Cемантична сегментація зображень з використанням Transformer архітектури

dc.contributor.advisorШвай, Надія
dc.contributor.authorІванюк-Скульський, Богдан
dc.date.accessioned2024-04-10T11:17:40Z
dc.date.available2024-04-10T11:17:40Z
dc.date.issued2022
dc.description.abstractIn this work we have presented a model that efficiently balances between local representations obtained by convolution blocks and a global representations obtained by transformer blocks. Proposed model outperforms, previously, standard decoder architecture DeepLabV3 by at least 1% Jaccard index with smaller number of parameters. In the best case this improvement is of 7%. As part of our future work we plan to experiment with (1) MS COCO dataset pretraining (2) hyperparameters search. uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/28826
dc.language.isoen uk_UA
dc.relation.organisationНаУКМА uk_UA
dc.statusfirst published uk_UA
dc.subjectAlexNet uk_UA
dc.subjectTransformer Encoder blocks uk_UA
dc.subjectJaccard index uk_UA
dc.subjectDeepLabV3 uk_UA
dc.subjectмагістерська робота uk_UA
dc.titleCемантична сегментація зображень з використанням Transformer архітектури uk_UA
dc.typeOther uk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivaniuk-Skulskyi_Mahisterska_robota.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: