Андрощук, МаксимАнісімов, Євген2025-09-042025-09-042025https://ekmair.ukma.edu.ua/handle/123456789/36440У кваліфікаційній роботі досліджено проблему автоматизованого наповнення графів знань з неструктурованих текстів та реалізовано прототип системи, що поєднує сучасні методи обробки природної мови та технології відповідей на запитання за допомогою графів. Запропонований сценарій включає: динамічне визначення типів сутностей за допомогою великих мовних моделей, розпізнавання іменованих сутностей, генеративне вилучення відношень, збереження фактів у графовій базі даних Neo4j та створення векторного індексу для описів відношень. Для пошуку релевантного контексту застосовано комбінацію семантичного пошуку методом k-найближчих сусідів та алгоритму Personalized PageRank, після чого велика мовна модель генерує відповідь на запитання користувача природною мовою. Практична цінність полягає у можливості швидше будувати графи знань на основі текстових корпусів, придатні для виконання запитів, що є актуальним для корпоративних систем управління знаннями, аналітичних платформ та інтелектуальних асистентів.ukприродна моваграфиграфова база даних Neo4jсемантичний пошукбакалаврська роботаАвтоматизоване наповнення графів знань з неструктурованих текстівOther