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Abstract 
Rapid developments in the Deep Learning domain in recent years let 

researchers and practitioners shift their focus from training machine learning 

models itself to transferring the already-learnt knowledge and applying it in 

different applications. This paper discusses Domain Adaptation, a subdomain of 

transfer learning, primarily aimed at applying knowledge from a given source 

domain to an unknow target one. It discusses various Domain Adaptation 

settings under the context of Computer Vision, introduces self-ensembling 

Domain Adaptation methods for semi-supervised learning and illustrates its 

capabilities with proper experiments.  

Experiments were implemented with Python 3.6 using libraries pytorch,  

numpy, pandas, opencv, matplotlib, torch-salad, etc. 
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Introduction 

 

Recent developments in machine learning world have greatly improved 

usability of created models in everyday tasks. However, due to the costs, 

retraining and annotating unseen data for a particular solution remains a huge 

obstacle for researchers and practitioners. 

The aim of this paper is to review Deep Domain Adaptation, a set of 

techniques, aimed at adopting models to new tasks and datasets without fully 

retraining them from scratch, give an overview for a variety of different 

Domain Adaptation tasks, as well as to provide intuition behind Domain 

Adaptation methods to be used under particular settings. 

First part of the paper is focused on an overview of various Domain 

Adaptation settings, specifically in context of Computer Vision subdomain and 

from a narrower perspective of an Image Classification problem. Second part 

introduces a variety of self-ensembling methods for semi-supervised visual 

domain adaptation in a setting of image classification. The final, third part, 

describes datasets and certain tricks necessary for a successful training before 

interpreting results of different self-ensembling DA methods using SVHN and 

MNIST datasets. 

  



5 
 

1. Deep Visual Domain adaptation, an overview 

1.1. Domain adaptation in a context of transfer learning.  

The problem of unlabeled data is one of the scourges of the machine 

learning world. Collecting, transforming and annotating new data of high-

quality is one of the toughest obstacles between a data science team and a 

production-ready machine learning solution. Retraining a model from scratch is 

another regular challenge: modern state-of-the-art solutions in challenging 

domains are built on complex neural-based architectures with lots of layers. 

Another aspect of their success is pre-training on datasets containing millions of 

training pairs. In example, latest solutions used in an image captioning domain 

are pre-trained on millions of images. Adopting such models for new 

distributions of the unseen data using simple fine-tuning may be also a 

challenge, as it will require labels and lots of computational power in the first 

place.  

Using knowledge learnt by machine learning model while training for a 

particular task in order to apply it to another machine learning task is a sphere 

of transfer learning (TL) research problem. Given a domain 𝑫𝑫, which consists 

of feature space 𝑭𝑭 and marginal probability distribution 𝑷𝑷(𝑿𝑿),𝑿𝑿 ∈ 𝑭𝑭. For a 

given 𝐷𝐷 = {𝐹𝐹,𝑃𝑃(𝑋𝑋)}, the learning task is defined as 𝑇𝑇 = {𝑌𝑌,𝑓𝑓:𝐹𝐹 → 𝑌𝑌}, where 

𝑌𝑌 is a label space, and 𝑓𝑓 is an objective function which may be seen as 𝑃𝑃(𝑌𝑌|𝑋𝑋). 

The machine learning model learns how to predict 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌 given training pairs 

{𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}. With source domain and task 𝐷𝐷𝑠𝑠,𝑇𝑇𝑠𝑠, the aim of transfer learning is to 

enhance performance for the objective function 𝑓𝑓𝑡𝑡 for a target task 𝑇𝑇𝑡𝑡 in a 

domain 𝐷𝐷𝑡𝑡.  
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According to Pan et al [6], transfer learning approaches may be categorized 

into three main categories: transductive, inductive, and unsupervised. 

  In a situation when 𝑃𝑃𝑆𝑆(𝑋𝑋) = 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡 , transfer learning tasks are 

defined as inductive. Alternatively, given that 𝑃𝑃𝑆𝑆(𝑋𝑋) ≠ 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑡𝑡 , 

transfer learning approaches are categorized as transductive. Finally, in 

situations where 𝑃𝑃𝑠𝑠(𝑋𝑋) ≠ 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡, unsupervised transfer learning 

techniques are applied.  

The field of Domain Adaptation (DA) is associated with transductive 

transfer learning, and focuses on adapting machine learning model for a new 

source distribution. The examples of Domain Adaptation may be applying 

diagnostic systems to identify new diseases based on experience of identifying 

similar ones, adopting sales forecasting model to a new region, etc. 

Deep Domain Adaptation is a set of methods that use deep networks to 

improve DA performance. 

1.2. Classification of Domain Adaptation settings 

 Depending on whether the source and target domains are directly related, 

adapting to an intermediate (transitive) domain may be necessary in a domain 

adaptation process. Based on the necessity of transitive domain adaptation step, 

DA may be classified as one-step or multi-step. 

Based on whether source and target feature spaces 𝐹𝐹𝑠𝑠,𝐹𝐹𝑡𝑡 are identical or not, 

DA ca be classified as homogeneous (𝐹𝐹𝑠𝑠 = 𝐹𝐹𝑡𝑡, 𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑡𝑡, where 𝑑𝑑 represents 

feature space dimensionality), and heterogeneous (𝐹𝐹𝑠𝑠 ≠ 𝐹𝐹𝑡𝑡).  

Finally, DA may be classified as supervised, semi-supervised or 

unsupervised based on the nature of target domain training data: 
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• In the supervised DA, some labeled target data 𝐷𝐷𝑡𝑡𝑡𝑡 is present. However, 

𝐷𝐷𝑡𝑡𝑡𝑡 is insufficient to reach great level of performance.  

• In the semi-supervised DA, 𝐷𝐷𝑡𝑡𝑡𝑡 is present along with target domain 

unlabeled data 𝐷𝐷𝑡𝑡𝑡𝑡, which is sufficient for learning 𝐷𝐷𝑡𝑡 structure 

information. 

• In the unsupervised DA, only 𝐷𝐷𝑡𝑡𝑡𝑡 is available. 

DA classification diagram is given on a figure 1 

 

Figure 1 - Domain Adaptation Classification diagram 
It may be seen that with the increase of K grows the computational resource 

to reach the stable state of the system. Kauffman demonstrated that the system 

becomes more chaotic. Note that in this paper we assume that T=2 unless other 

value of T is specified. 
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Multi-step DA

One-step DA

Homogeneous
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1.3 Deep Domain Adaptation: Approaches 

1.3.1 One-Step Domain Adaptation 

The basic idea behind one-step deep DA lies in utilizing deep networks in 

order to learn “good” and domain invariant feature space using available source 

and target domain data. 

Deep approaches in one-step DA can be categorized into three subgroups:  

• Discrepancy-based approaches focus on fine-tuning the network in 

order to reduce the distributional shift between the domains. 

• Reconstruction-based approaches use techniques of data 

reconstruction in order to reduce variance between feature as much as 

possible 

• Adversarial-based approaches 

Each group of the approaches has its own group of techniques for 

performing an assigned task. 

1.3.1.1 Discrepancy-based DA 

Discrepancy-based DA consists of four major techniques for performing 

fine-tuning: 

1. Architecture criterion – adapts neural networks to learning wider 

sets of features, which are less domain-specific and may 

potentially be used among multiple domains. Such techniques 

include adaptive batch normalization, domain-guided dropout, etc. 

2. Class criterion – transfers interdomain knowledge via relying on 

data labels. When 𝐷𝐷𝑡𝑡𝑡𝑡 are available, metric learning under soft 
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labels is almost always efficient. Otherwise, one may use methods 

of assigning pseudo labels, or using certain features as labels. 

3. Geometric criterion – is used under the assumption that 

relationship of source and target domain may be explained under 

some geometrical properties. Can narrow the gap between source 

and target domains via exploiting some of its geometric properties. 

4. Statistic criterion – uses statistical methods to adapt source and 

target domains to one another via minimizing the calculated 

metric. Among possible methods are correlation alignment 

(CORAL), KL-divergence, and other criteria that measure 

similarity between two probability distributions. 

In heterogeneous DA scenarios, images in different domains have to be 

resized into same dimensions in order for Class or Statistic Criterions to be 

utilized. 

1.3.1.2 Reconstruction-based DA 

Given its name, Reconstruction-based DA is based on an assumption of the 

utility of data reconstruction for source and/or target samples. Reconstruction-

based DA approaches can be classified as follows: 

1. Adversarial reconstruction – minimizes the reconstruction error – a 

difference between original and reconstructed images in each domain. 

Utilizes a discriminator like a cycle GAN. 

2. Encoder-Decoder Reconstruction: encoder-decoder reconstruction 

methods utilize the encoder for representation learning, and the 

decoder for data reconstruction. 
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1.3.1.3 Adversarial-based DA 

In Adversarial-based DA, a domain discriminator classifies if a point 

belongs to a 𝐷𝐷𝑠𝑠 or 𝐷𝐷𝑡𝑡, and an adversarial objective is designed to minimize the gap 

between 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 distributions. Its approaches can be categorized into two types 

of techniques: 

1. Generative models – generative adversarial networks (GANs) may be 

used to generate samples that similar to ones from target distribution, 

and yet store the labels of the source distribution at the same time.  

2. Non-Generative models – given labels from 𝐷𝐷𝑠𝑠𝑠𝑠, an image feature 

extractor is trained a discriminative representation to create domain-

invariant features, which are then used to map the target data to the 

source distribution. 

1.3.1.4 One-step DA approach comparison table 

  Supervised 

DA 

Unsupervised 

DA 

Adversarial-

based 

Generative Models  + 

Non-generative models  + 

Reconstruction-

based 

Adversarial Models  + 

Encoder-Decoder Models  + 

Discrepancy-

based 

 

Architecture Criterion + + 

Class Criterion +  

Geometric Criterion +  

Statistic Criterion  + 

Table 1 – DA approaches comparison table 
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1.3.2 Multi-Step Domain Adaptation 

When working with multi-step DA, the initial step is to identify intermediate 

domains that are “closer” to 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 than source and target domains are with 

each other. Naturally, one-step DA will be applied on each step between source, 

target and transitive domains. The most challenging part of multi-step DA lies 

in identifying the most useful intermediate domains possible and applying them 

correctly. 

Multi-step DA can be classified into three categories: 

• Hand-crafted: intermediate domains are selected by the users. 

• Instance-based: intermediate domains are enriched with additional 

data from auxiliary datasets. 

• Representation-based: firstly, pretrained network is freezed, and then 

its output is used as an input to the new deep network. 

   

1.4 Deep domain adaptation and image classification 

Lots of the techniques described above may be used in a wide variety of 

computer vision applications, among those in object detection, semantic 

segmentation, style transfer, etc. However, image classification is the basic 

problem for which most of the deep DA approaches were proposed. 

One may define an image classification problem as a task of selecting the 

most probable label(s) from a pre-defined set of labels given an image as an 

input. 
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 Image classification problem provides lots of benchmarks for different tasks. 

In example, for deep DA different techniques are compared by analyzing 

certain metrics (mainly, accuracy) using different datasets as 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡. Among 

those benchmark datasets are so-called digits dataset, mainly MNIST, USPS 

and SVHN, which will be described in more detail in part 3 of this work. 

Another important benchmark is the Office-31 dataset, which consists of 

images from three different domains: Amazon (A), DSLR (D), and Webcam 

(W). There are 31 object classes. The A domain consists of images of office 

objects taken from online stores, The D domain contains photos of high-quality 

office objects, ant the W domain consists of low-quality images with lots of 

noise and artifacts. 
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2. Self-ensembling for visual domain adaptation 

2.1 Problem description 

  

Among different practical settings available for visual deep DA, one of the 

most common scenarios is when a source domain dataset is fully labeled, and a 

target dataset consist of a small labeled part and lots of unlabeled examples. 

This setting is called semi-supervised domain adaptation. In this section we will 

review some recent state-of-the-art solutions in the area and discuss them in 

detail.  

2.2 Self-ensembling for semi-supervised learning 

The problem behind semi-ensembling learning techniques is closely related 

to the connection between vision and perception. When a human sees an object 

under different conditions, it typically still recognizes object class correctly. 

Similar to a human, a machine learning algorithm should also be able to 

correctly identify objects after some perturbations and changes. Methods that 

are focused on enhancing model’s ability to detect objects correctly under 

different conditions are known as consistency-enforcing approaches,  

Application of regularization techniques such as Dropout or augmentations 

is a simple way to improve stability of model predictions. In a semi-supervised 

setting model stability may be improved via evaluating labeled examples with 

and without regularization. The approach, originally proposed as 𝛤𝛤-model, used 

the same model as two parts: a teacher model would generate targets, and a 

student model would use generated targets for training. An immediate problem 

would be the quality of targets, as generating too inconsistent augmentations 

would change training examples too much and only worsen classification 
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performance.  Other than carefully selecting regularization steps to be used, one 

could improve teacher’s network to generate better examples and tune student 

network to learn faster. This class of semi-supervised learning methods is 

known as self-ensembling. 

Below we will describe state-of-the-art methods that use the aforementioned 

approach. We will start with analyzing the 𝛱𝛱-model and Temporal ensembling, 

proposed by Laine & Aila [5], and examine possible additional improvements 

under the Mean Teacher model, introduced by French et al. [4]. 

General idea behind all three models lies in getting separate class probability 

distributions 𝑧𝑧𝑖𝑖 and 𝑧̃𝑧𝑖𝑖 from teacher and student networks given a single input 

image, and then minimizing a “distance” between two distributions given a 

label, which matches target distribution to a source domain.  

2.2.1 Self-ensembling Loss function 

A loss function used in proposed methods is called consistency loss. It 

consists of supervised an unsupervised part. It is worth mentioning that the 

original problem focuses on image classification task with partially labeled 

data. In context of DA, labeled subsets from 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 may be used and 

evaluated separately in order to preserve separate normalization statistics for 

each domain. 

In a traditional classification setting, labels from source are evaluated on 

cross-entropy, and all source and target labels are evaluated on consistency loss, 

which is calculated using mean square difference between 𝑧𝑧𝑖𝑖  and 𝑧̃𝑧𝑖𝑖. Supervised 

and unsupervised loss are then combined via applying weighting function 𝑤𝑤(𝑡𝑡), 

dependent on time. 
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Let us define cross-entropy and consistency losses for a classification 

problem given minibatch 𝐵𝐵, a total of 𝐶𝐶 classes and a parameter 𝜆𝜆 which 

controls importance of consistency part: 

𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) = −
1

|𝐵𝐵|� log zi[𝑦𝑦𝑖𝑖]
𝑖𝑖

  

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑖𝑖 , 𝑧̃𝑧𝑖𝑖) =
1

𝐶𝐶|𝐵𝐵|
��|𝑧𝑧 − 𝑧̃𝑧𝑖𝑖|�

2

𝑖𝑖

 

We may define total loss as:  

𝐿𝐿�𝑤𝑤𝑓𝑓� = 𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝛼𝛼𝛼𝛼(𝑡𝑡)𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑖𝑖 , 𝑧̃𝑧𝑖𝑖) 

Given a number of ramp-up steps 𝑛𝑛𝑒𝑒, a weighting function 𝑤𝑤(𝑡𝑡) is defined 

as: 𝑤𝑤(𝑡𝑡) = 𝑟𝑟 ∗ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑟𝑟 is a Gaussian ramp-up scaling factor and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is 

a number of labeled training inputs divided by total number of training inputs:  

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐷𝐷𝑠𝑠𝑠𝑠|
|𝐷𝐷𝑠𝑠𝑠𝑠|+|𝐷𝐷𝑡𝑡|

, 𝑟𝑟 =  �exp(−5p2) , p = 1 − max �0, epoch
𝑛𝑛𝑒𝑒

� , if epoch < ne
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Note that in practice for different datasets and models 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 parameter may 

be chosen arbitrarily. 

2.2.1 𝚷𝚷-model 

 

Figure 2 - pi-model training structure 
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The first of the approaches, the Π-model uses a single network both for a 

teacher and student. Each training step consists of applying two different 

random perturbation sets to an input image 𝑥𝑥𝑖𝑖 in order to get class distribution 

vectors 𝑧𝑧𝑖𝑖  and 𝑧̃𝑧𝑖𝑖. 

A proposed consistency loss utilizes 𝜆𝜆 = 1:  

𝐿𝐿�𝑤𝑤𝑓𝑓� = 𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑤𝑤(𝑡𝑡)𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑖𝑖 , 𝑧̃𝑧𝑖𝑖) 

Structure of 𝛱𝛱-model training pass is summarized on Figure x: 
 

2.2.2 Temporal ensembling model 

 

Figure 3 - Temporal ensembling model training scheme 

In order to store information about previous training results, the evaluation 

of 𝑧𝑧𝑖𝑖 and  𝑧̃𝑧𝑖𝑖 can be split into two steps. Given that input images are noised after 

every pass through a model input, we can calculate 𝑧𝑧𝑖𝑖 only once per epoch 

(input will be noised anyway), and then mix 𝑧𝑧𝑖𝑖 with previous evaluation output. 

Using temporal ensembling in favor of 𝛱𝛱-model may be beneficial in several 

ways: 

1. Training targets will be less noisy, which will benefit inference 

performance on cleaner inputs 

2. Calculating 𝑧𝑧𝑖𝑖 only once will speed up training 
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3. Storing 𝑧𝑧𝑖𝑖 at different timesteps enables collecting different statistics 

and possibly using it in future enhancements (i.e., select only steps 

with lower variance)  

As of the downsides of the model, learnt information is absorbed by a 

student network slowly (only once per epoch), and utilizing predicted 

distributions in case of large datasets with lots of training epochs is 

questionable. 

Temporal ensembling training pass is summarized on Figure 3. 

 

2.2.3 Mean Teacher model 

 

Figure 4 – Mean Teacher model training structure 

Limitations of temporal ensembling model made Tarvainen & Valpola [3] 

propose an approach of averaging model weights instead of class prediction 

distribution. As the approach focuses on presenting a teacher model as an 

average of consecutive student models, an approach was called a Mean Teacher 

method. 

For a student model with weights 𝜃𝜃 and a teacher model with weights 𝜃𝜃′ and 

a given smoothing coefficient 𝛼𝛼,we update teacher model weights at step 𝑡𝑡 as 

an exponential moving average of student weights: 

𝜃𝜃𝑡𝑡′ = 𝛼𝛼𝜃𝜃𝑡𝑡−1′ + (1 − 𝛼𝛼)𝜃𝜃𝑡𝑡 
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Note that in this approach teacher weights 𝜃𝜃′ are treated as a constant in 

terms of optimization. 

2.3. Adopting Self-ensembling to Domain Adaptation 

2.3.1. Mean Teacher model 

 

Figure 5 – Mean Teacher model adopted to DA 
In order to use Mean Teacher model in DA setting, it has to be adapted in a 

following way: 

• Labeled samples from 𝐷𝐷𝑆𝑆 are trained via cross-entropy 

• Samples from 𝐷𝐷𝑇𝑇 are trained in an unsupervised manner via 

consistency loss, mentioned at 2.2.1 

2.3.1. Confidence thresholding 

Experiments, conducted by French et. al. [6], demonstrated that using 

confidence thresholding instead of the ramp-up Gaussian weighting factor in 

the unsupervised loss may improve training stability under different scenarios. 

Confidence thresholding technique uses a searched f 𝑡𝑡 to mask a sample 𝑥𝑥𝑖𝑖 

to zero if a condition is match: 
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Given an unlabeled example 𝑥𝑥𝑇𝑇𝑖𝑖 and the corresponding predictions vector 

𝑧̃𝑧𝑇𝑇𝑖𝑖, we select a predicted probability fTi = max
𝑗𝑗∈𝐶𝐶

𝑧̃𝑧𝑇𝑇𝑖𝑖  for a selected class 𝑗𝑗 of the 

given example. If 𝑓𝑓𝑇𝑇𝑖𝑖 < 𝑡𝑡, 𝑥𝑥𝑖𝑖 is set to zero. 

 

2.3.2. Class balance loss 

In case of highly imbalanced datasets, Mean Teacher model may fall into a 

local minima, separate source and target datasets, and disproportionately favor 

single class one of the datasets.  

This problem can be tackled by using a class balance loss term, which 

penalizes the network for making predictions with highly-imbalanced 

distribution. For each mini-batch of 𝑥𝑥𝑇𝑇𝑖𝑖, we calculate mean per-class probability 

vector 𝑚𝑚𝑖𝑖. Then, cross-entropy loss 𝑙𝑙𝐶𝐶𝐶𝐶(𝑚𝑚𝑖𝑖 , 𝑧𝑧𝑖𝑖), where 𝑧𝑧𝑖𝑖 is a uniform 

distribution of class probabilities. 

Final loss is calculated as 𝐿𝐿 = 𝑘𝑘𝑘𝑘𝐶𝐶𝐶𝐶(𝑚𝑚𝑖𝑖 , 𝑧𝑧𝑖𝑖) + 𝐿𝐿′, where 𝑘𝑘 is calculated as a 

mean of the confidence threshold mask. 
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3. Practical research 

3.1. Used datasets 

3.1.1. MNIST 

 

Figure 6 - samples from MNIST dataset 

Introduced by National Institute of Standards and Technology of the USA, 

full MNIST is a classic introductory image classification dataset that consists of 

70000 grayscale hand-written digits, each image of size 28x28 pixels. During 

experiments, we use training set of 60000 images. In order to use grayscale 

28x28 images of MNIST along with colored data from SVHN, we had to pad 

images to 32x32 and convert grayscale to RGB. 

 

Figure 7 - padded MNIST samples 
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3.1.2. SVHN  

 

Figure 8 - samples from SVHN dataset 

Google’s Street View House Number Dataset consists of 630414 RGB 

images of digits, each being a cropped part of house number plates of size 

32x32. SVHN consists of train set of 73257, test set of 26032, and an extra set 

with 530000 additional images that are less difficult to identify. We use SVHN 

train and test subsets in our experiments, and didn’t add any transformations 

during pre-training stage. 

 

3.2. Experiments 

Experiments were conducted on SVHN and MNIST datasets, where SVHN 

was used as a source domain 𝐷𝐷𝑠𝑠, and MNIST was used as a target domain 𝐷𝐷𝑡𝑡. 

The aim of the experiments was to compare performance of proposed self-

ensembling models, mainly Mean Teacher model, Π-model and Temporal 

Ensembling model. As a baseline, we’ve implemented a two-layer classifier 

based on MobileNet v2 Backbone, trained it on SVHN-train dataset and 

evaluated on MNIST-test dataset, both with and without augmentations. As one 

would expect, a classifier perform badly, reaching accuracy of 0.41 on MNIST 

test set with augmentations in place, and accuracy of 0.34 without such 

augmentations.   
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3.2.1. General neural architecture 

For experiments between MNIST and SVHN we used the following neural 

network architecture: 

Description Shape 

Input image 32x32x3 

Conv 3x3x128 with padding=1, batch-norm 32x32x128 

Conv 3x3x128 with padding=1, batch-norm 32x32x128 

Conv 3x3x128 with padding=1, batch-norm 32x32x128 

Max-pooling, 2x2 16x16x128 

Dropout, p=0.5 16x16x128 

Conv 3x3x256 with padding=1, batch-norm 16x16x256 

Conv 3x3x256 with padding=1, batch-norm 16x16x256 

Conv 3x3x256 with padding=1, batch-norm 16x16x256 

Max-pooling, 2x2 8x8x256 

Dropout, p=0.5 8x8x256 

Conv 3x3x512 with padding=0, batch-norm 6x6x512 

Conv 1x1x256, batch-norm 6x6x256 

Conv 1x1x128, batch-norm 6x6x128 

Global pooling layer 1x1x128 

Dense layer, 10 units after softmax 10 

Table 2 - NN architecture used in experiments 
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3.2.1. Data Augmentation 

In order to increase our chances to achie state-of-the-art results on the 

experimental datasets, we used the affine scheme that adds random 

transformations according to a matrix: 

�1 +  𝑁𝑁(0,0.1) 𝑁𝑁(0,0.1)
𝑁𝑁(0,0.1) 1 + 𝑁𝑁(0,0.1)� 

It is worth mentioning that impact of data augmentation techniques should 

not be underestimated, and to illustrate that statement we will run separate 

experiments, ones using aforementioned affine scheme, and others via applying 

simple Gaussian noise with 𝛿𝛿 = 0.1 . 

 

3.2.1. Experiments settings 

Our main experiment would be in comparing results of self-ensembling 

models on the aforementioned datasets. In particular, we test performance of 𝛱𝛱-

model, along with Mean Teacher model with different smoothing coefficient 𝛼𝛼. 

We will also show how advanced augmentation techniques enhance model 

performance. Student accuracy on source and target domains will be used as a 

main performance metric, along with the combined self-ensembling loss. 

All the models were trained 100 epochs with a fixed initial random seed. 

However, we propose analyzing the results after 25 epochs, as under 100 

epochs accuracy for different parameters is too close to 1 and loss is almost 0, 

which makes explaining results a difficult task. 
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3.2.2 Results comparison table 
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𝛱𝛱-model + 0.885 0.89 0.985 0.0006*  

Mean Teacher 

model, 𝛼𝛼 = 0.95 

- 0.8928 0.8812 0.965 0.0912  

Mean Teacher 

model, 𝛼𝛼 = 0.95 

+ 0.9713 0.9815 0.9817 0.0266  

Mean Teacher 

model, 𝛼𝛼 = 0.99 

- 0.9215 0.9324 0.9724 0.0334  

Mean Teacher 

model, 𝛼𝛼 = 0.99 

+ 0.9817 0.9713 0.9892 0.0026  

Mean Teacher 

model, 𝛼𝛼 =

0.999 

+ 0.9349 0.9192 0.9765 0.0733  

Table 3 – comparison of experiment results 
 

 

 

3.3. Results 

Obtained results clearly demonstrate an advantage of using enhanced image 

augmentation schemes. Alongside, it may be seen that without using the 
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weights of the Teacher model, the  𝛱𝛱-model performs poorer than a Mean 

Teacher model, despite showing good results overall. 

As was shown in [4], 𝛼𝛼 = 0.99 is considered the most suitable for a majority 

of domain adaptation tasks. However, in the implementation of their paper, the 

authors suggest using 𝛼𝛼 = 0.999 for smaller datasets. Unfortunately, SVHN -> 

MNIST transfer performs weaker using increased 𝛼𝛼 parameter.  
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Summary 

This work covers a topic of deep domain adaptation, reviews its various 

settings depending on presence of data, homogeneity of source and target 

domains and approaches available for a particular domain adaptation task. The 

work analyzes self-ensembling techniques for semi-supervised learning for an 

Image Classification problem and compares different self-ensembling models 

along with their reported performance. 

During experimental phase, we compare performance of Mean Teacher 

model and 𝛱𝛱-model in an SVHN -> MNIST domain adaptation setting. 

Obtained results demonstrate utility of the aforementioned self-ensembling 

solutions, as well as the importance of proper augmentations and correct 

parameter selection for a successful training process. 

To sum up, we can confirm the validity of using self-ensembling methods 

for semi-supervised deep visual Domain Adaptation. 
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