Cross-language text classification with convolutional neural networks
Loading...
Date
2017
Authors
Musbah, Zaid
Lehinevych, Taras
Glybovets, Аndrii
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Text classification or text categorization problem is currently one of the most observed in the field of information and computer sciences. The task is to assign a text to one or more classes or categories and it becomes more difficult if we have to deal with different languages. This problem is called cross-language text classification problem. In our paper [1] was shown that cross-language multi-label text classification can be handled by a deep learning system without artificially embedding knowledge about words, phrases, sentences or any other syntactic or semantic structures associated with a language.
Description
Keywords
text classification, cross-language text classification problem, cross-language multi-label classification problem based, тези доповіді
Citation
Musbah Z. Cross-language text classification with convolutional neural networks / Zaid Musbah, Taras Lehinevych, Аndrii Glybovets // Обчислювальний інтелект (результати, проблеми, перспективи) : матеріали ІV-ої Міжнародної науково-практичної конференції, 16-18 травня 2017 року, Україна, Київ / наук. ред. Снитюк В. Є. ; Київський національний університет ім. Тараса Шевченка. - Київ, 2017. - С. 178-179.