
Text similarity detection by means of n-gram hashing

Maksym Sarana

m.sarana@ukma.edu.ua

National University of Kyiv-Mohyla Academy

Recent progress of computing technologies enable development of more
sophisticated applications for natural language processing, in turn it requires
improvement of algorithms and machine learning methods. One of the most
common arising tasks are representation learning and comparison methods.
Most of them are based on counting and cataloguing n-grams in streams of
symbols. One of the fastest method of implementing such operations is by
means of hash tables [1].

Given a sequence of symbols S =
(
s1, s2, s3, . . . , sN+(n−1)

)
, an n-gram of

the sequence is an n-long subsequence of consecutive symbols. The i-th n-
gram of S is the sequence (si, si+1, . . . , si+n−1). Note that there are N such
n-grams in the sequence S.

The literature of hash functions and collision resolution schemes is exten-
sive. A detailed analysis and an overview of early activity can be found in the
classic work by Knuth [2].

The crucial point of the cross-validation method, that is widely used for
machine learning models evaluation, is quality of the validation data set used,
that must include previously unseen data only. An accidental data leak be-
tween the train and validation data sets may signi�cantly corrupt results of
the model evaluation. In this work we are considering application of hashed
n-grams on the data leak search task for the textual data.

The dataset we use includes 4 groups of English text pairs, see Table 1.

Category Ground AVG Number
truth #words of pairs

slightly edited texts same 785 100
random subsets (20-80%) same 584 100
completely di�erent texts di�erent 776 100
di�erent parts of the same text di�erent 1146 100

Table 1: The groups of English text pairs in the dataset

Approach 1. The RAW 3-grams

First, we checked if it is possible to di�erentiate similar texts with sets of the
unique 3-grams.

score =
|G1 ∩G2|

min(|G1|, |G2|)
,

206



where G1 and G2 � sets of unique 3-grams of the �rst and second texts
respectively.

Figure 1: Scatter plot of score vs. MRED for raw trigrams

The scatter plot in Figure 1 compares the score with the minimal relative
edit distance (MRED) between the texts:

MRED =
Levenshtein(W1,W2)

min(|W1|, |W2|)
,

where W1 and W2 are word sequences from the �rst and second texts respec-
tively.

Approach 2. Use hashing

The one of widely used methods to compress arbitrary values to a �xed range
of values is hashing. So, instead of the set of 3-grams we can operate with
a set of their hashes. Since we are going to much narrower range of hashes
than the Python hash function (SipHash) returns, we introduce hash size M
as a hyperparameter of the algorithm, so that the 3-gram hash may be easily
bounded by reminder of division on M :

h(g) = SipHash(g) mod M,

where g is a 3-gram.
Consider an integer array of size M , where each element with index i

includes number of unique hashed 3-grams with the hash i (i.e. number of

207



hash collisions), but not more the maximal integer value for the given data
type. The hash score in this case is

score =

∑M
i=1 min(H

(i)
1 , H

(i)
2 )

min(
∑M

j=1 H
(j)
1 ,
∑M

l=1 H
(l)
2 )

,

where H1 and H2 are arrays with the number of collisions for the �rst and
second texts respectively. The experiment has shown that perfect di�erenti-
ation of the similar texts is possible if we use a uint8 array of size M = 212,
which takes 4096 bytes of memory.

Approach 3. Use boolean arrays

In this approach we just decreased the data type size of the array from uint8

to boolean. So that, the i-th element of the array is true i� at least one 3-gram
from the text has the hash value i. We can easily rewrite the score equation
with the element wise and operation:

score =

∑M
i=1[H

(i)
1 ∧H

(i)
2 ]

min(
∑M

j=1[H
(j)
1 ],

∑M
l=1[H

(l)
2 ])

.

Figure 2: Scatter plot of score vs. MRED for hashed 3-grams and boolean
array of size 212.

208



Results and conclusions

The results are present in the Table 2. The best threshold was chosen to
maximize the F1-score.

Approach
Array
type

Size
M

Best
threshold

F1-score Memory

The raw 3-grams - - 0.459 1.0 unlimited
Hashing with a
collision number

uint8 211 0.538 0.998 2048 bytes
uint8 212 0.518 1.0 4096 bytes

Use a boolean
array

boolean 211 0.575 0.980 256 bytes
boolean 212 0.531 1.0 512 bytes

Table 2: Comparison of results of the approaches

We have found, that even 256-byte boolean array of size 211 is able to
store enough hashed 3-gram information for near-ideal similarity di�erentia-
tion with F1-score 0.98.

Ground truth Data category
Predicted
di�erent same

di�erent completely di�erent texts 100 0
parts of the same text 92 8

same
random subsets 0 100
slightly edited texts 0 100

Table 3: Confusion matrix for text similarity di�erentiation

The confusion matrix is presented in Table 3. The few available errors are
false positive, what is acceptable for the data leak detection task.

1. Jonathan D.C. Recursive hashing functions for n-grams // ACM Transac-
tions on Information Systems. � 1997. � Vol. 15, Is. 3, � Pp. 291�320.
https://doi.org/10.1145/256163.256168

2. Knuth D.E. The Art of Computer Programming. Vol. 3, Sorting and Searching.
� Addison-Wesley, Reading, Mass. � 1973.

209


