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Extended Abstract

Given the polynomials f, g € Z [z], we are interested in the following four polynomial remainder
sequences (prs’s):

a) Euclidean prs,

(
(b) Modified Euclidean prs,

)
)
(¢) Subresultant prs, and
(d) Modified Subresultant prs.

The Modified Euclidean prs is obtained by modifying the sign of the remainder of each poly-
nomial division performed for the computation of the Euclidean prs. Analogously, the Modified
Subresultant prs is obtained by modifying the matrix from which the Subresultant prs is obtained.

Even though prs’s (¢) and (d) are computed by evaluating sub-determinants of given matrices,
our objective is to compute all four prs’s using the same type of polynomial divisions over the ring
Z[x].

Our objective is not at all trivial and has eluded the efforts of great mathematicians, as our
brief review below indicates.

Initially, Collins, Brown and Traub [8], [9], [11], [12] used the so called prem pseudo-remainder
function defined by

LC(9)’ - f=q-g+h, (1)

where LC(g) is the leading coefficient of the divisor g, and

0 = degree(f) — degree(g) + 1. (2)
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However, using prem only the signs of prs (c) can be ezactly computed ([10], pp. 277-283).
The signs of the other three prs’s, (a), (b) and (d), may not be exactly computed when the prs is
incomplete, i.e. when there are gaps in the degree sequence of the polynomial remainders.

Basu, Pollack, and Roy [7] employ the so called signed prem function defined by

LC(g)° - f=q-g+h, (3)

whereby, if mod(d,2) = 1 they set it to 6 = § + 1. This way they are able to exactly compute
the signs of prs’s (b) and (d), which are, therefore, called signed prs’s. The signs of the other two
prs’s, (a) and (c), may not be exactly computed, and are, hence, called non-signed prs’s.

Instead, we employ the so called rem_z pseudo-remainder function defined by

ILC(9)I° - f=q-g+h (4)
and are able to exactly compute the signs of all four prs’s. Moreover, we have shown that these
four prs’s are related as shown in Figure 1.
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Figure 1: The double ended arrows indicate one-to-one correspondences that exist between the
coefficients of the polynomials in the respective nodes. The labels indicate those who first established
the correspondences and when. Two different matrices by Sylvester are used [16], [17].

In our work [1] — [6] — which relies heavily on the work by Pell and Gordon [15] — we have
shown that all four prs’s are signed, i.e. their signs are uniquely defined. To wit, the signs of the
prs’s computed in Z [z] are identical to those computed in @ [z].

Moreover, we have developed the sympy/sage module subresultants_qq.zz.py' for exactly
computing the signs of all four prs’s of Figure 1, employing the so called rem_z pseudo-remainder
function defined in (4).

Our talk will focus on the functions included in this module — filling thus a vacuum in the
educational process. Namely, when people teach about prs’s in general — and subresultant prs’s
in particular — they would have a module to work with in order to compute the sequences with
their correct signs. Otherwise they would have to say that they compute the sequences “up to sign”
([13], p. 182) & ([14], Example 4.7).

'https://github.com/sympy/sympy/blob/master/sympy/polys/subresultants_qq_zz.py.



References

1]

2]

AKRrITAS, A. G. A Simple Proof of the Validity of the Reduced PRS Algorithm. Computing,
38, (1987), 369-372.

AKrITAS, A. G., G. I. MALASCHONOK, P. S. VIGKLAS On a Theorem by Van Vleck Re-
garding Sturm Sequences. Serdica Journal of Computing, 7(4), 101-134, 2013.

AxriTAs, A. G., G. I. MALASCHONOK, P. S. VIGKLAS Sturm Sequences and Modified
Subresultant Polynomial Remainder Sequences. Serdica Journal of Computing, 8(1), 29-46,
2014.

AXKRITAS, A. G. Three New Methods for Computing Subresultant Polynomial Remainder
Sequences (PRS’s). Serdica Journal of Computing, Serdica Journal of Computing, 9(1) (2015),
1-26.

AKRITAS, A. G., G. I. MALASCHONOK, P. S. VIGKLAS On the Remainders Obtained in

Finding the Greatest Common Divisor of Two Polynomials. Serdica Journal of Computing,
9(2) (2015), 123-138.

AxriTAs, A. G., G. I. MaLASCHONOK, P. S. ViegkLAS A Basic Result on the Theory of
Subresultants. Serdica Journal of Computing, to appear.

Basu, S., R. PorLrack, M. F. Roy Algorithms in Real Algebraic Geometry, 2nd Edition,
Springer, 2006.

BrowN, W. S. The subresultant PRS Algorithm. ACM Transactions on Mathematical Soft-
ware, 4(3), (1978), 237-249.

BrownN, W. S., J. F. TRAUB On Euclid’s Algorithm and the Theory of Subresultants. Journal
of the Association for Computing Machinery, 18, (1971), 505-514.

CoHEN, J. E. Computer Algebra and Symbolic Computation — Mathematical Methods. A.K.
Peters, Massachusetts, (2003).

CoLLINS, G. E. Polynomial Remainder Sequences and Determinants. American Mathematical
Monthly, 73(7), (1966), 708-712.

CoLLINS, G. E. Subresultants and Reduced Polynomial Remainder Sequences. Journal of the
Association for Computing Machinery, 14, (1967), 128-142.

VON ZUR GATHEN, J., J. GERHARD Modern Computer Algebra. Cambridge University Press,
(1999).

VON ZUR GATHEN, J., T. LUCKING Subresultants Revisited. Theoretical Computer Science,
297(1-3), (2003), 199-239.

PeLL, A. J., R. L. GOrRDON The Modified Remainders Obtained in Finding the Highest
Common Factor of Two Polynomials. Annals of Mathematics, Second Series, 18(4), (Jun.,
1917), 188-193.



[16] SYLVESTER, J. J. A method of determining by mere inspection the derivatives from two
equations of any degree. Philosophical Magazine, 16, (1840), 132-135.

[17] SYLVESTER, J. J. On the Theory of Syzygetic Relations of Two Rational Integral Functions,
Comprising an Application to the Theory of Sturm’s Functions, and that of the Greatest
Algebraical Common Measure. Philosophical Transactions, 143, (1853), 407-548.



