence thresholding instead of the ramp-up Gaussian weighting factor in
the unsupervised loss may improve training stability under different scenarios.

Confidence thresholding technique uses a searched f ¢t to mask a sample x;

to zero if a condition is match:

19

Given an unlabeled example x7, and the corresponding predictions vector

Zr;, we select a predicted probability fr, = gnax Zp, for a selected class j of the
JE

given example. If f7. <'t,x; is set to zero.

2.3.2. Class balance loss

In case of highly imbalanced datasets, Mean Teacher model may fall into a
local minima, separate source and target datasets, and disproportionately favor
single class one of the datasets.

This problem can be tackled by using a class balance loss term, which
penalizes the network for making predictions with highly-imbalanced
distribution. For each mini-batch of xr,, we calculate mean per-class probability
vector m;. Then, cross-entropy loss l-5(m;, z;), where z; is a uniform
distribution of class probabilities.

Final loss is calculated as L = kl.z(m;, z;) + L', where k is calculated as a

mean of the confidence threshold mask.

20

3. Practical research

3.1. Used datasets

3.1.1. MNIST

MECIAGERNE]

Figure 6 - samples from MNIST dataset

Introduced by National Institute of Standards and Technology of the USA,
full MNIST is a classic introductory image classification dataset that consists of
70000 grayscale hand-written digits, each image of size 28x28 pixels. During
experiments, we use training set of 60000 images. In order to use grayscale
28x28 images of MNIST along with colored data from SVHN, we had to pad
images to 32x32 and convert grayscale to RGB.

HEAGEaNE

Figure 7 - padded MNIST samples

21

3.1.2. SVHN

] CPO]O P p

Figure § - samples from SVHN dataset

Google’s Street View House Number Dataset consists of 630414 RGB
images of digits, each being a cropped part of house number plates of size
32x32. SVHN consists of train set of 73257, test set of 26032, and an extra set
with 530000 additional images that are less difficult to identify. We use SVHN
train and test subsets in our experiments, and didn’t add any transformations

during pre-training stage.

3.2. Experiments

Experiments were conducted on SVHN and MNIST datasets, where SVHN
was used as a source domain D, and MNIST was used as a target domain D,.
The aim of the experiments was to compare performance of proposed self-
ensembling models, mainly Mean Teacher model, I1-model and Temporal
Ensembling model. As a baseline, we’ve implemented a two-layer classifier
based on MobileNet v2 Backbone, trained it on SVHN-train dataset and
evaluated on MNIST-test dataset, both with and without augmentations. As one
would expect, a classifier perform badly, reaching accuracy of 0.41 on MNIST
test set with augmentations in place, and accuracy of 0.34 without such

augmentations.

3.2.1. General neural architecture

22

For experiments between MNIST and SVHN we used the following neural

network architecture:

Description Shape

Input image 32x32x3
Conv 3x3x128 with padding=1, batch-norm 32x32x128
Conv 3x3x128 with padding=1, batch-norm 32x32x128
Conv 3x3x128 with padding=1, batch-norm 32x32x128
Max-pooling, 2x2 16x16x128
Dropout, p=0.5 16x16x128
Conv 3x3x256 with padding=1, batch-norm 16x16x256
Conv 3x3x256 with padding=1, batch-norm 16x16x256
Conv 3x3x256 with padding=1, batch-norm 16x16x256
Max-pooling, 2x2 8x8x256
Dropout, p=0.5 8x8x256
Conv 3x3x512 with padding=0, batch-norm 6x6x512
Conv 1x1x256, batch-norm 6x6Xx256
Conv 1x1x128, batch-norm 6x6x128
Global pooling layer I1x1x128
Dense layer, 10 units after softmax 10

Table 2 - NN architecture used in experiments

23

3.2.1. Data Augmentation

In order to increase our chances to achie state-of-the-art results on the
experimental datasets, we used the affine scheme that adds random

transformations according to a matrix:

1+ N(0,01) N(0,0.1)
N(0,01) 1+ N(0,0.1)

It is worth mentioning that impact of data augmentation techniques should
not be underestimated, and to illustrate that statement we will run separate
experiments, ones using aforementioned affine scheme, and others via applying

simple Gaussian noise with § = 0.1 .

3.2.1. Experiments settings

Our main experiment would be in comparing results of self-ensembling
models on the aforementioned datasets. In particular, we test performance of I1-
model, along with Mean Teacher model with different smoothing coefficient a.
We will also show how advanced augmentation techniques enhance model
performance. Student accuracy on source and target domains will be used as a
main performance metric, along with the combined self-ensembling loss.

All the models were trained 100 epochs with a fixed initial random seed.
However, we propose analyzing the results after 25 epochs, as under 100
epochs accuracy for different parameters is too close to 1 and loss is almost 0,

which makes explaining results a difficult task.

3.2.2 Results comparison table

24

9 >

s 5 3 5 5 3

g 3 Z 2 8 2

(= V5] = - = 8

£ 2 |5 g B o 2 . 3

9 | E 3 T B : & £ g

jam)

2 < | & 2 & & S 8 S zZ
I1-model + 0.885 0.89 0.985 0.0006*
Mean Teacher - 0.8928 0.8812 0.965 0.0912
model, « = 0.95
Mean Teacher + 0.9713 0.9815 0.9817 0.0266
model, « = 0.95
Mean Teacher - 0.9215 0.9324 0.9724 0.0334
model, « = 0.99
Mean Teacher + 0.9817 0.9713 0.9892 0.0026
model, « = 0.99
Mean Teacher + 0.9349 0.9192 0.9765 0.0733
model, a =
0.999

Table 3 — comparison of experiment results

3.3. Results

Obtained results clearly demonstrate an advantage of using enhanced image

augmentation schemes. Alongside, it may be seen that without using the

25

weights of the Teacher model, the I1-model performs poorer than a Mean
Teacher model, despite showing good results overall.

As was shown in [4], @ = 0.99 is considered the most suitable for a majority
of domain adaptation tasks. However, in the implementation of their paper, the
authors suggest using @ = 0.999 for smaller datasets. Unfortunately, SVHN ->

MNIST transfer performs weaker using increased a parameter.

26

Summary

This work covers a topic of deep domain adaptation, reviews its various
settings depending on presence of data, homogeneity of source and target
domains and approaches available for a particular domain adaptation task. The
work analyzes self-ensembling techniques for semi-supervised learning for an
Image Classification problem and compares different self-ensembling models
along with their reported performance.

During experimental phase, we compare performance of Mean Teacher
model and II-model in an SVHN -> MNIST domain adaptation setting.
Obtained results demonstrate utility of the aforementioned self-ensembling
solutions, as well as the importance of proper augmentations and correct
parameter selection for a successful training process.

To sum up, we can confirm the validity of using self-ensembling methods

for semi-supervised deep visual Domain Adaptation.

27

References

1. Wang, M. - Deep Visual Domain Adaptation: A Survey / Wang, M., Deng.
W. - Neurocomputing, 2018, 312: 135-153, doi:10.1016/j.neucom.2018.05.083
2. Géron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow; —
O’Reilly [2017] — 542c.

3. Tarvainen,A. Valpola, H. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In
NIPS, 2017.

4. French, M. Mackiewicz, and M. Fisher. Self-ensembling for visual domain
adaptation. International Conference on Learning Representations, 2018.

5. Laine, S., Alia, T. Temporal Ensembling for Semi-Supervised Learning —
International Conference on Learning Representations 2017.

6. Pan, S., Yang, Q. A survey on transfer learning. [EEE Transactions on

knowledge and data engineering, 22(10):1345-1359, 2010.

	Table of contents
	Abstract
	Introduction
	1. Deep Visual Domain adaptation, an overview
	1.1. Domain adaptation in a context of transfer learning.
	1.2. Classification of Domain Adaptation settings
	1.3 Deep Domain Adaptation: Approaches
	1.3.1 One-Step Domain Adaptation
	1.3.1.1 Discrepancy-based DA
	1.3.1.2 Reconstruction-based DA
	1.3.1.3 Adversarial-based DA
	1.3.1.4 One-step DA approach comparison table

	1.3.2 Multi-Step Domain Adaptation

	1.4 Deep domain adaptation and image classification

	2. Self-ensembling for visual domain adaptation
	2.1 Problem description
	2.2 Self-ensembling for semi-supervised learning
	2.2.1 Self-ensembling Loss function
	2.2.1 𝚷-model
	2.2.2 Temporal ensembling model
	2.2.3 Mean Teacher model

	2.3. Adopting Self-ensembling to Domain Adaptation
	2.3.1. Mean Teacher model
	2.3.1. Confidence thresholding
	2.3.2. Class balance loss

	3. Practical research
	3.1. Used datasets
	3.1.1. MNIST
	3.1.2. SVHN

	3.2. Experiments
	3.2.1. General neural architecture
	3.2.1. Data Augmentation
	3.2.1. Experiments settings
	3.2.2 Results comparison table

	3.3. Results

	Summary
	References

