Primary decompositions of unital locally matrix algebras

dc.contributor.authorBezushchak, Oksana
dc.contributor.authorOliynyk, Bogdana
dc.date.accessioned2021-02-04T21:28:37Z
dc.date.available2021-02-04T21:28:37Z
dc.date.issued2020
dc.description.abstractWe construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number s there exists a unital locally matrix algebra A having the Steinitz number s and not isomorphic to a tensor product of finite-dimensional matrix algebras.en_US
dc.identifier.citationBezushchak O. Primary decompositions of unital locally matrix algebras [electronic resource] / Bezushchak O., Oliynyk B. // Bulletin of Mathematical Sciences. - 2020. - Vol. 10, Issue 1. - Article number 2050006.en_US
dc.identifier.urihttps://doi.org/10.1142/S166436072050006X
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/19412
dc.language.isoenuk_UA
dc.relation.sourceBulletin of Mathematical Sciences.en_US
dc.statusfirst publisheduk_UA
dc.subjectLocally matrix algebraen_US
dc.subjectprimary decompositionen_US
dc.subjectSteinitz numberen_US
dc.subjecttensor producten_US
dc.subjectClifford algebraen_US
dc.subjectarticleen_US
dc.titlePrimary decompositions of unital locally matrix algebrasen_US
dc.typeArticleuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bezushchak_Primary_decompositions_of_unital_locally_matrix_algebras.pdf
Size:
204.29 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: