Кузьменко, ДмитроВербицька, Марія2025-09-042025-09-042025https://ekmair.ukma.edu.ua/handle/123456789/36422In this work, we conduct an end-to-end training and fine-tuning process for the Neural Radiance Field (NeRF) model [1] and introduce 4 experimental cases with filtering techniques [2] designed to strengthen the rendering performance. We evaluate our modifications on synthetic image data of the articulated objects. For this project, we chose the architecture of the Knowledge NeRF model [3]. It includes an original PyTorch NeRF implementation [4] alongside a projection module for dynamic scenes extension. Incorporating the rendering step adjustments allows for better results without requiring complete model re-training. Our study covers the theoretical basis of the 3D scene reconstruction problem [5] alongside the NeRF architecture, such as radiance field, volume rendering, the concept of coarse and fine networks etc. [1], provides a trained and fine-tuned model for one object of a specified motion type, and suggests four methods to handle postprocessing in Knowledge NeRF better.en-USneural radiance fieldsview synthesisdynamic scenesblender datasetfiltering3D scene reconstructionbachelor`s thesisEnhancing Temporal Smoothing in Dynamic Neural Radiance FieldsОптимізація часової згладженості в динамічних нейронних полях випромінюванняOther