Dropout for Neural Networks Pruning

dc.contributor.advisorШвай, Надіяuk_UA
dc.contributor.authorСеменець, Даринаuk_UA
dc.date.accessioned2025-09-03T13:52:29Z
dc.date.available2025-09-03T13:52:29Z
dc.date.issued2025
dc.description.abstractIn this study, the hypothesis is examined whether Dropout masks can be used for structural pruning without further evaluating the importance of individual filters or weight. It was decided to compare a Dropout-based approach, which is based on the utilization of binary Dropout masks, with a classical L2-Norm-based pruning method. For this task, we manually designed an architecture of a convolutional neural network with a custom Dropout. The research undergoes the following phases: designing a mask generation mechanism, preprocessing data, training of model, implementing of pruning algorithms, and conducting experiments using the Imagenette2 dataset. Our idea is to determine whether Dropout pruning can offer a reliable alternative to traditional methods, especially under different levels of sparsity and stochasticity.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/36412
dc.language.isoen_USen_US
dc.statusfirst publisheden_US
dc.subjectPruningen_US
dc.subjectDropouten_US
dc.subjectL2en_US
dc.subjectConvolutional Neural Networken_US
dc.subjectAlgorithmen_US
dc.subjectTrainingen_US
dc.subjectBinary Masken_US
dc.subjectSeeden_US
dc.subjectbachelor`s thesisen_US
dc.titleDropout for Neural Networks Pruningen_US
dc.title.alternativeDropout як метод обрізки нейронних мережuk_UA
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Semenets_Bakalavrska_robota.pdf
Size:
907.77 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Semenets_Bakalavrska_robota_1.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: