Diffusion models for music generation

dc.contributor.advisorКрюкова, Галина
dc.contributor.authorСавкін, Гліб
dc.date.accessioned2024-11-01T06:23:44Z
dc.date.available2024-11-01T06:23:44Z
dc.date.issued2024
dc.description.abstractIn this work, we aim to research the possibility of applications of diffusion models for the task of symbolic audio generation. We will implement and train a diffusion model, comparing its performance against other popular models for music generation. By providing results and analysis, this study aims to demonstrate the advantages of DDPMs for music generation and to create a foundation for future research in the use of generative models in music generation.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/32124
dc.language.isoenen_US
dc.statusfirst publisheduk_UA
dc.subjectDenoising Diffusion Probabilistic Models (DDPMs)en_US
dc.subjectVariational AutoEncoders (VAEs)en_US
dc.subjectGenerative Adversarial Networks (GANs)en_US
dc.subjectTransformer-Based Modelsen_US
dc.subjectbachelor thesisen_US
dc.titleDiffusion models for music generationen_US
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Savkin_Bakalavrska_robota.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Savkin_Bakalavrska_robota І.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: