Hybrid Random Fields

dc.contributor.advisorChornei, Ruslan
dc.contributor.authorZhydok, Fedir
dc.date.accessioned2024-11-06T10:06:49Z
dc.date.available2024-11-06T10:06:49Z
dc.date.issued2024
dc.description.abstractIn this thesis, the capabilities of developed realization of Hybrid Random Fields is explored in terms of classification and regression tasks. The graphical model is compared to classical machine learning approaches in these tasks in terms of time and model quality. Furthermore, different structure learning approaches for Hybrid Random Fields are compared too in order to establish whether time-efficient K2 approach produces structures as well as hill-climbing algorithm with exhaustive search.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/32221
dc.language.isoenen_US
dc.subjectgraphical probabilistic modelsen_US
dc.subjectmachine learningen_US
dc.subjectBayesian Networksen_US
dc.subjectHybrid Random Fieldsen_US
dc.subjectbachelor thesisen_US
dc.titleHybrid Random Fieldsen_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Zhydok_Bakalavrska_robota.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Zhydok_Bakalavrska_robota І.pdf
Size:
800.77 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: