dc.contributor.author |
Kozerenko, Sergiy
|
|
dc.date.accessioned |
2021-04-15T08:30:26Z |
|
dc.date.available |
2021-04-15T08:30:26Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Kozerenko S. More on linear and metric tree maps [electronic resource] / Sergiy Kozerenko // Opuscula Mathematica. - 2021. - Vol. 41, no. 1.- P. 55-70. |
en_US |
dc.identifier.uri |
https://doi.org/10.7494/OPMATH.2021.41.1.55 |
|
dc.identifier.uri |
http://ekmair.ukma.edu.ua/handle/123456789/19797 |
|
dc.description.abstract |
We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of
vertices whereas metric maps are maps which do not increase distances between pairs
of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative)
under some orientation of the edges in a tree, we characterize trees which admit maps with
Markov graphs being paths and prove that the converse of any partial functional digraph is
isomorphic to a Markov graph for some suitable map on a tree. |
en_US |
dc.language.iso |
en |
uk_UA |
dc.subject |
tree |
en_US |
dc.subject |
Markov graph |
en_US |
dc.subject |
metric map |
en_US |
dc.subject |
non-expanding map |
en_US |
dc.subject |
linear map |
en_US |
dc.subject |
graph homomorphism |
en_US |
dc.subject |
article |
en_US |
dc.title |
More on linear and metric tree maps |
en_US |
dc.type |
Article |
uk_UA |
dc.status |
first published |
uk_UA |
dc.relation.source |
Opuscula Mathematica. |
en_US |