Continual Learning Method for image classification in computer vision

dc.contributor.advisorYushchenko, Yurii
dc.contributor.authorKreshchenko, Taras
dc.date.accessioned2024-11-11T14:10:46Z
dc.date.available2024-11-11T14:10:46Z
dc.date.issued2024
dc.description.abstractThe paper explores the hypothesis that Continual Learning (CL) methods can improve the performance of a deep learning model in a traditional machine learning scenario. By augmenting an existing state-of-the-art ML solution to a problem with CL techniques, this research aims to demonstrate that AI can still achieve more accurate and adaptive performance. This hypothesis is tested on a parking lot occupancy detection problem, a binary classification problem that is well-suited to CL due to the continuous stream of image data. Experiments are conducted to compare the proposed CL-based solution and a contemporary solution that is non-CL based.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/32312
dc.language.isoenen_US
dc.relation.organisationНаУКМАen_US
dc.statusfirst publisheden_US
dc.subjectdeep learningen_US
dc.subjectcontinual learningen_US
dc.subjectincremental learningen_US
dc.subjectlifelong learningen_US
dc.subjectdomain adaptationen_US
dc.subjectcontrastive learningen_US
dc.subjectCNNen_US
dc.subjectcomputer visionen_US
dc.subjectbinary classificationen_US
dc.subjectparkingen_US
dc.subjectoccupancy detectionen_US
dc.subjectмasters thesisen_US
dc.titleContinual Learning Method for image classification in computer visionen_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Kreshchenko_Mahisterska_robota.pdf
Size:
490.15 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Kreshchenko_Mahisterska_robota І.pdf
Size:
399.12 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: