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ON p-GROUPS OF NILPOTENCY CLASS 3 WHERE ALL PROPER
SUBGROUPS HAVE NILPOTENCY CLASS LESS THAN 3

We obtain determination of p-groups with nilpotency class 3 where all proper subgroups have nilpotency
class less or equal 2. This solves Problem Nr. 87 stated by Y. Berkovich in [1].
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Introduction

Properties of a group are connected with its sub-
group structure. Sometimes to decide whether a group
has a subgroup of a given type is more difficult than
to obtain the list of all groups without subgroups
of this type. For example, Miller and Moreno de-
scribed nonabelian groups whose all proper subgroups
are abelian [2]. Due to this result one can answer
the question whether a finite nonabelian group has a
proper nonabelian subgroup or not.

Analogously, the determination p-groups with
nilpotency class 3, where all proper subgroups have
nilpotency class less than 3 gives the possibility to de-
cide whether a finite nonabelian p-group G contains a
proper subgroup H such that c/(H) > 2. Here cl(G)
denotes the nilpotency class of the group G.

In [1] Y. Berckovich formulated the following
problem: “Describe all p-groups with nilpotency
class 3, where all proper subgroups have nilpotency
class less than 3”. In this articles we solve this prob-
lem for finite p-groups.

We say that a finite p-group G is a minimal group
of nilpotency class 3 if all proper subgroups of GG are
groups of nilpotency class less than 3. The set of such
groups is denoted by M.

Standard notation is in use.

®(G) be the Frattini subgroup of G,

d(G) — the minimal number of generators of G,
Z;(G) — the i-th member of lower central series,
G; — i-th member of upper central series.

We prove the following:

Theorem 1. For a finite group G € M we have
D d(G) <3;
2) ©(G) € Z2(G);
3) exp(Gs) = p.
The proof of this theorem is given in Section 2.
Using this theorem we obtain the necessary and
sufficient conditions for a finite p-group to be a min-
imal group of nilpotency class 3. To be concrete we

show that a finite p-group is a minimal group of nilpo-
tency class 3 under the following conditions
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e for d(G) = 2 if and only if ®(G) C Z2(G);
e for d(G) = 3 if and only if p = 3 and G asserts
the following relations
G = <a1,a2,a3,01,02,03,z | 23 =1,
S =M 3T = ke (3 = s,

3™ B Bz Bis A
=Py,

ay

3™m2 __ fBo1 P2z Baz Ao
ay  =ctey e 20,
3™m3 __ Bsa1 Ba2 B33 A3
ay =P ey ey 27,

[a1, az] = c3,[az, a3] = c1,[a3, a1] = ca,
[ci, ai] = 2, [ci, a4] = [ci,¢5] =1,

[Ciaz] = [aiaz] = 1’(7’73 = 17213;7; #]))a

where parameters m;, 5, 11; satisfy following con-
ditions
a) mi,mz,Mm3,r1,72,73 Z 1, Ai7/'[/j = O, 1,2,
i,j=1,2,3.
b) 71 < min(ms, ms), ro < min(ms, ms),
r3 < min(my, ma).
c) Leti,j,k=1,2,3;i# j,i# k, j # k and
¢ = [a;,ag].
If r, < min(m;,my) then B = Br; = 0
(mod 3), u; — arbitrary;
if r; = m; < my then B, = —p; (mod 3),
Br; =0 (mod 3);
if r; = myp < m; then Bi; = p; (mod 3),
Bk =0 (mod 3);
if r; = m; = mg then ﬁkj = p = _Bjk
(mod 3).

Necessary conditions

In the proof we use the following known results

Proposition 2. For a finite p-group G we have
P(G) = U(G) - Ga.

Proof of Theorem 1. 1) Let G € M. Since cl(G) = 3
there exist g € G2 such that g ¢ Z(G). Without loss
of generality we assume that g is a commutator, i.e.
there exist elements a, b € G such that g = [a, b] and
there is an element ¢ € G such that [g,c] # 1. In
that way the subgroup H = (a,b,c) has nilpotency
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class 3. So it is an improper subgroup of G, H = G
and d(G) < 3.

2) To prove that ®(G) C Z3(G) we show that
U(G) € Z3(G). Each element g from U(G) is
a product of some set of p-th degrees of elements
of G. According Propozition 2 there are elements

g1 € G and ¢ € Gy such that ¢;» = ¢ - ¢. Since
¢ € Go C Z5(G) we have
[gvx] = [glp ' C_lux] = [glpax] =
= (g1, 2" = [g1,2%]  (mod Z(G)).

Suppose that an element g € U(G) is not contained in
Z5(G). Then there are elements x,y € G such that
l9,2] ¢ Z(G) and [g, z,y] # 1. Since cl(G) = 3 we
have

97, 2,y = [g1, 2P, y] =

1
:[glaxay]p:[g,x,y]#l. ( )

The subgroup H = (g%, x,y) has nilpotency class 3
too, hence H = G. The element g is a nongenerator
of the p-group G, thus G has exactly 2 generators,
G = (z,7). Consequently g; = 2 - 3% and the fol-
lowing equalities for commutators hold

lg1,2] = [2% - %, 2] = [2*, 2] [y%, 2] = [y° ],
From (1) we have

1# [g1,2%,y] = [g1, 2, y]P = [y°, 2P, y).

The proper subgroup Hy = {(aP,y) of G has nilpo-
tency class 3. The contradiction with the condi-
tion G € M gives U(G) C Z3(G). The condition
cl(G) = 3 implies G2 C Z3(G). According to Propo-
sition 2 we have ®(G) C Z(G).

3) The conditions c/(G) = 3 and U(G) C Z3(G)
implies

1=1[d?,b,c] = [[a,b]?,c] = [a,b, ]’
for each set of elements {a,b,c} C G. Hence
exp(Gs) = p.

Theorem 3. Let G € M. If the group G is
3-generated, G = (a1, as,as), then p = 3.

Proof. 1) Let G € M and d(G) = 3. Thus for each
pair g, h € G we have

l9,h,h] = [h,g,9] = 1. (2)

Let G = (aj,as,a3). Denote the commutators
[az, as), [as, a1], [a1, az] by ¢1, ¢z, c5 correspondingly.
From (2) we have

[c1,a2] = [c1,a3] =1,
[Cg,al] = [Cg,ag] = 1, (3)
[C3,G2] = [C3,G1] =1

For commutator hy = [a-as, as] we have hy = ¢; cgl
(mod Z(@)) and taking into consideration (2) we ob-
tain

1= [hl,al . CLQ] =
=[c1- ¢yt a1 - ag] = [e1, ai][co, aa] 7t

Thus [c1,a1] = [c2,a2]. Analogously [c1,a1] =
[c3,as3]. Denote by z the element from Z(G) such
that

z = [c1,a1] = [c2, a2] = [c3,a3]. 4)

On the other hand, for each group G the Witt’s identity
holds:

1 1

[xuy_ 7Z]y : [y,z_ 7;6]2 : [27x—1,y]m =1

for all z,y,z € G. Since cl(G) = 3 thus [z,y, 2] €
Z(G) and [z,y7 1, 2] = [z,9,2]"! = [y, 2]. Thus
for all z,y, z € G we may rewrite the Witt’s identities
in the form:

ly, @, 2][z, y, 7][w, 2, y] = 1.
Therefore
la1,az,asl[as, a1, asl[az, a3,a1] =1 (%)

So from (4) and definitions ¢;, ¢ = 1,2,3 we have
23 =1.

We obtain that the minimal groups of nilpotency
class 3 with 3 generators exist for p = 3 only.

From the proving of the theorem we obtain

Corollary 4. Let G € M, G is 3-generated, G =
(a1, a2, as3) and

C1 = [a2;a3]702 = [CLg,CLl],Cg = [alaaQ]' (6)

Then following conditions for the commutators hold

1)

[c1,a2] = [c1,a3] =1,
[6250’1] = [625a3] = 15 (7)
[c3,a2] = [c3,a1] = 1;
2) the equality
[c1,a1] = [c2, a2] = [c3,a3] = 2 ®)

holds and z has the order 3;
3)

[c1, c2] = [e2,¢3] = [es, ] = 13 )
and z € Z(G)
It is easy to see that for p = 3 a p-group G =

(a1, az, a3) satisfying the conditions of Corollary 4 is
a minimal group of nilpotency class 3.
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The necessary and sufficient
conditions for d(G) = 2

For G € M Theorem 1 implies that d(G) < 3 and
®(G) C Z5(G). Now we show that last condition is
sufficient for each group with d(G) = 2 of nilpotency
class 3 to be minimal of nilpotency class 3.

Theorem 5. Let d(G) = 2. Thus G € M if and only
if c(G) = 3 and ®(G) C Z2(G).

Proof. Let d(G) = 2, G = {(a,b), c(G) = 3
and ®(G) C Z3(G). 2-generated p-group G has
p + 1 maximal subgroups: M; = (ab’, ®(G)) where
i =01,...,p—1and M, = (b,®(G)). Con-
sider My = (a, ®(G)). For each g1,g2 € My holds
g; = a'ih; where h; € ®(G). Thus

[91,92) = [a'*hy,a"hy,] =
= [atlhl, hg][atlhl, at2]h2 =

= [atl ) hQ]hl [hlv hQ]([atl ) atz]hl [hla at2]>h2'

All factors contain h; € ®(G) C Z3(G), so all of
them are the elements of Z(G). From maximality
My we have Z(G) C Z(My), so [g1,92] € Z(Mp)
for each g1, g2 € My, and consequently cl(My) = 2.
Analogously cl(M;) = 2 for each other maximal sub-
group M; (i =1,...,p—1,p). Therefore each proper
subgroup of G has a nilpotency class 2 and G € M.

The necessary and sufficient
conditions for d(G) =3

Consider the case d(G) = 3 in details.

Theorem 6. The p-group G with d(G) = 3 is minimal
of nilpotency class 3 (G € M) if and only if the next
conditions hold

1) p=3;

2) G asserts the representation

G = (a1,a9,as3,c1,c2,¢3,2 | 25 =1,
c?rl = z‘“,cgr2 = zm,cgr3 = zM3,
a?ml = c’f“c'glzcgmz)‘l,

agm = cf2lcg22c§232)‘2,

a3’ = c'f?’lcg?’zcgssz)‘e',

[a1, a2] = c3,[az, a3] = c1, [a3, a1] = ca,

[ciyas] = 2, [ciya5] = [ei,¢5] =1

[cis 2] = las, 2] = 1, (6,5 = 1,2,3;i # j)),

where parameters m;,r;, yi; satisfy following con-
ditions.
a) mi,m2,M3,7r1,72,73 > 1, Ai7 My = 07 17 2;
1,7 =1,2,3.

b) r1 < min(msz, m3), r2 < min(my,ms),
r3 < min(my, ma).

c) Leti,j,k=1,23;1#ji#k j#kand
¢ = laj, ak).
If r; < min(mj,my) then B, = Br; = 0
(mod 3), u; — arbitrary.
If ri = mj < my, then B, = —p; (mod 3),
Br; =0 (mod 3).
If ri = mi < my then Br; = p; (mod 3),
Bix =0 (mod 3).
If ri = mj = my then PBr; = pi = —Bjk
(mod 3).

Proof. According the Theorem 3 and Corollary 4 the
conditions p = 3 and commutator relations of G are
the necessary conditions for G to be a minimal group
of class 3. It is easy to see they are the sufficient
ones too. So our aim is to establish the generating
relations of such groups more precisely. To do this we
will regard G as an extension of an abelian 3-generated
group A = (a1)gm1 X (az)gm2 X (a3)gms by the abelian
subgroup

D = <017627C37Z | 23: 1,

3" g 3™ _pe 373 _pus
e =z2M e =212 057 = 2,

where parameters rq, 1o, 73, (41, f2, (3 are under the
investigation.

From (7), (8) we have the group A acting on D as
an operator group by the following way:

ay: Ccl — C1z2
Co > Co
Cc3 — C3,

as: Cc1 — C1
Co —r CoZ
Cc3 — C3,

as: c1 — C1
Co —r Co
C3 — C3%.

(10)

To describe the extensions we use the following well
known theorem.

Theorem 7 (M. Hall). Let A be a group
with generators ay, as, ..., a, and relations
v1(ar,az, ... an) =1, pa(ar,az,...,an) =1, ...,
vr(ar,as,...,a,) = 1. To determine an extension of

the group A by abelian D we must determine
1) an acting of A on D as a group of operators,

2) a mapping of the relations set p1(a1,as, ..., an),
pa(ar,as, ... an), ..., prlai,as,...,a,) to D:
Vv — o €D, 1=1,...,k, (11)

where o; (1 = 1,...,k) satisfy following condi-

tions:
Ui _
| | o' =1
i

for each solution u; of equation system with
coefficients from integer group ring Z A

E Sjills = 1,

%

(12)

j=1,...,n, (13)
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where coefficients sj; are obtained from the re-
lation @; by the following way. Let & — some
mutually commuting elements, then using the col-
lections process we obtain

tpi(a1 '51,02'52,--~»an'5n):
=gi(ar,ag,...,a,) - &M - -4

The relations set of A is

@1 = [a1,a2), g2 = [az, a3], o3 = [az,a1], (14)
pi=a} ' ps=a3 ps=a3 . (15

Denote
a1 = P(p1), a2 = P(p2), .-, a6 = P(pe).  (16)

Every choosing of set aq,as,...,ag € D satisfy-
ing (12) gives some group G, which is an extension
A by D with action (10). Without loss of generality
we may choose a; = ¢3, ag = ¢1, ag = cg. For
this choosing the relations of the group G satisfy all
conditions from Corollary 4.

For given group A the condition (13) may be writ-
ten as

al((ag — 1)U1 + (1 - a3)u3) + mug =0,
ag((l — al)ul + (ag - 1)U2) + mous = 0,
ag((l — CLQ)UQ —|— (CLl — 1)U3) + T3Ue — O,

amn

where m; = 14+ a;+a2+---+a’ ', i=1,2,3.

The coefficients of this system of linear equations
are elements of the group ring ZA. All of them are
the divisors of zero in Z A, because

(a; — )m; =0, i=1,2,3. (18)
Consider some solutions of the system (17)
1y

(u1, ug, us, ug, us, ug) =
=(0,0,0,a; —1,0,0). (19)

(ulv U2, U3, Uq, Us, UG) -
=(0,0,0,0,a2 — 1,0). (20)

(u1, ug, us, ug, us, ug) =
=(0,0,0,0,0,a3 — 1). 2n

2)
(U1;U2;U3;u47u57u6) =
= (m,0,0,a1(1 — a2),0,0). (22)
(u1,uz, u3, ug, us, ug) =
= (m2,0,0,0,a2(a; — 1),0). (23)
(U1;U2;U3;U47u57u6) =
= (0,72,0,0,a2(1 — a3),0). (24)
(u1,uz,us, ug, us, ug) =
= (0,73,0,0,0,a3(az — 1)). (25)
(U1;U2;U3;U47u57u6) =
= (0,0,m1,a1(az —1),0,0). (26)
(U1,U2,U3,U47u57u6) =
=(0,0,73,0,0,a3(1 — ay)). 27)
3)
(Ul,uz,us,u4,u5,uﬁ) =
=(az —1,a1 — 1,a2 — 1,0,0,0). (28)

According the condition (12) the solution (19) gives

oyl ~1 = 1. By the another terms an image of relation

p1 = af " in D must commute with a;. Thus we
may suppose oy = cf“cgmcglgz)‘l, where $11 = 0
mod 3. Analogously, from (20), (21) we have the
images of relations a8, af~ must commute with
as, ag respectively and suppose as = cf”cg22 05232/\2,
Qe = 6?31653265332A3, where 622 = 633 ~(0 mod 3.

The solution (22) gives o afr(a2=1),
From (16) and (19) we have c3' = [au,as]. Taking
into account that c§' = c3, [a4, as] = 2712 we obtain
cgml = 2z~ %12, Comparing with relations of D we
may conclude that 1) m; > r3, 2) f12 = —pus for
mip =7Ts3 and 512 =0 for ma < r3.

The next solution gives 1) mq > r3, 2) B21 = U3
for my = r3 and Ba; = 0 for my < 3.

Analogously from (24)-(27) we obtain the other
conditions for 3, and ;.

(28) gives [a3, a3 '[az, @y a1, 0] = 1, or
[as, c3 Ylag, 3 Hlar, ;'] = 1, which is equiva-
lent (5).

Conclusion

We obtain the necessary and sufficient condition
for finite p-group to be a minimal group of nilpotency
class 3. Thus the finite p-group G is a minimal group
of nilpotency class 3 if and only if G is 2-generated
p-group of nilpotency class 3 with ®(G) C Z2(G)
or GG is 3-generated 3-group with relations pointed in
the Theorem 5.
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THunsscexa O. C., Hatiuyx M. M.

p-I'PYIIN KJIACY HIJIBITOTEHTHOCTI 3, ¥ AKHUX
KO>KHA BJIACHA HIAT'PYIIA MA€ KJIAC
HIVIBITOTEHTHOCTI MEHUIE, HI’K 3

Busnaueno eci cxinuenni p-epynu kaiacy HitbnomeHmuocmi 3, y AKUX KOJCHA GIACHA NIO2PYNA MAE KAAC
HiTbNOMeHmHocmi meHwe, Hixe 3, i maxum yunom supiuieno npooremy Ne 87, nocmasneny A. I beprosuuem

6 [1].
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