Факультет інформатики
Permanent URI for this community
Browse
Browsing Факультет інформатики by Subject "Adversarial example"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Змагальні приклади та їх знаходження в задачах обробки зображень(2023) Фісун, Єлизавета; Крюкова, ГалинаВ останні роки швидкий розвиток алгоритмів машинного навчання та глибоких нейронних мереж здійснив революцію в галузі комп’ютерного зору та обробки зображень. Ці алгоритми досягли чудової продуктивності в різних завданнях, починаючи від класифікації зображень і закінчуючи виявленням об’єктів. Однак разом із цими досягненнями виникла нова проблема: вразливість моделей глибокого навчання до змагальних прикладів. Змагальні приклади — це ретельно розроблені вхідні дані, які вводять модель в оману, хоча людському оку складно їх відрізнити від початкових даних. Це викликає критичні питання щодо стійкості, надійності та безпеки моделей машинного навчання, особливо в критично важливих для безпеки програмах, таких як автономні транспортні засоби, медична діагностика та кібербезпека. Змагальні атаки створюють потенційні ризики в різних областях, включаючи, але не обмежуючись системами розпізнавання зображень, де наслідки неправильної класифікації можуть бути згубними. Оскільки розгортання систем машинного навчання стає все більш поширеним, важливо усунути вразливі місця цих моделей, щоб забезпечити їх практичне та надійне використання в реальних сценаріях. За мету даної роботи були поставлені такі завдання: розібратися з що таке змагальні приклади та атаки, визначити які вони бувають та методи їх пошуку, а також застосувати ці змагальні зображення та атаки до конкретних задач (класифікації, сенментації тощо.)