Representation of solutions for fractional kinetic equations with deviation time variable

dc.contributor.authorDrin, Yaroslav
dc.contributor.authorUshenko, V.
dc.contributor.authorDrin, Iryna
dc.contributor.authorDrin, Svitlana
dc.date.accessioned2021-02-04T21:19:30Z
dc.date.available2021-02-04T21:19:30Z
dc.date.issued2020
dc.description.abstractWe present a formula for classical solutions for time- and space-fractional kinetic equation (also known as fractional diffusion equation) and deviation time variable is given in terms of the Fox’s H-function, using the step by step method. This equations describe fractal properties of real data arising in applied fields such as turbulence, hydrology, ecology, geographic, air pollution, economics and finance.en_US
dc.identifier.citationRepresentation of solutions for fractional kinetic equations with deviation time variable [electronic resource] / Drin Y. M., Ushenko V. A., Drin I. I., Drin S. S. // Proceedings of SPIE - The International Society for Optical Engineering. - 2020. - Vol. 11369. - Article number 113690Q.en_US
dc.identifier.urihttps://doi.org/10.1117/12.2554987
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/19411
dc.language.isoenuk_UA
dc.relation.sourceProceedings of SPIE - The International Society for Optical Engineering. - 2020. - Vol. 11369.en_US
dc.statusfirst publisheduk_UA
dc.subjectfractalen_US
dc.subjectdiffusion equationen_US
dc.subjectFox’s H-functionen_US
dc.subjectdeviation variableen_US
dc.subjectstep by step methoden_US
dc.subjectconference materialsen_US
dc.titleRepresentation of solutions for fractional kinetic equations with deviation time variableen_US
dc.typeConference materialsuk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Representation_of_solutions_for_fractional_kinetic_equations.pdf
Size:
413.49 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: