Використання клітинних автоматів для вирішення задач фільтрації шумів та виявлення контурів зображень

dc.contributor.authorЖежерун, Олександр
dc.contributor.authorКалітовський, Богдан
dc.date.accessioned2019-12-04T14:53:47Z
dc.date.available2019-12-04T14:53:47Z
dc.date.issued2019
dc.description.abstractУ статті проведено огляд застосування клітинних автоматів для обробки та аналізу зображень. Наведено опис фільтрів, що можуть видаляти імпульсний шум із пошкоджених шумом зображень, і методів визначення контурів на зображеннях,реалізованих на основі клітинних автоматів. Продуктивність цих підходів було порівняно із традиційними методами: медіанним фільтром (для шумозаглушення) та перехресним оператором Робертса, оператором Собеля–Фельдмана, оператором Лапласа (для визначення контурів). Це порівняння засвідчує, що наведені методи на основі клітинних автоматів є дуже перспективними для фільтрації імпульсних шумів і виявлення контурів зображень.uk_UA
dc.description.abstractCellular Automata (CA) are the most common and simple models of parallel computations. CA can be successfully applied in image processing, where we consider images as a system of simple components (pixels), and the behaviour of each component is obtained and reformed according to the behaviour of their neighbours and their previous behaviour. The constructive components of these systems can perform reliable and complex tasks by interacting with each other. Precisely by setting certain rules of the behaviour of the components, the cellular automata achieved significant results in such areas of image processing as noise filtering, smoothing, edge detection, restoring and extracting the features of images, figures and texts recognition, image compression. However, up to these days corresponding researches remain being used only in order to solve specified tasks, such as image processing of minefields, the processing of X-ray imagesin medicine, or the analysis of satellite imagery. This paper reviews the application of CA for image analysis and processing. It demonstrates an image noise filter based on CA, which can remove impulse noise from a noise-corrupted image and compares it with the median filter. Meanwhile, the edge detection appears to be one of the most crucial tasks in image processing (especially for biological and medical images processing). So CA based edge detection has potential benefits over known traditional approaches since it is computationally efficient, and can be tuned for specific applications by appropriate selection or learning of rules. Several CA based edge detection methods are implemented and tested to enable an initial comparison between existing traditional methods (the Roberts cross operator, Sobel-Feldman operator, Laplace operator). This comparisons show that the provided CA-based methods are very perspective for impulse noise filtering and image edge detection.en_US
dc.identifier.citationЖежерун О. П. Використання клітинних автоматів для вирішення задач фільтрації шумів та виявлення контурів зображень / Жежерун О. П., Калітовський Б. В. // Наукові записки НаУКМА. Комп'ютерні науки. - 2019. - Т. 2. - С. 66-72.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/16703
dc.language.isoukuk_UA
dc.relation.sourceНаукові записки НаУКМА. Комп'ютерні наукиuk_UA
dc.statusfirst publisheduk_UA
dc.subjectклітинні автоматиuk_UA
dc.subjectобробка зображеньuk_UA
dc.subjectшумозаглушенняuk_UA
dc.subjectвизначення контурівuk_UA
dc.subjectлінійне правилоuk_UA
dc.subjectстаттяuk_UA
dc.subjectcellular automataen_US
dc.subjectimage processingen_US
dc.subjectnoise filteringen_US
dc.subjectedge detectionen_US
dc.subjectlinear ruleen_US
dc.subjectarticleen_US
dc.titleВикористання клітинних автоматів для вирішення задач фільтрації шумів та виявлення контурів зображеньuk_UA
dc.title.alternativeCellular automata for image noise filtering and edge detectionen_US
dc.typeArticleuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhezherun,Kalitovskyi_Vykorystannia_klitynnykh_avtomativ_dlia_vyrishennia_zadach_filtratsii_shumiv_ta_vyiavlennia_konturiv_zobrazhen.pdf
Size:
674.36 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections