Size- and position-controlled Ge nanocrystals separated by high-k dielectrics
Loading...
Date
2022
Authors
Lehninger, D.
Honeit, F.
Rafaja, D.
Klemm, V.
Röder, C.
Khomenkova, Larysa
Schneider, F.
Borany, J. von
Heitmann, J.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Germanium nanocrystals embedded in high-k dielectric matrices are of main interest for infrared sensing application, as a role model for Ge-based nanoelectronics passivation or for nonvolatile memory devices. The capability of the size control of those nanocrystals via rapid thermal processing of superlattice structures is shown for the [Ge–TaZrOx/TaZrOx]n, [Ge–TaZrOx/SiO2/TaZrOx]6, and [ TaZrOx/Ge–SiO2]n
superlattice systems. All superlattices were deposited by radiofrequency magnetron sputtering. Transmission electron microscopy (TEM) imaging confirms the formation of spherically shaped nanocrystals. Raman scattering proved the crystallization of Ge above 700°C. The TaZrOx crystallizes above 770°C, associated with a phase separation of Ta2O5 and ZrO2 as confirmed by x-ray diffraction. For the composite
layers having 3 nm and 6 nm thickness, the size of the Ge nanocrystals correlates with the deposited layer thickness. Thicker composite layers (above 9 nm) form two fractions of nanocrystals with different sizes. An additional SiO2 layer in the [Ge– TaZrOx/SiO2/TaZrOx]6 superlattice stacks facilitates the formation of larger and better separated Ge nanocrystals. The deposition of Ge-SiO2 composite layers separated
by pure TaZrOx illustrates the barrier effect of TaZrOx against Ge diffusion. All three material systems allow the controlled formation of Ge nanocrystals in amorphous matrices at temperatures above 700 and below 770°C.
Description
Keywords
germanium nanocrystals, sensing application, transmission electron microscopy, Raman scattering, Ge nanocrystals, article
Citation
Size- and position-controlled Ge nanocrystals separated by high-k dielectrics / D. Lehninger, F. Honeit, D. Rafaja, V. Klemm, C. Röder, L. Khomenkova, F. Schneider, J. von Borany, J. Heitmann // MRS Bulletin. - 2022. - [Article in press]. - https://doi.org/10.1557/s43577-022-00311-8