

Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра математики факультету інформатики

Адаптація контексту у задачах класифікації зображень
Курсова робота

за спеціальністю „Прикладна математика ” 113

Керівник курсової роботи

к.ф.-м.н., ст.в. Швай Н.О.

(підпис)

“____” _________ 2021 р.

Виконав

студент 1 курсу МП

факультету інформатики

Крошин О. А.

Міністерство освіти і науки України
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра інформатики факультету інформатики

ЗАТВЕРДЖУЮ
 Зав. кафедри математики,
проф., д.ф.-м.н.
____________Б. В. Олійник
 (підпис)
„____”_______________2020 р.

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ
на курсову роботу

студенту Крошину О. А. факультету інформатики 1-го курсу МП
ТЕМА Адаптація контексту у задачах класифікації зображень
Зміст курсової роботи:

1. Індивідуальне завдання
2. Календарний план
3. Анотація
4. Вступ
5. РОЗДІЛ 1: Deep Visual domain adaptation, an overview
6. РОЗДІЛ 2: Self-ensembling for visual domain adaptation
7. Висновки
8. Список використаних джерел

Дата видачі „___” _________ 2020 р. Керівник _______________
 (підпис)
 Завдання отримав __________
 (підпис)

Календарний план виконання роботи:

№

п/п

Назва етапу курсової роботи Термін

виконання

етапу

Примітка

1. Отримання теми курсової роботи. 10.10.2020

2. Огляд задачі 12.12.2020

3. Збір даних для проведення досліджень 01.03.2021

4. Написання першого розділу 01.04.2021

5. Проведення досліджень 15.04.2021

6. Написання другого розділу 01.05.2021

8. Корегування роботи згідно із зауваженнями

керівника

10.05.2021

Студенту Крошину О.А.

Керівник Швай Н.О.

 “______”______________

1

Table of contents
Table of contents ... 1

Abstract ... 3

Introduction... 4

1. Deep Visual Domain adaptation, an overview ... 5
1.1. Domain adaptation in a context of transfer learning. ... 5

1.2. Classification of Domain Adaptation settings .. 6

1.3 Deep Domain Adaptation: Approaches .. 8

1.3.1 One-Step Domain Adaptation .. 8

1.3.2 Multi-Step Domain Adaptation .. 11

1.4 Deep domain adaptation and image classification ... 11

2. Self-ensembling for visual domain adaptation ... 13
2.1 Problem description .. 13

2.2 Self-ensembling for semi-supervised learning .. 13

2.2.1 Self-ensembling Loss function ... 14

2.2.1 𝚷𝚷-model ... 15

2.2.2 Temporal ensembling model ... 16

2.2.3 Mean Teacher model ... 17

2.3. Adopting Self-ensembling to Domain Adaptation ... 18

2.3.1. Mean Teacher model .. 18

2.3.1. Confidence thresholding ... 18

2.3.2. Class balance loss .. 19

3. Practical research .. 20
3.1. Used datasets ... 20

3.1.1. MNIST .. 20

3.1.2. SVHN ... 21

3.2. Experiments ... 21

3.2.1. General neural architecture .. 22

3.2.1. Data Augmentation ... 23

3.2.1. Experiments settings ... 23

3.2.2 Results comparison table ... 24

2

3.3. Results .. 24

Summary ... 26

References ... 27

3

Abstract
Rapid developments in the Deep Learning domain in recent years let

researchers and practitioners shift their focus from training machine learning

models itself to transferring the already-learnt knowledge and applying it in

different applications. This paper discusses Domain Adaptation, a subdomain of

transfer learning, primarily aimed at applying knowledge from a given source

domain to an unknow target one. It discusses various Domain Adaptation

settings under the context of Computer Vision, introduces self-ensembling

Domain Adaptation methods for semi-supervised learning and illustrates its

capabilities with proper experiments.

Experiments were implemented with Python 3.6 using libraries pytorch,

numpy, pandas, opencv, matplotlib, torch-salad, etc.

4

Introduction

Recent developments in machine learning world have greatly improved

usability of created models in everyday tasks. However, due to the costs,

retraining and annotating unseen data for a particular solution remains a huge

obstacle for researchers and practitioners.

The aim of this paper is to review Deep Domain Adaptation, a set of

techniques, aimed at adopting models to new tasks and datasets without fully

retraining them from scratch, give an overview for a variety of different

Domain Adaptation tasks, as well as to provide intuition behind Domain

Adaptation methods to be used under particular settings.

First part of the paper is focused on an overview of various Domain

Adaptation settings, specifically in context of Computer Vision subdomain and

from a narrower perspective of an Image Classification problem. Second part

introduces a variety of self-ensembling methods for semi-supervised visual

domain adaptation in a setting of image classification. The final, third part,

describes datasets and certain tricks necessary for a successful training before

interpreting results of different self-ensembling DA methods using SVHN and

MNIST datasets.

5

1. Deep Visual Domain adaptation, an overview

1.1. Domain adaptation in a context of transfer learning.

The problem of unlabeled data is one of the scourges of the machine

learning world. Collecting, transforming and annotating new data of high-

quality is one of the toughest obstacles between a data science team and a

production-ready machine learning solution. Retraining a model from scratch is

another regular challenge: modern state-of-the-art solutions in challenging

domains are built on complex neural-based architectures with lots of layers.

Another aspect of their success is pre-training on datasets containing millions of

training pairs. In example, latest solutions used in an image captioning domain

are pre-trained on millions of images. Adopting such models for new

distributions of the unseen data using simple fine-tuning may be also a

challenge, as it will require labels and lots of computational power in the first

place.

Using knowledge learnt by machine learning model while training for a

particular task in order to apply it to another machine learning task is a sphere

of transfer learning (TL) research problem. Given a domain 𝑫𝑫, which consists

of feature space 𝑭𝑭 and marginal probability distribution 𝑷𝑷(𝑿𝑿),𝑿𝑿 ∈ 𝑭𝑭. For a

given 𝐷𝐷 = {𝐹𝐹,𝑃𝑃(𝑋𝑋)}, the learning task is defined as 𝑇𝑇 = {𝑌𝑌,𝑓𝑓:𝐹𝐹 → 𝑌𝑌}, where

𝑌𝑌 is a label space, and 𝑓𝑓 is an objective function which may be seen as 𝑃𝑃(𝑌𝑌|𝑋𝑋).

The machine learning model learns how to predict 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌 given training pairs

{𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}. With source domain and task 𝐷𝐷𝑠𝑠,𝑇𝑇𝑠𝑠, the aim of transfer learning is to

enhance performance for the objective function 𝑓𝑓𝑡𝑡 for a target task 𝑇𝑇𝑡𝑡 in a

domain 𝐷𝐷𝑡𝑡.

6

According to Pan et al [6], transfer learning approaches may be categorized

into three main categories: transductive, inductive, and unsupervised.

 In a situation when 𝑃𝑃𝑆𝑆(𝑋𝑋) = 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡 , transfer learning tasks are

defined as inductive. Alternatively, given that 𝑃𝑃𝑆𝑆(𝑋𝑋) ≠ 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑡𝑡 ,

transfer learning approaches are categorized as transductive. Finally, in

situations where 𝑃𝑃𝑠𝑠(𝑋𝑋) ≠ 𝑃𝑃𝐷𝐷(𝑋𝑋) and 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡, unsupervised transfer learning

techniques are applied.

The field of Domain Adaptation (DA) is associated with transductive

transfer learning, and focuses on adapting machine learning model for a new

source distribution. The examples of Domain Adaptation may be applying

diagnostic systems to identify new diseases based on experience of identifying

similar ones, adopting sales forecasting model to a new region, etc.

Deep Domain Adaptation is a set of methods that use deep networks to

improve DA performance.

1.2. Classification of Domain Adaptation settings

 Depending on whether the source and target domains are directly related,

adapting to an intermediate (transitive) domain may be necessary in a domain

adaptation process. Based on the necessity of transitive domain adaptation step,

DA may be classified as one-step or multi-step.

Based on whether source and target feature spaces 𝐹𝐹𝑠𝑠,𝐹𝐹𝑡𝑡 are identical or not,

DA ca be classified as homogeneous (𝐹𝐹𝑠𝑠 = 𝐹𝐹𝑡𝑡, 𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑡𝑡, where 𝑑𝑑 represents

feature space dimensionality), and heterogeneous (𝐹𝐹𝑠𝑠 ≠ 𝐹𝐹𝑡𝑡).

Finally, DA may be classified as supervised, semi-supervised or

unsupervised based on the nature of target domain training data:

7

• In the supervised DA, some labeled target data 𝐷𝐷𝑡𝑡𝑡𝑡 is present. However,

𝐷𝐷𝑡𝑡𝑡𝑡 is insufficient to reach great level of performance.

• In the semi-supervised DA, 𝐷𝐷𝑡𝑡𝑡𝑡 is present along with target domain

unlabeled data 𝐷𝐷𝑡𝑡𝑡𝑡, which is sufficient for learning 𝐷𝐷𝑡𝑡 structure

information.

• In the unsupervised DA, only 𝐷𝐷𝑡𝑡𝑡𝑡 is available.

DA classification diagram is given on a figure 1

Figure 1 - Domain Adaptation Classification diagram
It may be seen that with the increase of K grows the computational resource

to reach the stable state of the system. Kauffman demonstrated that the system

becomes more chaotic. Note that in this paper we assume that T=2 unless other

value of T is specified.

DA

Multi-step DA

One-step DA

Homogeneous

Supervised

Semi-supervised

Unsupervised

Heterogeneous

Supervised

Semi-supervised

Unsupervised

8

1.3 Deep Domain Adaptation: Approaches

1.3.1 One-Step Domain Adaptation

The basic idea behind one-step deep DA lies in utilizing deep networks in

order to learn “good” and domain invariant feature space using available source

and target domain data.

Deep approaches in one-step DA can be categorized into three subgroups:

• Discrepancy-based approaches focus on fine-tuning the network in

order to reduce the distributional shift between the domains.

• Reconstruction-based approaches use techniques of data

reconstruction in order to reduce variance between feature as much as

possible

• Adversarial-based approaches

Each group of the approaches has its own group of techniques for

performing an assigned task.

1.3.1.1 Discrepancy-based DA

Discrepancy-based DA consists of four major techniques for performing

fine-tuning:

1. Architecture criterion – adapts neural networks to learning wider

sets of features, which are less domain-specific and may

potentially be used among multiple domains. Such techniques

include adaptive batch normalization, domain-guided dropout, etc.

2. Class criterion – transfers interdomain knowledge via relying on

data labels. When 𝐷𝐷𝑡𝑡𝑡𝑡 are available, metric learning under soft

9

labels is almost always efficient. Otherwise, one may use methods

of assigning pseudo labels, or using certain features as labels.

3. Geometric criterion – is used under the assumption that

relationship of source and target domain may be explained under

some geometrical properties. Can narrow the gap between source

and target domains via exploiting some of its geometric properties.

4. Statistic criterion – uses statistical methods to adapt source and

target domains to one another via minimizing the calculated

metric. Among possible methods are correlation alignment

(CORAL), KL-divergence, and other criteria that measure

similarity between two probability distributions.

In heterogeneous DA scenarios, images in different domains have to be

resized into same dimensions in order for Class or Statistic Criterions to be

utilized.

1.3.1.2 Reconstruction-based DA

Given its name, Reconstruction-based DA is based on an assumption of the

utility of data reconstruction for source and/or target samples. Reconstruction-

based DA approaches can be classified as follows:

1. Adversarial reconstruction – minimizes the reconstruction error – a

difference between original and reconstructed images in each domain.

Utilizes a discriminator like a cycle GAN.

2. Encoder-Decoder Reconstruction: encoder-decoder reconstruction

methods utilize the encoder for representation learning, and the

decoder for data reconstruction.

10

1.3.1.3 Adversarial-based DA

In Adversarial-based DA, a domain discriminator classifies if a point

belongs to a 𝐷𝐷𝑠𝑠 or 𝐷𝐷𝑡𝑡, and an adversarial objective is designed to minimize the gap

between 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 distributions. Its approaches can be categorized into two types

of techniques:

1. Generative models – generative adversarial networks (GANs) may be

used to generate samples that similar to ones from target distribution,

and yet store the labels of the source distribution at the same time.

2. Non-Generative models – given labels from 𝐷𝐷𝑠𝑠𝑡𝑡, an image feature

extractor is trained a discriminative representation to create domain-

invariant features, which are then used to map the target data to the

source distribution.

1.3.1.4 One-step DA approach comparison table

 Supervised

DA

Unsupervised

DA

Adversarial-

based

Generative Models +

Non-generative models +

Reconstruction-

based

Adversarial Models +

Encoder-Decoder Models +

Discrepancy-

based

Architecture Criterion + +

Class Criterion +

Geometric Criterion +

Statistic Criterion +

Table 1 – DA approaches comparison table

11

1.3.2 Multi-Step Domain Adaptation

When working with multi-step DA, the initial step is to identify intermediate

domains that are “closer” to 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 than source and target domains are with

each other. Naturally, one-step DA will be applied on each step between source,

target and transitive domains. The most challenging part of multi-step DA lies

in identifying the most useful intermediate domains possible and applying them

correctly.

Multi-step DA can be classified into three categories:

• Hand-crafted: intermediate domains are selected by the users.

• Instance-based: intermediate domains are enriched with additional

data from auxiliary datasets.

• Representation-based: firstly, pretrained network is freezed, and then

its output is used as an input to the new deep network.

1.4 Deep domain adaptation and image classification

Lots of the techniques described above may be used in a wide variety of

computer vision applications, among those in object detection, semantic

segmentation, style transfer, etc. However, image classification is the basic

problem for which most of the deep DA approaches were proposed.

One may define an image classification problem as a task of selecting the

most probable label(s) from a pre-defined set of labels given an image as an

input.

12

 Image classification problem provides lots of benchmarks for different tasks.

In example, for deep DA different techniques are compared by analyzing

certain metrics (mainly, accuracy) using different datasets as 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡. Among

those benchmark datasets are so-called digits dataset, mainly MNIST, USPS

and SVHN, which will be described in more detail in part 3 of this work.

Another important benchmark is the Office-31 dataset, which consists of

images from three different domains: Amazon (A), DSLR (D), and Webcam

(W). There are 31 object classes. The A domain consists of images of office

objects taken from online stores, The D domain contains photos of high-quality

office objects, ant the W domain consists of low-quality images with lots of

noise and artifacts.

13

2. Self-ensembling for visual domain adaptation

2.1 Problem description

Among different practical settings available for visual deep DA, one of the

most common scenarios is when a source domain dataset is fully labeled, and a

target dataset consist of a small labeled part and lots of unlabeled examples.

This setting is called semi-supervised domain adaptation. In this section we will

review some recent state-of-the-art solutions in the area and discuss them in

detail.

2.2 Self-ensembling for semi-supervised learning

The problem behind semi-ensembling learning techniques is closely related

to the connection between vision and perception. When a human sees an object

under different conditions, it typically still recognizes object class correctly.

Similar to a human, a machine learning algorithm should also be able to

correctly identify objects after some perturbations and changes. Methods that

are focused on enhancing model’s ability to detect objects correctly under

different conditions are known as consistency-enforcing approaches,

Application of regularization techniques such as Dropout or augmentations

is a simple way to improve stability of model predictions. In a semi-supervised

setting model stability may be improved via evaluating labeled examples with

and without regularization. The approach, originally proposed as 𝛤𝛤-model, used

the same model as two parts: a teacher model would generate targets, and a

student model would use generated targets for training. An immediate problem

would be the quality of targets, as generating too inconsistent augmentations

would change training examples too much and only worsen classification

14

performance. Other than carefully selecting regularization steps to be used, one

could improve teacher’s network to generate better examples and tune student

network to learn faster. This class of semi-supervised learning methods is

known as self-ensembling.

Below we will describe state-of-the-art methods that use the aforementioned

approach. We will start with analyzing the 𝛱𝛱-model and Temporal ensembling,

proposed by Laine & Aila [5], and examine possible additional improvements

under the Mean Teacher model, introduced by French et al. [4].

General idea behind all three models lies in getting separate class probability

distributions 𝑧𝑧𝑖𝑖 and �̃�𝑧𝑖𝑖 from teacher and student networks given a single input

image, and then minimizing a “distance” between two distributions given a

label, which matches target distribution to a source domain.

2.2.1 Self-ensembling Loss function

A loss function used in proposed methods is called consistency loss. It

consists of supervised an unsupervised part. It is worth mentioning that the

original problem focuses on image classification task with partially labeled

data. In context of DA, labeled subsets from 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 may be used and

evaluated separately in order to preserve separate normalization statistics for

each domain.

In a traditional classification setting, labels from source are evaluated on

cross-entropy, and all source and target labels are evaluated on consistency loss,

which is calculated using mean square difference between 𝑧𝑧𝑖𝑖 and �̃�𝑧𝑖𝑖. Supervised

and unsupervised loss are then combined via applying weighting function 𝑤𝑤(𝑡𝑡),

dependent on time.

15

Let us define cross-entropy and consistency losses for a classification

problem given minibatch 𝐵𝐵, a total of 𝐶𝐶 classes and a parameter 𝜆𝜆 which

controls importance of consistency part:

𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) = −
1

|𝐵𝐵|� log zi[𝑦𝑦𝑖𝑖]
𝑖𝑖

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑧𝑧𝑖𝑖 , �̃�𝑧𝑖𝑖) =
1

𝐶𝐶|𝐵𝐵|
��|𝑧𝑧 − �̃�𝑧𝑖𝑖|�

2

𝑖𝑖

We may define total loss as:

𝐿𝐿�𝑤𝑤𝑓𝑓� = 𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝛼𝛼𝑤𝑤(𝑡𝑡)𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑧𝑧𝑖𝑖 , �̃�𝑧𝑖𝑖)

Given a number of ramp-up steps 𝑛𝑛𝑒𝑒, a weighting function 𝑤𝑤(𝑡𝑡) is defined

as: 𝑤𝑤(𝑡𝑡) = 𝑟𝑟 ∗ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑟𝑟 is a Gaussian ramp-up scaling factor and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is

a number of labeled training inputs divided by total number of training inputs:

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐷𝐷𝑠𝑠𝑠𝑠|
|𝐷𝐷𝑠𝑠𝑠𝑠|+|𝐷𝐷𝑡𝑡|

, 𝑟𝑟 = �exp(−5p2) , p = 1 − max �0, epoch
𝑐𝑐𝑒𝑒

� , if epoch < ne
1, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

Note that in practice for different datasets and models 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 parameter may

be chosen arbitrarily.

2.2.1 𝚷𝚷-model

Figure 2 - pi-model training structure

Squared
difference

𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖

Stochastic
augmentation

Network

Cross-
entropy

Weighted
sum

𝑤𝑤(𝑡𝑡)

loss

16

The first of the approaches, the Π-model uses a single network both for a

teacher and student. Each training step consists of applying two different

random perturbation sets to an input image 𝑥𝑥𝑖𝑖 in order to get class distribution

vectors 𝑧𝑧𝑖𝑖 and �̃�𝑧𝑖𝑖.

A proposed consistency loss utilizes 𝜆𝜆 = 1:

𝐿𝐿�𝑤𝑤𝑓𝑓� = 𝑙𝑙𝐶𝐶𝐶𝐶(𝑧𝑧𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑤𝑤(𝑡𝑡)𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(𝑧𝑧𝑖𝑖 , �̃�𝑧𝑖𝑖)

Structure of 𝛱𝛱-model training pass is summarized on Figure x:

2.2.2 Temporal ensembling model

Figure 3 - Temporal ensembling model training scheme

In order to store information about previous training results, the evaluation

of 𝑧𝑧𝑖𝑖 and �̃�𝑧𝑖𝑖 can be split into two steps. Given that input images are noised after

every pass through a model input, we can calculate 𝑧𝑧𝑖𝑖 only once per epoch

(input will be noised anyway), and then mix 𝑧𝑧𝑖𝑖 with previous evaluation output.

Using temporal ensembling in favor of 𝛱𝛱-model may be beneficial in several

ways:

1. Training targets will be less noisy, which will benefit inference

performance on cleaner inputs

2. Calculating 𝑧𝑧𝑖𝑖 only once will speed up training

Squared
difference

𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖 Stochastic

augmentation

Cross-
entropy

Weighted
sum

𝑤𝑤(𝑡𝑡)

loss

𝑧𝑧�
𝑧𝑧𝑖𝑖

Network

17

3. Storing 𝑧𝑧𝑖𝑖 at different timesteps enables collecting different statistics

and possibly using it in future enhancements (i.e., select only steps

with lower variance)

As of the downsides of the model, learnt information is absorbed by a

student network slowly (only once per epoch), and utilizing predicted

distributions in case of large datasets with lots of training epochs is

questionable.

Temporal ensembling training pass is summarized on Figure 3.

2.2.3 Mean Teacher model

Figure 4 – Mean Teacher model training structure

Limitations of temporal ensembling model made Tarvainen & Valpola [3]

propose an approach of averaging model weights instead of class prediction

distribution. As the approach focuses on presenting a teacher model as an

average of consecutive student models, an approach was called a Mean Teacher

method.

For a student model with weights 𝜃𝜃 and a teacher model with weights 𝜃𝜃′ and

a given smoothing coefficient 𝛼𝛼,we update teacher model weights at step 𝑡𝑡 as

an exponential moving average of student weights:

𝜃𝜃𝑡𝑡′ = 𝛼𝛼𝜃𝜃𝑡𝑡−1′ + (1 − 𝛼𝛼)𝜃𝜃𝑡𝑡

Squared
difference

𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖 Stochastic

augmentation

Student

Cross-
entropy

Weighted
sum

𝑤𝑤(𝑡𝑡)

loss
Teacher

18

Note that in this approach teacher weights 𝜃𝜃′ are treated as a constant in

terms of optimization.

2.3. Adopting Self-ensembling to Domain Adaptation

2.3.1. Mean Teacher model

Figure 5 – Mean Teacher model adopted to DA
In order to use Mean Teacher model in DA setting, it has to be adapted in a

following way:

• Labeled samples from 𝐷𝐷𝑆𝑆 are trained via cross-entropy

• Samples from 𝐷𝐷𝑇𝑇 are trained in an unsupervised manner via

consistency loss, mentioned at 2.2.1

2.3.1. Confidence thresholding

Experiments, conducted by French et. al. [6], demonstrated that using

confidence thresholding instead of the ramp-up Gaussian weighting factor in

the unsupervised loss may improve training stability under different scenarios.

Confidence thresholding technique uses a searched f 𝑡𝑡 to mask a sample 𝑥𝑥𝑖𝑖

to zero if a condition is match:

Squared
difference

𝑦𝑦𝑖𝑖

𝑥𝑥𝑆𝑆𝑖𝑖 Stochastic

augmentation

Cross-
entropy

Weighted
sum

loss

𝑥𝑥𝑇𝑇𝑖𝑖

Student

Teacher

19

Given an unlabeled example 𝑥𝑥𝑇𝑇𝑖𝑖 and the corresponding predictions vector

�̃�𝑧𝑇𝑇𝑖𝑖, we select a predicted probability fTi = max
𝑗𝑗∈𝐶𝐶

�̃�𝑧𝑇𝑇𝑖𝑖 for a selected class 𝑗𝑗 of the

given example. If 𝑓𝑓𝑇𝑇𝑖𝑖 < 𝑡𝑡, 𝑥𝑥𝑖𝑖 is set to zero.

2.3.2. Class balance loss

In case of highly imbalanced datasets, Mean Teacher model may fall into a

local minima, separate source and target datasets, and disproportionately favor

single class one of the datasets.

This problem can be tackled by using a class balance loss term, which

penalizes the network for making predictions with highly-imbalanced

distribution. For each mini-batch of 𝑥𝑥𝑇𝑇𝑖𝑖, we calculate mean per-class probability

vector 𝑚𝑚𝑖𝑖. Then, cross-entropy loss 𝑙𝑙𝐶𝐶𝐶𝐶(𝑚𝑚𝑖𝑖 , 𝑧𝑧𝑖𝑖), where 𝑧𝑧𝑖𝑖 is a uniform

distribution of class probabilities.

Final loss is calculated as 𝐿𝐿 = 𝑘𝑘𝑙𝑙𝐶𝐶𝐶𝐶(𝑚𝑚𝑖𝑖 , 𝑧𝑧𝑖𝑖) + 𝐿𝐿′, where 𝑘𝑘 is calculated as a

mean of the confidence threshold mask.

20

3. Practical research

3.1. Used datasets

3.1.1. MNIST

Figure 6 - samples from MNIST dataset

Introduced by National Institute of Standards and Technology of the USA,

full MNIST is a classic introductory image classification dataset that consists of

70000 grayscale hand-written digits, each image of size 28x28 pixels. During

experiments, we use training set of 60000 images. In order to use grayscale

28x28 images of MNIST along with colored data from SVHN, we had to pad

images to 32x32 and convert grayscale to RGB.

Figure 7 - padded MNIST samples

21

3.1.2. SVHN

Figure 8 - samples from SVHN dataset

Google’s Street View House Number Dataset consists of 630414 RGB

images of digits, each being a cropped part of house number plates of size

32x32. SVHN consists of train set of 73257, test set of 26032, and an extra set

with 530000 additional images that are less difficult to identify. We use SVHN

train and test subsets in our experiments, and didn’t add any transformations

during pre-training stage.

3.2. Experiments

Experiments were conducted on SVHN and MNIST datasets, where SVHN

was used as a source domain 𝐷𝐷𝑠𝑠, and MNIST was used as a target domain 𝐷𝐷𝑡𝑡.

The aim of the experiments was to compare performance of proposed self-

ensembling models, mainly Mean Teacher model, Π-model and Temporal

Ensembling model. As a baseline, we’ve implemented a two-layer classifier

based on MobileNet v2 Backbone, trained it on SVHN-train dataset and

evaluated on MNIST-test dataset, both with and without augmentations. As one

would expect, a classifier perform badly, reaching accuracy of 0.41 on MNIST

test set with augmentations in place, and accuracy of 0.34 without such

augmentations.

22

3.2.1. General neural architecture

For experiments between MNIST and SVHN we used the following neural

network architecture:

Description Shape

Input image 32x32x3

Conv 3x3x128 with padding=1, batch-norm 32x32x128

Conv 3x3x128 with padding=1, batch-norm 32x32x128

Conv 3x3x128 with padding=1, batch-norm 32x32x128

Max-pooling, 2x2 16x16x128

Dropout, p=0.5 16x16x128

Conv 3x3x256 with padding=1, batch-norm 16x16x256

Conv 3x3x256 with padding=1, batch-norm 16x16x256

Conv 3x3x256 with padding=1, batch-norm 16x16x256

Max-pooling, 2x2 8x8x256

Dropout, p=0.5 8x8x256

Conv 3x3x512 with padding=0, batch-norm 6x6x512

Conv 1x1x256, batch-norm 6x6x256

Conv 1x1x128, batch-norm 6x6x128

Global pooling layer 1x1x128

Dense layer, 10 units after softmax 10

Table 2 - NN architecture used in experiments

23

3.2.1. Data Augmentation

In order to increase our chances to achie state-of-the-art results on the

experimental datasets, we used the affine scheme that adds random

transformations according to a matrix:

�1 + 𝑁𝑁(0,0.1) 𝑁𝑁(0,0.1)
𝑁𝑁(0,0.1) 1 + 𝑁𝑁(0,0.1)�

It is worth mentioning that impact of data augmentation techniques should

not be underestimated, and to illustrate that statement we will run separate

experiments, ones using aforementioned affine scheme, and others via applying

simple Gaussian noise with 𝛿𝛿 = 0.1 .

3.2.1. Experiments settings

Our main experiment would be in comparing results of self-ensembling

models on the aforementioned datasets. In particular, we test performance of 𝛱𝛱-

model, along with Mean Teacher model with different smoothing coefficient 𝛼𝛼.

We will also show how advanced augmentation techniques enhance model

performance. Student accuracy on source and target domains will be used as a

main performance metric, along with the combined self-ensembling loss.

All the models were trained 100 epochs with a fixed initial random seed.

However, we propose analyzing the results after 25 epochs, as under 100

epochs accuracy for different parameters is too close to 1 and loss is almost 0,

which makes explaining results a difficult task.

24

3.2.2 Results comparison table

 A
ug

m
en

ta
tio

n

A
ff

in
e

Sc
he

m
e

St
ud

et
nt

ac
cu

ra
cy

,S
ou

rc
e

St
ud

en
t a

cc
ur

ac
y,

Ta
rg

et

Te
ac

he
r a

cc
ur

ac
y,

ta
rg

et

C
om

bi
ne

d
Lo

ss

N
ot

e

𝛱𝛱-model + 0.885 0.89 0.985 0.0006*

Mean Teacher

model, 𝛼𝛼 = 0.95

- 0.8928 0.8812 0.965 0.0912

Mean Teacher

model, 𝛼𝛼 = 0.95

+ 0.9713 0.9815 0.9817 0.0266

Mean Teacher

model, 𝛼𝛼 = 0.99

- 0.9215 0.9324 0.9724 0.0334

Mean Teacher

model, 𝛼𝛼 = 0.99

+ 0.9817 0.9713 0.9892 0.0026

Mean Teacher

model, 𝛼𝛼 =

0.999

+ 0.9349 0.9192 0.9765 0.0733

Table 3 – comparison of experiment results

3.3. Results

Obtained results clearly demonstrate an advantage of using enhanced image

augmentation schemes. Alongside, it may be seen that without using the

25

weights of the Teacher model, the 𝛱𝛱-model performs poorer than a Mean

Teacher model, despite showing good results overall.

As was shown in [4], 𝛼𝛼 = 0.99 is considered the most suitable for a majority

of domain adaptation tasks. However, in the implementation of their paper, the

authors suggest using 𝛼𝛼 = 0.999 for smaller datasets. Unfortunately, SVHN ->

MNIST transfer performs weaker using increased 𝛼𝛼 parameter.

26

Summary

This work covers a topic of deep domain adaptation, reviews its various

settings depending on presence of data, homogeneity of source and target

domains and approaches available for a particular domain adaptation task. The

work analyzes self-ensembling techniques for semi-supervised learning for an

Image Classification problem and compares different self-ensembling models

along with their reported performance.

During experimental phase, we compare performance of Mean Teacher

model and 𝛱𝛱-model in an SVHN -> MNIST domain adaptation setting.

Obtained results demonstrate utility of the aforementioned self-ensembling

solutions, as well as the importance of proper augmentations and correct

parameter selection for a successful training process.

To sum up, we can confirm the validity of using self-ensembling methods

for semi-supervised deep visual Domain Adaptation.

27

References

1. Wang, M. - Deep Visual Domain Adaptation: A Survey / Wang, M., Deng.

W. - Neurocomputing, 2018, 312: 135-153, doi:10.1016/j.neucom.2018.05.083

2. Géron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow; –

O’Reilly [2017] – 542с.

3. Tarvainen,A. Valpola, H. Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results. In

NIPS, 2017.

4. French, M. Mackiewicz, and M. Fisher. Self-ensembling for visual domain

adaptation. International Conference on Learning Representations, 2018.

5. Laine, S., Alia, T. Temporal Ensembling for Semi-Supervised Learning –

International Conference on Learning Representations 2017.

6. Pan, S., Yang, Q. A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 22(10):1345–1359, 2010.

	Table of contents
	Abstract
	Introduction
	1. Deep Visual Domain adaptation, an overview
	1.1. Domain adaptation in a context of transfer learning.
	1.2. Classification of Domain Adaptation settings
	1.3 Deep Domain Adaptation: Approaches
	1.3.1 One-Step Domain Adaptation
	1.3.1.1 Discrepancy-based DA
	1.3.1.2 Reconstruction-based DA
	1.3.1.3 Adversarial-based DA
	1.3.1.4 One-step DA approach comparison table

	1.3.2 Multi-Step Domain Adaptation

	1.4 Deep domain adaptation and image classification

	2. Self-ensembling for visual domain adaptation
	2.1 Problem description
	2.2 Self-ensembling for semi-supervised learning
	2.2.1 Self-ensembling Loss function
	2.2.1 𝚷-model
	2.2.2 Temporal ensembling model
	2.2.3 Mean Teacher model

	2.3. Adopting Self-ensembling to Domain Adaptation
	2.3.1. Mean Teacher model
	2.3.1. Confidence thresholding
	2.3.2. Class balance loss

	3. Practical research
	3.1. Used datasets
	3.1.1. MNIST
	3.1.2. SVHN

	3.2. Experiments
	3.2.1. General neural architecture
	3.2.1. Data Augmentation
	3.2.1. Experiments settings
	3.2.2 Results comparison table

	3.3. Results

	Summary
	References

