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of substructures of relational structures
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A b s t r a c t . General conditions under which certain relational 
structure contains a lattice of substructures isomorphic to Steinitz's 
lattice are formulated. Under some natural restrictions we consider 
relational structures with the lattice containing a sublattice isomor
phic to the lattice of positive integers with respect to divisibility. We 
apply to this sublattice a construction that could be called “lattice 
completion”. This construction can be used for different types of 
relational structures, in particular for universal algebras, graphs, 
metric spaces etc. Some examples are considered.

1. Introduction

Steinitz’s lattice was introduced at the beginning of the XX century by 
German mathematician A.Steinitz for describing the structure of subfields 
of algebraically closed field of prime characteristic [1]. It can be determined 
as the lattice of supernatural numbers with a relation of the divisibility. 
Steinitz’s lattice is complete, i.e. for an arbitrary subset of its elements 
exists the exact lower and the exact upper bounds. It contains a various 
sublattices including Boolean algebras. So, an existence of such lattice 
in the lattice of substructures of mathematical structure shows its inner 
richness that may be a basis for the use of the structure as an universal 
object for corresponding class of structures of the same type.
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In the paper we formulate the general conditions in which certain 
relational structure has some lattice of substructures, which is isomorphic 
to Steinitz’s lattice. If these conditions are satisfied, then the isomorphic 
representation of Steinitz's lattice in a lattice of substructures of this 
relational structure is obtained. Under certain natural restrictions it is 
enough to view structures with the lattice containing sublattice, that is 
isomorphic to the lattice of positive integers with divisibility. We apply 
to this sublattice a construction that could be called “ lattice completion”. 
This construction can be used to different types of relational structures, 
in particular — universal algebra, graphs, metric spaces etc. For example, 
Steinitz’s lattice is isomorphic to:

(i) the lattice of all subfields of algebraic closure of finite field (see, 
e.g^ [2]);

(ii) the lattice of Glimm’s subalgebras of limited G*-algebra (see,
e.g^ [3h [4]);

(iii) lattices of so-called homogeneously symmetric and homogeneously 
alternating subgroups of symmetric groups of permutations of nat
ural numbers (see, e.g., [5], [6]).

Furthermore, some elements of Steinitz’s lattice of substructures in 
certain relational structures were studied in many works of various authors 
(see, e.g., [7]-[10]).

The paper is organized as follows. In Section 2 we give the definition 
of Steinitz’ s lattice and its basic properties. In Section 3 we present basic 
information on the theory of relational structures. In Section 4 basic 
construction of “ lattice completion” of relational structures is described. 
It is shown how to build the certain isomorphism between Steinitz’s 
lattice and a lattice that occurs as a result of “ lattice completion”. In 
Section 5 we give examples of an application of the construction of “ lattice 
completion” in the theory of infinite groups and semigroups transforma
tions. This makes it possible to introduce new objects namely, groups and 
semigroups of periodically defined transformations of natural numbers. 
Last section describes lattices of subspaces of Besicovitch’s space which 
are constructed by the use of “ lattice completion” , and therefore are 
isomorphic to Steinitz’s lattice.

Results of the article were earlier partially announced in the article 
[10] of third author. All symbols are commonly used in the paper. For 
determination of indefinite terms we refer readers to [11]—[13].
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2. Steinitz’s lattice

2.1. Let N be a set of natural numbers and let P be its subset of primes.

D efin ition  1. Supernatural number (or Steinitz’s number) is called a 
formal product

J p kp, kp € N U {0, to}. (1)
pSP

Denote by the symbol SN the set of all supernatural numbers. Every 
natural number is a supernatural number, so that N C SN. Numbers from 
SN \ N will be called infinite supernatural numbers. Divisible relation | on 
N in natural way is extended to SN. Namely, for arbitrary supernatural 
numbers

u = n  Pkp, v = n  Plp, kp, lp € N U {0, to}, (2)
pSP pSP

we get u | v if and only if for all p € P inequalities kp ^  lp hold (it 
is assumed that to is more than zero and all natural numbers). Main 
properties of set SN, ordered by the divisible relation |, are characterized 
by the following lemma.

Lem m a 1. The ordered set (SN, |) is a lattice. The lattice (SN, |) is a 
complete one and contains the largest and the smallest elements, that 
accordingly are such supernatural numbers

i  =  n  p ~  1 =  n  p°. (3)
pSP pSP

The proof of this statement is not difficult.
The exact lower and the exact upper bounds of supernatural numbers u, 

v, that are given by their decompositions (2), are defined by the equalities

u V v =  H  pmAx(kP’ip (4)
pS P

u A v =  n  pmin(kMp) (5)
pS P

where max(k, to) =  to, min(k, to) =  k for k € N U {0 }. 

D efin ition  2. Lattice (SN, A, V) will be called Steinitz’s lattice. 

The following lemma follows from equations (4), (5).
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L em m a 2. Steinitz's lattice is a complete distributive lattice.

In the set of supernatural numbers we select two subsets.

D efin ition  3. Supernatural number u =  ] lpSP Pkp is called complete, if 
for each p € P there is inclusion kp € {0, to}.

According to the definition a complete supernatural number u is 
uniquely determined by the subset O(u) of that primes p from P, for 
that kp =  to. The set C of complete supernatural numbers is closed on 
the operations V, A and contains the numbers I and 1 that is defined 
by (3). Moreover, on the set C one can define the operation of addition, 
namely the addition u of the number u € C is called complete supernatural 
number that is determined by subset O(u) =  P \ O (u). It is obvious, that 
u V u =  I, u A u =  1.

L em m a 3. The set C with the operations V, A, ~ forms a Boolean algebra 
with 1 as a zero element and I as an unit element. The Boolean algebra 
(C, V, A, ~) is isomorphic to the algebra of subsets of a countable set.

Proof. Define the mapping p from the algebra of subsets of the set P to 
the algebra C in such way. For any subset X  C P put p (X ) =  u, were 
O(u) =  X . From mentioned above it follows that p is a bijection. In 
addition, for any X i,X 2 C P  for which p (X i) =  up p (X 2) =  u2 we have

p(X i U X2) =  ui V u2, p (X i fl X2) =  ui A u2, p (X i ) =  ui .

So, the mapping p is an isomorphism, and this, in particular, means that 
(C, V, A, _ ) is a Boolean algebra. □

D efin ition  4. A supernatural number is called notsquare one, if indicators 
of powers in its canonical decomposition (1) takes on only two values 0,1.

Let B be a set of all notsquare supernatural numbers. It is clear, that 
B is closed regarding to the operations V and A. Moreover, on B can 
also be defined the complement operation by the rule: for the number 
u =  npSx  P, we define

u =  U  p.
p s p \x

The number J =  ] lpSP p is the largest element in the set B.

L em m a 4. Sublattice B of the lattice (SN, A, V) with the additional op
eration, namely complement one, forms a Boolean algebra, the largest 
element of which is number J, and the least element is 1 . The algebra 
(B, A, V, _ ) is isomorphic to the subalgebra of subsets of the set P.
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Proof. Define the mapping, which puts the subset X  in correspondence 
to the number n peX P- This mapping is an isomorphism. □

2.2. The sequence of positive integers x  =  (k i,k2, . . . )  will be called 
divisible if ki | ki+1 for i =  1 ,2 , . . . . Let DS be a set of the most possible 
of divisible sequences over N.

D efin ition  5. The sequence x  =  (ki)ieN divides the sequence x' =  
(ki)ieN, if for any i € N there are j  € N for which ki | kj.

Let | denote the divisibility of sequences. The relation | on DS is:
(i) reflexive, i.e. x|x for arbitrary sequence x  € DS ;

(ii) transitive, i.e. from x 1|x2 and x 2|x3 follows x 1|x3 for any 
x i,x 2 ,x 3  € DS.

But the relation of divisibility is not symmetric or antisymmetric relation.

D efin ition  6. Sequences x  and x ' are called exactly divisible if at the 
same time xW  and x^x.

The exactly divisible relation is equivalence on DS , which we denote 
by the symbol ~ . An arbitrary sequence x  € DS determine a supernatural 
number char x  (characteristic x ), which is defined thus

(i) each member of the sequence x  be a divisor of char x;
(ii) every natural divisor of char x  be a divisor of some member of the 

sequence x.
For example, if x  =  (1 ,p ,p2, ■ ■ ■), P € P, then char x  =  pœ , and when 

x  =  (1,2!, 3!, 4!, ■ ■ ■), then char x  =  I. From the definition of characteristic 
we get easy

Lem m a 5. 1) For arbitrary x 1,x 2 € DS the divisibility x 1\x2 holds
if and only if char x 1| char x 2.

2) The sequences x 1,x 2 € DS are exactly divisible if and only if when 
char x 1 =  char x 2.

So, sets of exactly divisible sequences are characterized by supernatural 
numbers, moreover the correspondence between these classes of objects is 
a bijective.

3. Relational structures

3.1. Recall that n-arity relation over the set A is called an arbitrary 
subset of Cartesian degree A ” . A relational structure over the set A is
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called an a pair of the type

ft =  (A, } aeI), (6)

where I  is some set of indices, and for every a € I $0* is some relation 
of the arity ka over A (ka € N U {0 }). The set A is called a support of 
the relational structure K, the set {$ a  } a&I is called its signature, and 
the set (ka)aeI is called its type.

E xam ples

1) Every directed graph without multiple edges with the set of vertices 
V and the set of edges E C V x V is a relational structure (V, E ) with 
the support V and the signature E of the type (2).

2) Every colored graph with the set of vertices V , whose edges are 
colored in k colors, is a relational structure with the support V and the 
signature E 1, ■ ■ ■, Ek of the type (2, ■ ■ ■, 2).

k
3) Every metric space (X , d) with the set I  of values of the metric is 

a relational structure (X, {D a} aeI), where

Da =  {(x, y) | x,y  € X , d(x, y) =  d(y, x) =  a }

This relational structure has the type (2a)aeI.
4) Every universal algebra

£  =  (A, { ^ “ }aei), where y kaa : Aka ^  A

is an operation of the arity ka on A, can seen as a relational structure of 
the form (6) of the type (ka +  1)aeI, where

§ kia + l(x1, ■ ■ ■ ,x ka , y)

occurs if and only if, then (x1, ■ ■ ■ ,x ka ) =  y.

The relational structures

ft =  (A, {$ £ “ W > and K  =  (B, { ^ } p ej >

have the same type, if the sets I  and J have the same cardinality and there 
is a bijection f  : I  o  J so that for every a € I  the equality ka =  lf 
holds.
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Let the relational structures K and K' have the same type. The 
bijection F  : A ^  B is called an isomorphism of these structures, if for 
any a € I  the relations

(x i ,x 2 ,-- ■ ,xka ), x i ,x 2, ■■■,xka € A, 

and f (F (x i), F (x2), ■■ ■, F (xka))

are isomorphic.
In particular, an isomorphism of universal algebras or graphs as rela

tional structures is their isomorphism in the usual sense, but an isomor
phism of relational structures related to metric spaces means that these 
spaces are isometric.

An isomorphism of relational structure itself is called an automor
phism. All automorphisms of relational structure K form a group with 
the operation of superposition of automorphisms, which denoted by the 
symbol AutK and named the group of automorphisms of the structure K.

Let A' be an arbitrary nonempty subset of the set A. For the subset 
A' we can consider restriction $0“ I A' of the relation $0“ (a G I ) on the 
set A':

$0“ U' (x 1, x 2, ■ ■ ■ , xka ) =  $0“ (x1,x 2, ■■ ■ ,x ka ) D (A')ka ■

Note, that in this case some restrictions $0“ U' may be equal to empty 
relations.

The relational structure (A', {$^a |u  }a Î ) is called a substructure of 
the relational structure K =  (A, {$^“ } aeI).

An isomorphism of K onto some substructure of the structure K' is 
called isomorphic emmbeding of the structure K in the structure K'.

3.2. The partially ordered set (I, ^ ) is called a directed to the right, if 
for any a,b € I  there exist such element c € I , that a ^  c, b ^  c.

D efin ition  7. The family of structures {K i } ieI and embedding f it,k : 
Ki ^  Kk, i,k  € I , i ^  k, satisfying the following requirements:

1) I  be a directed to the right partially ordered set;
2) for arbitrary indices i,k  € I , i ^  k, there exist emmbedings fi,k : 

Ki ^  Kk, where f i,i be identity isomorphism;
3) if i,j, k € I  and i ^  j  ^  k, then fij  ■ j  =  fi,k,

is called an inductive family £  of relational structures over a set of 
indices I .
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Every inductive family of relational structures

£  =  (Ki, fi,k )i,keI

defines the limit structure which is called inductive limit of family £  and 
is denoted by the symbol

K (£) =  lim (Ki,fi,k), i,k  € L (7)
i

Elements of the structure (7) are the so-called strings, the relation $0“ 
extends to their by the standard way ([13], pp. 151-156).

We will apply the construction of an inductive limit in a special case 
when the index set I  be the set of positive integers with the natural 
order. In this case, the inductive family is the sequence K1, K2, ■ ■ ■, and 
morphisms f itk will be defined as compositions of morphisms f i =  f i)i+1 
(i,k € N). Moreover, sequences of the type u =  akak+1 ■ ■ ■ (k € N) are 
strings, if the following conditions hold:

(i) ai € Ai (i ^  k);
(ii) fi(ai) =  ai+i (i ^  k);

(iii) there is no an element ak-1 € A k-1, for which f k_ 1(ak_ 1) =  ak. 
Let (ui =  a(ii)a(i+1 ■ ■ ■, 1 ^  i ^  ka), and let $0a be a relation from the

signature of relational structures Ki , i € N. From the definition follows 
that the tuple of strings (u1,u 2, ■ ■ ■ ,uka) is in the relation $0“ if and 
only if for l ^  m ax{l1, l2, ■ ■ ■, lka} the tuples (a(1), a(2), ■ ■ ■, a(ka)) is in 
this relation. Let the subset K(k) of the support of the structure K (£), 
be the set of all strings that was began with the elements from A;, l ^  k. 
Then subset K(k) determines a substructure of the structure K (£), and 
the equality

K (£) =  U  K(k)
k=1

takes place.

4. Construction of “lattice completion”

Let K =  (A, {$ 0 “ } aeI ) be relational structures with the signature 
(ka)aeI. Suppose that for every natural number n the structure K has 
the only one its own substructure K(n), moreover for the family of sub
structures (K (n),n  € N) following conditions hold:

(A) if n 1 =  n2, then K(n1) =  K(n2);
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(B) the inclusion ^ (m ) C ft(n2) is satisfied if and only if, when n^n2;
It follows from properties (A), (B) that family of substructures ft(n), 

n € N, forms a lattice under the inclusion. A correspondence n o  ft(n), 
n € N, is an isomorphism between this lattice and lattice (N, |) of natural 
numbers.

Using the family ft(n), n € N of substructures we define a new family 
from -ft as follows. Let x  =  (n i,n 2, ...) € DS be an arbitrary divisible 
sequence of natural number. Construct now by sequence x  a growing 
chain of substructures of structure ft of the form

K(n1) ç  K(n2) C ■ ■ ■ ■ 

If sequence x  is bounded, then

œ
K(x) =  U  K(ni)

i=1

coincides with one of substructures K(nk), k € N. Therefore it suffices to 
consider only divisible unbounded sequences. Suppose that for any x  as 
unbounded divisible sequences the family of substructures K(x) satisfies 
the following conditions:

(C ) union K(x) is its own substructure of structure K;
(D) K(x) does not coincide with any substructures K(n), n € N.

D efin ition  8. The family of substructures K(x), x  € DS, of structure 
K will be called the lattice completion of lattice K(n), n € N.

Since DS contains arbitrary bounded divisible sequences, the family 
K(x), x  € DS, contains sublattice K(n), n € N.

T h eorem  1. Suppose, that the family of substructures K(n), n € N, of 
relational structure K satisfies properties (A )-(D ). Then

(i) substructures K (x1) and K (x2), x 1, x 2 € DS, coincide if and only 
if char x 1 =  char x 2;

(ii) the family of substructures K(x), x  € DS, forms a lattice under the 
inclusion, which is isomorphic to Steinitz’s lattice.

Proof, (i) Suppose K (x1) and K (x2) are determined by divisible sequences 
of natural numbers x i =  (n(1))ieN, x 2 =  (n(2))iSN. If K (xi) =  K (x2),
then K (x1 ) C K (x2) and K (x2) Ç K (x1). The inclusion K (x1 ) Ç K (x2)
holds if and only if for any natural i there exists a number j , such 
that K(n(1)) ç  K (n ^ ). According to the property (B ) it means that
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n(1)|nj2), that is the sequence x 1 is a divisor of the sequence x 2. On 
the other hand, the inclusion ft(x2) C ft(x 1) means that for any j  € N 
substructures ft(nj2̂ ) is contained into some substructures ft(n(1)), namely
for an arbitrary j  € N there exists such i € N, that nj^ |n(1). This means 
that the relation x 2|x1 holds. Thus, sequences x 2 and x 1 are exactly 
divisible. So, charx1 =  charx2 by lemma 5.

Now suppose char x 1 =  char x 2. Then sequences x 1 and x 2 are exactly 
divisible, that is x 1|x2 and x 2|x1. As properties (A) and (B ) hold for 
the family ft(n), n € N, using the considerations similar to above we 
obtain that ft (x 1) C ft(x2) and ft(x2) C ft(x 1). In other words, these 
substructures coincide.

(ii) Let D S (0) be a set of fixed representatives of each class of exactly 
divisible sequences from DS . Then

{ft(x ) | x  € DS} =  {ft(x ) | x  € DS(0)}.

We shall show, that the family of substructures on the right side of this 
equality satisfies the condition (ii) of this theorem. Then the subset 
of DS(0) is determined by classes of exactly divisible sequences on DS . 
Hence, the mapping A : SN ^  DS(0), such that A(u) =  x  iff char x  =  u, 
is a bijective by using lemma 5. So, properties (C ), (D) of the family ft(x), 
x  € DS , imply that a mapping A : D S (0) ^  {ft(x ) | x  € D S } defined by

A (x )=  U ft(n) =  ft(x), x  € DS(0), 
n£x

is a bijective too. Thus the mapping j  =  A ■ A : SN ^  {ft(x ) | x  € DS(0)} 
will also be a bijective. So that the image of arbitrary supernatural 
number will be own substructure of the structure ft. It is also clear that 
j ( l )  =  ft(l), ^(I) =  Unexft(n), where x  be such divisible sequence, that 
char x  =  I. It remains to show that the mapping /j, is consistent with the 
lattice operations V and A. To this end, we are going to check that j  is 
consistent with the divisibility | on the set SN and the inclusion of C on 
substructures {ft(x ) | x  € D S (0)}. Indeed, let the condition u1|u2 hold 
for supernatural numbers u1, u2. Then A(u1)|A(u2). It follows from (i) 
that A( A(u1)) C A( A(u2)). So ( A ■ A)(u 1) C ( A ■ A)(u2). The theorem is 
proved. □

Theorem 1 can be reformulated in terms of inductive limits as follows. 
Let ft(n), n € N be a family of structures. This family satisfies the 
condition (A). There is an embedding pni,n2 of the structure ft(n1) into
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the structure ft(n2) for arbitrary n1,n2 € N, such that n 1|n2. Assume 
that for monomorphisms <pni,n2 following standard requirements:

(a) pn,n =  Id for any n € N;
(b) ^n1,n3 =  Vn1,n2 ■ Vn2,n3 for arbitrary m , n2 , ns. € N such, that m|n2 

and n2|n3;
hold.

Then we have the direct spectrum (ft(n), pn,m)n, meN of relational 
structures, and let ft be a limit of this spectrum. For arbitrary sequence 
x  =  (n*)*eN it can be considered a direct spectrum (ft(n*), pni,ni+1 )ieN 
and its direct limit ft(x). This structure can considered as a substructure 
of structure ft in an obvious way.

T h eorem  2. 1) Direct limits, defined by divisible sequences x 1 and x 2,
coincide as substructures of ft if and only if char x 1 =  char x 2- 

2) All boundary structures considered as substructures of ft and defined 
by divisible sequences form a lattice with respect to inclusion. This 
lattice is isomorphic to the Steinitz’s lattice.

We shall show examples, described how such construction works in 
two different situations: for an universal algebras and metric spaces.

5. Groups and semigroups of periodically defined trans
formations of natural numbers

Let PTn be a semigroup of all partial defined transformations of 
set the {1 ,2 , . . .  ,n }, let PT(N ) be a semigroup of all partial defined 
transformations of the set of natural numbers N.

D efin ition  9. A transformation n € PT(N ) is called periodically defined 
expansion of the transformation n € PTn on the set N, if its act on natural 
numbers is defined by the following table

^ 1  2 . . .  n n +  1 n +  2 . . .  2n
1n 2n . . .  nn n +  1n n +  2n . . .  n +  nn

A transformation a € PT(N ) is called periodically defined with the period 
of definition n, if there is a transformation n € PTn such, that a =  n.

Every periodically defined transformation has infinitely many of dif
ferent periods that are multiples of the minimal period. Let Tn, ISn, Sn 
be, respectively, the complete semigroup of everywhere defined transfor
mations of the set {1, 2 ,.. .,  n }, the complete inverse semigroup of partial
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permutations and the complete symmetric group over this set. Thus 
let T( N), IS( N), S( N)  denote these semigroups over the set of natural 
numbers.

L em m a 6. For an arbitrary n € N the mapping pn : n ^  n, n € PTn, 
is a homomorphic emmbeding of the semigroup PTn into PT(N ) and 
its restrictions on Tn, ISn, Sn, respectively, is an emmbeding into T(N), 
IS(N ) and S(N).

Proof. The injection of the mapping pn follows directly from its definition 
and its consistency with the operation of the multiplication of permuta
tions is obvious. Moreover, for any partial permutation n € ISn and its 
inverse permutation n* we have pn(n*) =  n* =  n*. In particular, for any 
everywhere defined permutation n € Sn we shall get pn(n-1 ) =  n -1 . So, 
pn will be a monomorphism ISn into IS(N ) and Sn into S (N ). □

We will denote by the symbol Gn one of semigroups PTn, Tn, ISn, Sn, 
n € N, and will denote by the symbol G one of the corresponding semi
groups PT(N ), T (N ), IS(N ) or S(N ). Thus, all formulated statements 
will take place simultaneously for all four series of semigroups.

Let Gn be the image pn(Gn) of the semigroup Gn. Then Gn be a 
subsemigroup in G, which is isomorphic to Gn. A family of semigroups 
Gn, n € N, in G is partially ordered by the inclusion. The main property 
of this partially ordered set will be given in following lemma.

L em m a 7. A partially ordered set ({Gn,n € N}, C) is a lattice, which 
is isomorphic to the lattice of positive integers with a relation of the 
divisibility.

Proof. We shall verify that the correspondence n o  Gn, n € N, will 
be an isomorphism of partially ordered sets (N, |) and ({G n, n € N}, C). 
This correspondence is bijective, hence it is enough to show that for any 
m,n € N the condition m|n holds if and only if Gm C Gn. Let m|n and 
n =  km. So that the permutation n (k) given by the equality

_ k  (  1 2 . . .  m . . .  (k — 1)m + 1
^ 1n 2n . . .  mn . . .  (k -  1)m +  1n

contains into Gn, and the equality holds:

Pm(n) =  p (n (fc)) =  n.

km
(k -  1)m +  mn

So, for any transformation a € G such, that a € Gm, we obtain a € Gn. 
Hence, Gm C (Gn.
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On the other hand, let Gm C Gn. In semigroup Gm there are permu
tations with the minimal period of a definition m. Any such permutation 
has the period of a definition n because it belongs to Gn. It follows that 
m|n. □

Since the conditions (A )-(B ) from section 4 for the family {G n, n € N} 
hold, then it is possible to apply the construction of lattice completion. 
Namely, we introduce G(x) by setting

G (x) =  U  GrH
i=1

for an arbitrary sequence x  =  (n1,n2,. ..)  € DS. Hence, for so determined 
subsemigroups of the semigroup G the conditions (C ) and (D ) from 
section 4 hold. This allows us to get the following result.

T h eorem  3. The family of subsemigroups G(x), x  € DS, forms a lattice 
regarding to an inclusion in the semigroup G, which is a Steinitz’s lattice. 
Different elements of this lattice are pairwise non-isomorphic semigroups.

Proof. The first part of the statement is a direct consequence of Theorem 1. 
So, we have to show its second part. Let first G =  S(N ) be the group of 
permutations on the set N, and let G(u) =  S(u) be the corresponding 
group of periodically defined permutations (u € SN). Due to [6] groups 
G (u1) and G(u2) for u1,u 2 € SN, u1 =  u2, are non-isomorphic, because 
one of them contains a permutation a centralizator that can be non 
isomorphic to a centralizator of any permutation from another group. 
Suppose now that G(u) is a subsemigroup of such periodically defined 
permutations from G , that minimum periods are divisors of a supernatural 
number u. Then the group G(u) of inverse elements coincides with S(u). 
Hence, for u1 =  u2 semigroups G (u1) and G(u2) are non-isomorphic 
because of groups of their inverse elements are non-isomorphic too. □

The semigroup G(u), u € SN, can be defined as a limit of the direct 
spectrum of semigroups with so-called diagonal emmbeding. According to 
[14] the emmbeding of the transitive transformations group (G, X ) into the 
transformations group (H, Y ) is called a diagonal emmbeding if orbits of 
G onto the set Y  either are trivial (consist of one point), or have the same 
orbit cardinality | X | . Note, that the act G on such orbit is isomorphic to 
the permutation group (G ,X ). A diagonal emmbeding of a group (G ,X ) 
into a permutation group (H, Y ) is called a strictly diagonal emmbeding,
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if there are no trivial orbits of group G onto Y . In this case, with some 
k € N we have |Y| =  k|X|. Note that strictly diagonal emmbeding can 
be defined for arbitrary, not necessarily transitive permutations groups. 
So, its can be defined for transformations semigroups too.

D efin ition  10. An emmbeding of a transformation semigroup (V ,X ) 
into a transformation semigroup (W, Y ) will be called (strictly) diagonal 
emmbeding, if there is a partition of Y  onto subsets of the capacity |X|, 
which are invariant under the action of the image of V . Moreover, the 
action of the image of V onto each of these subsets is isomorphic as a 
semigroup of transformations to semigroup (V, X ).

As before, let Gn € {PTn,Tn,ISn,Sn}.

L em m a 8. Let the mapping 5k : Gn ^  Gnk is defined by equality

5k (n) =  n (k\

for any permutation n € Gn. Then 5k is an isomorphic emmbeding of the 
semigroup Gn into the semigroup Gnk.

A proof is done by a direct check as at lemma 6.
For an arbitrary divisible sequencex  =  (n1 ,n2, ...) € SN,ni+1/ni =  ki 

(i =  1 ,2 ,. .. )  we define a direct spectrum of semigroups

Gni — >Skl Gn2 — >Sk2 Gn3 — > ■ ■ ■ .

So, we also have to consider the limit semigroup of the spectrum

G [x ]= lim (G n i  ,5h ).*i

T h eorem  4. For any supernatural number x  € SN semigroups G[x] and 
G(x) are isomorphic as semigroups of transformations.

Proof. An isomorphism of semigroups is constructed in the standard way, 
and the set of an action of G[x] is naturally identified with N. Finally, we 
note that our semigroups act equally on the set N. □

6. Steinitz’s lattice of subspaces in Besicovitch’s space

A normalized Hamming metric on the set Hn of (0 ,1)-sequences of a 
length n is called a metric dn , defined by the following equality

1 n
dn (x,y) = \xi -  yil, x = (x1 , . . . , xn) ,y = (V1 , . ..,Vn)  € Hn. (8)

n i=1
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So, let now {0 ,1}N be a set of infinite (0 ,1)-sequences. We will represent 
the distance function dB by the rule

dB(x,y) =  Jim supdn((xp  . . .  ,x „ ), (yp .. .,yn)), (9)

x =  (xp  .. . ,xn),y =  (y1, . . . ,yn)  € { 0 ,1}n.

Since (8) is a metric, it is easy to verify that the function dB, defined 
by (9), is a pseudometric, i.e., it differs from a metric so that there are 
infinite sequences with the distance between them equals to 0. The binary 
relation

x ~B y ^  dB(x, y) =  0 

is an equivalence on {0 ,1 }N. Define

Xb =  {0 ,1 }N/ . B.

The function dB is consistent with the equivalence ~ b . Hence, it deter
mines a function dB on Xb as follows:

dB([x], [y]) =  dB(x,y), (10)

where [x], [y] are equivalence classes of , and x € [x], y € [y] are 
arbitrary representatives of these classes. Defined by the equality (10) the 
function dB is a metric. So, a metric space (Xb ,dB) is called Besicovitch’s 
space (see [15]).

For any natural number n normalized Hamming space Hn is isometric 
embedded into Besicovitch’s space Xb .

Lem m a 9. The mapping hn : Hn ^  X b , defined by setting

hn((x1 , .. .,xn)) =  [(xp . . . ,xn , x 1 , . . . , x n , . . .)], (xp  . . . ,xn)  € Hn,

is an isometric emmbeding.

Proof. By the definition the distance (10) between classes of the equiva
lence ~ b , which defined by periodic sequences

x =  x 1 , ... ,xn,x1 , ... ,xn, ... and y =  yp . . .  ,yn ,yp . . .  ,yn,.. . ,

is equal to
1
n dn ((x 1, . . . , xn), (y1, . . . ,yn)') .

□
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Denote by Hn the image of Hamming space Hn for the mapping hn.

L em m a 10. The inclusion Hn C Hm (n,m € N) holds if and only if 
then n\m.

Proof. It is obvious. □

So that, Besicovitch’s space X b  contains the family of subspaces Hn, 
n € N. It is easy to see, that for this family conditions (A) — (D) of the 
lattice completion hold. It follows from Theorem 1, that the space Xb  

contains a family of subspaces Hu, u € SN, indexing by supernatural 
numbers. Note, that the subspace Hu consists of all possible periodic 
(0 ,1)-sequences, such that lengthes of their minimum periods are divisors 
of a supernatural number u. By properties of the general construction we 
obtain the following

T h eorem  5. A family of subspaces Hu, u € SN, of the space Xb forms a 
lattice over the inclusion which is isomorphic to the lattice of supernatural 
numbers. If u1 =  u2, then subspaces Hui and Hu2 are not isometric.

Proof. The first part of the assertion follows from Theorem 1. The proof 
of the third part given in the article [16]. □

By the Theorem 1 each of spaces Hu, u € SN \ N, is isometric to 
inductive limit of the sequence of finite Hamming spaces Hmi, Hm2, 
. . . ,  where x  =  (m1,m2, . . . )  is such divisible sequence that char x  =  u. 
Monomorphisms are the diagonal emmbedings f i : Hmi ^  Hmi+1, defined 
by following equalities

fi((x1, . . . , xmi)) — (x1, . . . , xmi, . . . , x 1, . . . , xmi) , (x1, . . . , xmi) € Hmi,
'---------------------- v---------------------- 'kimi

(11)
where hi =  mi+1/mi, i =  1 ,2,.... Note, that a construction of limit cube, 
that is built as inductive limit of the sequence of Hamming spaces H2i of 
the dimension 2i with emmbedings of following doubling coordinates:

hi((x1, . . . , x2i)) (x 1 , x 1,x 2,x 2, . . . , x2i, x2i) , i 1, 2, . . . ,

is considered in [17]. So that, it is easy to understand that the limit space 
of such direct spectrum is isometric to the space H2~ with emmbedings 
of the type (11). Note, that in [18] was considered continuum family 
of subspaces of the Besicovitch space on some alphabet B, naturally 
parametrized by supernatural numbers. Every subspace is defined as
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a diagonal limit of finite Hamming spaces on the alphabet B . So, our 
construction is more general.

Other generalizations of this construction are proposed in [19], and a 
generalization of construction of lattice completion for linear groups is 
considered in the article [14].
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