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ON p-GROUPS OF NILPOTENCY CLASS 3 WHERE ALL PROPER
SUBGROUPS HAVE NILPOTENCY CLASS LESS THAN 3

We obtain determination of p-groups with nilpotency class 3 where all proper subgroups have nilpotency
class less or equal 2. This solves Problem Nr. 87 stated by Y. Berkovich in [1].
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Introduction

Properties of a group are connected with its sub-
group structure. Sometimes to decide whether a group
has a subgroup of a given type is more difficult than
to obtain the list of all groups without subgroups
of this type. For example, Miller and Moreno de-
scribed nonabelian groups whose all proper subgroups
are abelian [2]. Due to this result one can answer
the question whether a finite nonabelian group has a
proper nonabelian subgroup or not.

Analogously, the determination p-groups with
nilpotency class 3, where all proper subgroups have
nilpotency class less than 3 gives the possibility to de-
cide whether a finite nonabelian p-group G contains a
proper subgroup H such that cl(H) > 2. Here cl(G)
denotes the nilpotency class of the group G.

In [1] Y. Berckovich formulated the following
problem: “Describe all p-groups with nilpotency
class 3, where all proper subgroups have nilpotency
class less than 3”. In this articles we solve this prob-
lem for finite p-groups.

We say that a finite p-group G is a minimal group
of nilpotency class 3 if all proper subgroups of G are
groups of nilpotency class less than 3. The set of such
groups is denoted by M.

Standard notation is in use.

• Φ(G) be the Frattini subgroup of G,
• d(G) — the minimal number of generators of G,
• Zi(G) — the i-th member of lower central series,
• Gi — i-th member of upper central series.

We prove the following:

Theorem 1. For a finite group G ∈ M we have

1) d(G) ≤ 3;

2) Φ(G) ⊆ Z2(G);
3) exp(G3) = p.

The proof of this theorem is given in Section 2.
Using this theorem we obtain the necessary and

sufficient conditions for a finite p-group to be a min-
imal group of nilpotency class 3. To be concrete we
show that a finite p-group is a minimal group of nilpo-
tency class 3 under the following conditions

• for d(G) = 2 if and only if Φ(G) ⊆ Z2(G);
• for d(G) = 3 if and only if p = 3 and G asserts

the following relations

G = 〈a1, a2, a3, c1, c2, c3, z | z3 = 1,

c3
r1

1 = zµ1 , c3
r2

2 = zµ2 , c3
r3

3 = zµ3 ,

a3
m1

1 = cβ11

1 cβ12

2 cβ13

3 zλ1 ,

a3
m2

2 = cβ21

1 cβ22

2 cβ23

3 zλ2 ,

a3
m3

3 = cβ31

1 cβ32

2 cβ33

3 zλ3 ,

[a1, a2] = c3, [a2, a3] = c1, [a3, a1] = c2,

[ci, ai] = z, [ci, aj] = [ci, cj ] = 1,

[ci, z] = [ai, z] = 1, (i, j = 1, 2, 3; i 6= j)〉,

where parametersmi, rj , µi satisfy following con-
ditions

a) m1,m2,m3, r1, r2, r3 ≥ 1, λi, µj = 0, 1, 2;
i, j = 1, 2, 3.

b) r1 ≤ min(m2,m3), r2 ≤ min(m1,m3),
r3 ≤ min(m1,m2).

c) Let i, j, k = 1, 2, 3; i 6= j, i 6= k, j 6= k and
ci = [aj , ak].
If ri < min(mj ,mk) then βjk ∼= βkj ∼= 0
(mod 3), µi — arbitrary;
if ri = mj < mk then βjk ∼= −µi (mod 3),
βkj ∼= 0 (mod 3);
if ri = mk < mj then βkj ∼= µi (mod 3),
βjk ∼= 0 (mod 3);
if ri = mj = mk then βkj ∼= µi ∼= −βjk
(mod 3).

Necessary conditions

In the proof we use the following known results

Proposition 2. For a finite p-group G we have
Φ(G) = ✵(G) ·G2.

Proof of Theorem 1. 1) Let G ∈ M. Since cl(G) = 3
there exist g ∈ G2 such that g /∈ Z(G). Without loss
of generality we assume that g is a commutator, i.e.
there exist elements a, b ∈ G such that g = [a, b] and
there is an element c ∈ G such that [g, c] 6= 1. In
that way the subgroup H = 〈a, b, c〉 has nilpotency
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class 3. So it is an improper subgroup of G, H = G
and d(G) ≤ 3.

2) To prove that Φ(G) ⊆ Z2(G) we show that
✵(G) ⊆ Z2(G). Each element g from ✵(G) is
a product of some set of p-th degrees of elements
of G. According Propozition 2 there are elements
g1 ∈ G and c ∈ G2 such that g1p = g · c. Since
c ∈ G2 ⊆ Z2(G) we have

[g, x] = [g1
p · c−1, x] ∼= [g1

p, x] ∼=
∼= [g1, x]

p ∼= [g1, x
p] (mod Z(G)).

Suppose that an element g ∈ ✵(G) is not contained in
Z2(G). Then there are elements x, y ∈ G such that
[g, x] /∈ Z(G) and [g, x, y] 6= 1. Since cl(G) = 3 we
have

[gp1 , x, y] = [g1, x
p, y] =

= [g1, x, y]
p = [g, x, y] 6= 1.

(1)

The subgroup H = 〈gp1 , x, y〉 has nilpotency class 3
too, hence H = G. The element gp1 is a nongenerator
of the p-group G, thus G has exactly 2 generators,
G = 〈x, y〉. Consequently g1 = xα · yβ and the fol-
lowing equalities for commutators hold

[g1, x] = [xα · yβ , x] = [xα, x]y
β

[yβ , x] = [yβ, x].

From (1) we have

1 6= [g1, x
p, y] = [g1, x, y]

p = [yβ , xp, y].

The proper subgroup H1 = 〈xp, y〉 of G has nilpo-
tency class 3. The contradiction with the condi-
tion G ∈ M gives ✵(G) ⊆ Z2(G). The condition
cl(G) = 3 implies G2 ⊆ Z2(G). According to Propo-
sition 2 we have Φ(G) ⊆ Z2(G).

3) The conditions cl(G) = 3 and ✵(G) ⊆ Z2(G)
implies

1 = [ap, b, c] = [[a, b]p, c] = [a, b, c]p

for each set of elements {a, b, c} ⊂ G. Hence
exp(G3) = p.

Theorem 3. Let G ∈ M. If the group G is
3-generated, G = 〈a1, a2, a3〉, then p = 3.

Proof. 1) Let G ∈ M and d(G) = 3. Thus for each
pair g, h ∈ G we have

[g, h, h] = [h, g, g] = 1. (2)

Let G = 〈a1, a2, a3〉. Denote the commutators
[a2, a3], [a3, a1], [a1, a2] by c1, c2, c3 correspondingly.
From (2) we have

[c1, a2] = [c1, a3] = 1,

[c2, a1] = [c2, a3] = 1, (3)

[c3, a2] = [c3, a1] = 1.

For commutator h1 = [a1 ·a2, a3] we have h1 = c1c
−1
2

(mod Z(G)) and taking into consideration (2) we ob-
tain

1 = [h1, a1 · a2] =
= [c1 · c−1

2 , a1 · a2] = [c1, a1][c2, a2]
−1.

Thus [c1, a1] = [c2, a2]. Analogously [c1, a1] =
[c3, a3]. Denote by z the element from Z(G) such
that

z = [c1, a1] = [c2, a2] = [c3, a3]. (4)

On the other hand, for each groupG the Witt’s identity
holds:

[x, y−1, z]y · [y, z−1, x]z · [z, x−1, y]x = 1

for all x, y, z ∈ G. Since cl(G) = 3 thus [x, y, z] ∈
Z(G) and [x, y−1, z] = [x, y, z]−1 = [y, x, z]. Thus
for all x, y, z ∈ G we may rewrite the Witt’s identities
in the form:

[y, x, z][z, y, x][x, z, y] = 1.

Therefore

[a1, a2, a3][a3, a1, a2][a2, a3, a1] = 1 (5)

So from (4) and definitions ci, i = 1, 2, 3 we have
z3 = 1.

We obtain that the minimal groups of nilpotency
class 3 with 3 generators exist for p = 3 only.

From the proving of the theorem we obtain

Corollary 4. Let G ∈ M, G is 3-generated, G =
〈a1, a2, a3〉 and

c1 := [a2, a3], c2 := [a3, a1], c3 := [a1, a2]. (6)

Then following conditions for the commutators hold
1)

[c1, a2] = [c1, a3] = 1,

[c2, a1] = [c2, a3] = 1,

[c3, a2] = [c3, a1] = 1;

(7)

2) the equality

[c1, a1] = [c2, a2] = [c3, a3] = z (8)

holds and z has the order 3;
3)

[c1, c2] = [c2, c3] = [c3, c1] = 1; (9)

and z ∈ Z(G)

It is easy to see that for p = 3 a p-group G =
〈a1, a2, a3〉 satisfying the conditions of Corollary 4 is
a minimal group of nilpotency class 3.
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The necessary and sufficient
conditions for d(G) = 2

For G ∈ M Theorem 1 implies that d(G) ≤ 3 and
Φ(G) ⊆ Z2(G). Now we show that last condition is
sufficient for each group with d(G) = 2 of nilpotency
class 3 to be minimal of nilpotency class 3.

Theorem 5. Let d(G) = 2. Thus G ∈ M if and only
if cl(G) = 3 and Φ(G) ⊆ Z2(G).

Proof. Let d(G) = 2, G = 〈a, b〉, cl(G) = 3
and Φ(G) ⊆ Z2(G). 2-generated p-group G has
p + 1 maximal subgroups: Mi = 〈abi,Φ(G)〉 where
i = 0, 1, . . . , p − 1 and Mp = 〈b,Φ(G)〉. Con-
sider M0 = 〈a,Φ(G)〉. For each g1, g2 ∈ M0 holds
gi = atihi where hi ∈ Φ(G). Thus

[g1, g2] = [at1h1, a
t2h2, ] =

= [at1h1, h2][a
t1h1, a

t2 ]h2 =

= [at1 , h2]
h1 [h1, h2]([a

t1 , at2 ]h1 [h1, a
t2 ])h2 .

All factors contain hi ∈ Φ(G) ⊆ Z2(G), so all of
them are the elements of Z(G). From maximality
M0 we have Z(G) ⊆ Z(M0), so [g1, g2] ∈ Z(M0)
for each g1, g2 ∈ M0, and consequently cl(M0) = 2.
Analogously cl(Mi) = 2 for each other maximal sub-
group Mi (i = 1, . . . , p− 1, p). Therefore each proper
subgroup ofG has a nilpotency class 2 andG ∈ M.

The necessary and sufficient
conditions for d(G) = 3

Consider the case d(G) = 3 in details.

Theorem 6. The p-groupG with d(G) = 3 is minimal
of nilpotency class 3 (G ∈ M) if and only if the next
conditions hold

1) p = 3;

2) G asserts the representation

G = 〈a1, a2, a3, c1, c2, c3, z | z3 = 1,

c3
r1

1 = zµ1 , c3
r2

2 = zµ2 , c3
r3

3 = zµ3 ,

a3
m1

1 = cβ11

1 cβ12

2 cβ13

3 zλ1 ,

a3
m2

2 = cβ21

1 cβ22

2 cβ23

3 zλ2 ,

a3
m3

3 = cβ31

1 cβ32

2 cβ33

3 zλ3 ,

[a1, a2] = c3, [a2, a3] = c1, [a3, a1] = c2,

[ci, ai] = z, [ci, aj ] = [ci, cj ] = 1

[ci, z] = [ai, z] = 1, (i, j = 1, 2, 3; i 6= j)〉,

where parameters mi, rj , µj satisfy following con-
ditions.

a) m1,m2,m3, r1, r2, r3 ≥ 1, λi, µj = 0, 1, 2;
i, j = 1, 2, 3.

b) r1 ≤ min(m2,m3), r2 ≤ min(m1,m3),
r3 ≤ min(m1,m2).

c) Let i, j, k = 1, 2, 3; i 6= j, i 6= k, j 6= k and
ci = [aj , ak].
If ri < min(mj ,mk) then βjk ∼= βkj ∼= 0
(mod 3), µi — arbitrary.
If ri = mj < mk then βjk ∼= −µi (mod 3),
βkj ∼= 0 (mod 3).
If ri = mk < mj then βkj ∼= µi (mod 3),
βjk ∼= 0 (mod 3).
If ri = mj = mk then βkj ∼= µi ∼= −βjk
(mod 3).

Proof. According the Theorem 3 and Corollary 4 the
conditions p = 3 and commutator relations of G are
the necessary conditions for G to be a minimal group
of class 3. It is easy to see they are the sufficient
ones too. So our aim is to establish the generating
relations of such groups more precisely. To do this we
will regardG as an extension of an abelian 3-generated
groupA = 〈a1〉3m1 ×〈a2〉3m2×〈a3〉3m3 by the abelian
subgroup

D = 〈c1, c2, c3, z | z3 = 1,

c3
r1

1 = zµ1 , c3
r2

2 = zµ2 , c3
r3

3 = zµ3〉,

where parameters r1, r2, r3, µ1, µ2, µ3 are under the
investigation.

From (7), (8) we have the group A acting on D as
an operator group by the following way:

a1 : c1 7→ c1z
c2 7→ c2
c3 7→ c3,

a2 : c1 7→ c1
c2 7→ c2z
c3 7→ c3,

a3 : c1 7→ c1
c2 7→ c2
c3 7→ c3z.

(10)

To describe the extensions we use the following well
known theorem.

Theorem 7 (M. Hall). Let A be a group
with generators a1, a2, . . . , an and relations
ϕ1(a1, a2, . . . , an) = 1, ϕ2(a1, a2, . . . , an) = 1, . . . ,
ϕk(a1, a2, . . . , an) = 1. To determine an extension of
the group A by abelian D we must determine

1) an acting of A on D as a group of operators;

2) a mapping of the relations set ϕ1(a1, a2, . . . , an),
ϕ2(a1, a2, . . . , an), . . . , ϕk(a1, a2, . . . , an) to D:

ψ : ϕi 7→ αi ∈ D, i = 1, . . . , k, (11)

where αi (i = 1, . . . , k) satisfy following condi-
tions: ∏

i

αui

i = 1 (12)

for each solution ui of equation system with
coefficients from integer group ring ZA

∑

i

sjiui = 1, j = 1, . . . , n, (13)
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where coefficients sji are obtained from the re-
lation ϕi by the following way. Let ξj — some
mutually commuting elements, then using the col-
lections process we obtain

ϕi(a1 · ξ1, a2 · ξ2, . . . , an · ξn) =
= ϕi(a1, a2, . . . , an) · ξs1i1 · ξs2i2 · . . . · ξsni

n

The relations set of A is

ϕ1 = [a1, a2], ϕ2 = [a2, a3], ϕ3 = [a3, a1], (14)

ϕ4 = a3
m1

1 , ϕ5 = a3
m2

2 , ϕ6 = a3
m3

3 . (15)

Denote

α1 = ψ(ϕ1), α2 = ψ(ϕ2), . . . , α6 = ψ(ϕ6). (16)

Every choosing of set α1, α2, . . . , α6 ∈ D satisfy-
ing (12) gives some group G, which is an extension
A by D with action (10). Without loss of generality
we may choose α1 = c3, α2 = c1, α3 = c2. For
this choosing the relations of the group G satisfy all
conditions from Corollary 4.

For given group A the condition (13) may be writ-
ten as

a1((a2 − 1)u1 + (1− a3)u3) + π1u4 = 0,

a2((1− a1)u1 + (a3 − 1)u2) + π2u5 = 0,

a3((1− a2)u2 + (a1 − 1)u3) + π3u6 = 0,

(17)

where πi = 1 + ai + a2i + · · ·+ ap
mi−1
i , i = 1, 2, 3.

The coefficients of this system of linear equations
are elements of the group ring ZA. All of them are
the divisors of zero in ZA, because

(ai − 1)πi = 0, i = 1, 2, 3. (18)

Consider some solutions of the system (17)

1)

(u1, u2, u3, u4, u5, u6) =

= (0, 0, 0, a1 − 1, 0, 0). (19)

(u1, u2, u3, u4, u5, u6) =

= (0, 0, 0, 0, a2 − 1, 0). (20)

(u1, u2, u3, u4, u5, u6) =

= (0, 0, 0, 0, 0, a3 − 1). (21)

2)

(u1, u2, u3, u4, u5, u6) =

= (π1, 0, 0, a1(1− a2), 0, 0). (22)

(u1, u2, u3, u4, u5, u6) =

= (π2, 0, 0, 0, a2(a1 − 1), 0). (23)

(u1, u2, u3, u4, u5, u6) =

= (0, π2, 0, 0, a2(1− a3), 0). (24)

(u1, u2, u3, u4, u5, u6) =

= (0, π3, 0, 0, 0, a3(a2 − 1)). (25)

(u1, u2, u3, u4, u5, u6) =

= (0, 0, π1, a1(a3 − 1), 0, 0). (26)

(u1, u2, u3, u4, u5, u6) =

= (0, 0, π3, 0, 0, a3(1− a1)). (27)

3)

(u1, u2, u3, u4, u5, u6) =

= (a3 − 1, a1 − 1, a2 − 1, 0, 0, 0). (28)

According the condition (12) the solution (19) gives
αa1−1
4 = 1. By the another terms an image of relation
ϕ1 = ap

m1

1 in D must commute with a1. Thus we
may suppose α4 = cβ11

1 cβ12

2 cβ13

3 zλ1 , where β11 ∼= 0
mod 3. Analogously, from (20), (21) we have the
images of relations ap

m2

2 , ap
m3

3 must commute with
a2, a3 respectively and supposeα5 = cβ21

1 cβ22

2 cβ23

3 zλ2 ,
α6 = cβ31

1 cβ32

2 cβ33

3 zλ3 , where β22 ∼= β33 ∼= 0 mod 3.

The solution (22) gives απ1
1 = α

a1(a2−1)
4 .

From (16) and (19) we have cπ1
3 = [α4, a2]. Taking

into account that ca13 = c3, [α4, a2] = zβ12 we obtain
c3

m1

3 = z−β12 . Comparing with relations of D we
may conclude that 1) m1 ≥ r3, 2) β12 = −µ3 for
m1 = r3 and β12 = 0 for m1 ≤ r3.

The next solution gives 1) m2 ≥ r3, 2) β21 = µ3

for m2 = r3 and β21 = 0 for m2 ≤ r3.
Analogously from (24)–(27) we obtain the other

conditions for βjk and µi.
(28) gives [a3, α

−1
3 ][a2, α

−1
2 ][a1, α

−1
1 ] = 1, or

[a3, c
−1
3 ][a2, c

−1
2 ][a1, c

−1
1 ] = 1, which is equiva-

lent (5).

Conclusion

We obtain the necessary and sufficient condition
for finite p-group to be a minimal group of nilpotency
class 3. Thus the finite p-group G is a minimal group
of nilpotency class 3 if and only if G is 2-generated
p-group of nilpotency class 3 with Φ(G) ⊆ Z2(G)
or G is 3-generated 3-group with relations pointed in
the Theorem 5.
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Пилявська О. С., Найчук М. М.

p-ГРУПИ КЛАСУ НIЛЬПОТЕНТНОСТI 3, У ЯКИХ
КОЖНА ВЛАСНА ПIДГРУПА МАЄ КЛАС

НIЛЬПОТЕНТНОСТI МЕНШЕ, НIЖ 3

Визначено всi скiнченнi p-групи класу нiльпотентностi 3, у яких кожна власна пiдгрупа має клас
нiльпотентностi менше, нiж 3, i таким чином вирiшено проблему № 87, поставлену Я. Г. Берковичем
в [1].

Ключовi слова: p-група, пiдгрупа, клас нiльпотентностi.
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