
Ministry of Education and Science of Ukraine

National University of "Kyiv-Mohyla Academy"

Network Technologies Department of the Faculty of Informatics

Distributed system technical audit

Text part of course work

in specialty “Computer Science and Information Technologies” 112

Coursework supervisor

associate professor, doctor of technical science

Hlybovets A.M.

(signature)

“____” ____________ 2020 yr.

Made by student

Zhylenko O.V.

“____” ____________ 2020 yr.

Kyiv 2020

1

Ministry of Education and Science of Ukraine

National University of "Kyiv-Mohyla Academy"

Department of Computer Science of the Faculty of Informatics

APPROVED

Head of the Department of Informatics

PhD, associate professor

_______________________ S.S. Gorokhovsky

(signature)_____________________________

“____” ____________ 2020 yr.

INDIVIDUAL TASK

for course work

For the student of the Faculty of Informatics of 1 course of studying

THEME Distributed system technical audit

Output data:

Text part content of coursework:

An individual task

Calendar plan

Annotation

An introduction

Part 1: Distributed systems overview

Part 2: Technical audit overview

Part 3: Technical audit checklists

Summary

References

Applications

Issue date “____” ____________ 2020 yr. Supervisor __________________

 (signature)

Task received __________________

(signature)__________

2

Theme: Distributed system technical audit

Calendar plan of coursework execution:

№ Stage name Deadline Note

1. Getting of coursework topic 30.01.2020

2. Searching of appropriate literature 05.02.2020

3. Reviewing materials and building

the structure of coursework

10.02.2020

4. Reviewing distributed systems

and writing first part

10.04.2020

5. Researching in technical audit

practices

23.04.2020

6. Writing second part 24.04.2020

7. Investigation of quality attributes

of distributed systems

30.04.2020

8. Writing third part 01.05.2020

9. Writing coursework summary 01.05.2020

10. Coursework analysis with the

supervisor

02.05.2020

11. Coursework changing according

to the supervisor’s remarks

03.05.2020

12. Creating of the presentation 05.05.2020

13. Defending of the coursework 14.05.2020

Student Zhylenko O.V.

Supervisor Hlybovets A.M.

“____” ________________

3

Contents

1. Distributed systems overview ... 6

1.2 Monolithic architecture ... 6

1.3 Microservices architecture .. 8

1.4 Serverless architecture .. 9

1.5 Comparing monolithic, microservice and serverless architectures 10

2 Technical audit overview ... 12

2.2 Definition and purposes of technical audit ... 12

2.3 Quality attributes... 14

2.3.1 Quality attribute definition ... 14

2.3.2 Observability .. 15

2.3.3 Portability ... 15

2.3.4 Security ... 15

2.3.5 Maintainability ... 16

3 Technical audit checklists .. 17

3.1 Observability checklist ... 17

3.2 Portability checklist .. 19

3.3 Security checklist ... 20

3.4 Maintainability checklist .. 21

 Summary …. ... 17

4

Annotation

In this coursework will be defined what is distributed systems, review

Monolithic, Microservice and serverless architecture. Also, we will deep dive into

technical audit process, specify what aspects of system must be considered during

audit. Then will iterate over checklists item in order to provide guidelines based on best

practices in industry that helps to prepare for system audit.

Key words: Distributed system, Monolithic, Microservice, Serverless, Quality

attribute, Observability, Portability, Security, Maintainability, Audit, Checklist.

5

INTRODUCTION

It is really difficult to imagine enterprise system that consist of only one

deployment artifact. Great example is microservices architecture which is extremely

popular now. But when we want to promote product to production or we receive

existing product on ownership we want to know technical gaps in advance to

understand what we can expect and maybe fix some issues upfront in order to save time

and money in future.

In this work I will define what technical audit is and what aspects of distributed

systems we need to consider. Also, I will provide checklists that are based on best

practices in IT industry that can help to conduct audit smoothly.

6

 Distributed systems overview

1.2 Monolithic architecture

Initially applications rely on persistent connections and stateful communication. All

heavy processing was on backend part. The frontends were thick however we had rich

user interface, complex business logic and data access. Separation of concern was used

to manage complexity. There was three common layers: presentation, business and data

access. But dependencies between them became so complex so it was real challenge to

introduce new functionality and still all the functions are managed and served in one

place. Monolithic applications have lack modularity because it is one large code base.

If something even small must be updated or changed developer access the same code

base and make changes in the whole stack at once.

Figure 1.2.1. Layers of monolithic architecture

7

Advantages of monolithic architecture:

• Less cross-cutting concerns. These concerns affect the whole application

and includes such staff like logging, monitoring, caching, etc. It is easier to

handle because we have one application.

• Easier debugging and testing. In contrast to the other architectures.

• Easier to deploy. Need to deploy single unit.

At same time it has next disadvantages:

• Understability. Application tend to become really huge and difficult for

understanding.

• Scalability. Impossible to scale components independently

• Updatability. Difficult to introduce changes.

• Introduce new technologies. Every new change affects the whole

application.

8

1.3 Microservices architecture

Microservices architecture breaks single unit into a collection of smaller ones which

are not depend on each other. These units are considered as separate services each of

them has its own logic, storage and they concern on specific functions.

Figure 1.3.1. Microservice architecture

Advantages of microservice architecture:

• Independent deployment units. Services can be deployed

independently.

• Better understability. Since each service is small and independent unit

it is easier for developers to understand it.

• Scalability. Services can be scaled independently based on needs.

• Agility. One failing service do not crash the whole system. Other

functionality still available.

• Flexibility in choosing the technology. Different frameworks and even

languages can be used for different microservices.

9

But microservices have a list of disadvantages also:

• Complexity. since All these components must be connected between

each other we move complexity from application to infrastructure layer.

• Cross-cutting concerns. We must take care about externalized

configuration, logging, metrics, health checks, and others.

• Testability. Collection of components which are deployed independently

makes testing much harder.

1.4 Serverless architecture

Serverless is a cloud computing execution model where the cloud provider

dynamically manages the allocation and provisioning of servers. A serverless

application runs in stateless compute containers that are event-triggered, ephemeral

(may last for one invocation), and fully managed by the cloud provider [12]. Pricing is

based on the number of executions.

Figure 1.4.1. Serverless in difference cloud providers [13]

10

Advantages of serverless architecture:

• Focus on business logic. We do not care about servers, load balancers

and all such staff.

• Scalability. Virtually scalability is infinitive and managed buy cloud

provider.

• Pay for invocation. We pay for execution of business logic.

• Flexibility in choosing the technology. As for microservice architecture

we can use different frameworks and languages for different functions.

Disadvantages:

• Unrelated set of functions. Each function is just small piece of code and

all functions must be connected to each other to perform real business

function.

• Testability. Harder to test comparing with microservices.

1.5 Comparing monolithic, microservice and serverless architectures

Considering different architectures, we see that main difference in monolithic and

distributed architecture is possibility to release different functionality independently.

Microservices and serverless are not panacea but nowadays distributed systems are

most common style for enterprise systems. You must take into account that together

with granularity of your system you increase system complexity on supporting

infrastructure.

11

Figure 1.5.1. Difference between monolithic, microservice and serverless

architectures [14]

12

 Technical audit overview

2.1 Definition and purposes of technical audit

Audit is a formal procedure to measure a technical debt and a quality level of the

system. The main purpose of audit procedure is checking compliance of a software

system (or a software component) and an infrastructure with well-known and up-to-

date practices in industry.

Following types of a technical debt are covered by technical audit:

• Production technical debt

It nest high risks for a product. It focuses on observability (e.g., effort to find

and fix an issue), portability (e.g., effort to release a new version) and security

(e.g., any security vulnerabilities).

• Development technical debt

It nest moderate risks for a product. It focuses on maintainability (e.g., effort to

introduce changes into existing system).

• Involvement technical debt

It nest moderate risks for a product. It focuses on understandability (e.g., effort

to introduce a new employee on project).

There are 2 general cases when you need to perform audit:

• During release preparation. Team want to know problems and potential

issues that might be in production after release.

• During ownership transfer. When team take ownership on existing product,

they need to know gaps that can lead to problems in production. Also knowing

problems help to provide accurate estimation on new feature introduction.

13

There are several main phases of audit:

• Kikoff. Define scope schedule of audit.

• Preparation. Define and approve checklists.

• Execution or examination. Check system compliance according to prepared

checklists.

• Reporting. Build report and include all findings.

Figure 2.1.1 Phases of technical audit

You should take into account that main goal of audit is to identify technical dept.

Investigation for possible fixes is not mandatory part of a system. After report is ready

it should be reviewed and after that decision must be made what issues are critical and

requires immediate actions.

14

2.2 Quality attributes

2.2.1 Quality attribute definition

First of all, it is better to start with classification of requirements.

All requirements encompass the following categories:

• Functional requirements

• Non-functional requirements

▪ Quality attributes

▪ Constraints

Functional requirements define a system or its component. They describe what the

system must perform and how to behave or react on stimulations at runtime. These

requirements describe specific functionality that define what a system is supposed to

do (they involve calculations, technical details, data manipulation and processing, etc.)

Quality attribute requirements are qualifications of functional requirements or of

the overall product. They usually answer questions like ‘how fast the function should

be performed’ or ‘how resilient it should be to incorrect input’ can be considered as

qualifications of functional requirement. The overall product qualifications are such

items as ‘time to deploy the product’ or ‘how fast new feature must be introduced’. We

can used next definition proposed by SEI: “A quality attribute (QA) is a measurable or

testable property of a system, that is used to indicate how well the system satisfies the

needs of its stakeholders”

Constraint is a design decision taken with zero degree of freedom. This decision

that has already been taken and we cannot change it. The examples of constraints are

decisions to use a particular language or reuse certain module, or management directive

to use specific cloud provider like AWS. Such decisions usually based on some

external factors like company has long term investment in AWS.

15

2.2.2 Observability

Observability is a measure of how well internal states of a system can be inferred

from knowledge of its external outputs. Usually developers confuse monitoring and

observability. Observability is a property of a system in contrast to monitoring

whereas monitoring refers to the process where we translate application and

infrastructure logs and metrics data in order to be able to provide meaningful actions.

If system and its components don’t adequately externalize their state, then even

the best monitoring can fail.

2.2.3 Portability

Portability is the ability to deploy a product in various environments in a predictable

way. It includes containerization, configuration and versioning. Docker is default tool

for containerization. Configuration and versioning are implemented by custom solution

and may be various by standards in different organizations.

2.2.4 Security

Security is the ability to resist to incorrect or malicious behavior of client

applications.

Here is the list of the main security areas:

1. Authentication and authorization of clients.

2. Translation, interpretation and protection of data.

3. Configuration management and dependency management.

4. Monitoring, logging and auditing.

There several projects which provide list of top vulnerabilities. OWASP and CWE

are most popular. These lists should be considered during system development.

16

OWASP Top 10 is the most popular list which represents a broad consensus about the

most critical security risks to web applications (https://owasp.org/www-project-top-

ten/).

2.2.5 Maintainability

Maintainability is the ability to change a product with a predictable effort.

Static analysis is common approach that used to control maintainability. However,

these tools may not provide enough checks to ensure maintainability, so code review

practice is recommended also.

The major recommendations are:

1. Minimize source code

 For example, in Java Lombok library can be used auto-generated getters, setter and

constructors to enable dependency injection (Spring Framework).

2. Prefer declarative configurations

 For example, use declarative clients instead of request builders to consume data from

HTTP services.

3. Prefer infrastructure solutions

 For example, configure a reverse proxy instead to enable CORS. Do not use an

application framework for this purpose.

17

 Technical audit checklists

3.1 Observability checklist

Next items have significant impact on observability and are highly recommended

for implementation:

Use correlations. Unique correlation identifier must be assigned to each

invocation. This identifier must be propagated to all services, message brokers and

event buses. It used to identify side effects in system for single user intent.

Enable monitoring. Metrics must be collected and aggregated in single place. Most

important metrics are latency, throughput, errors and utilization. By default, next tools

are used: Prometheus - to store metrics, Grafana – to visualize metric.

Figure 3.1.1. Grafana dashboard

Enable logging. Collect logs from every part of a system in single place. All

requests from external services, message brokers, event buses and data stores must be

traced. Sensitive information must be masked. By default, next tools are used: Fluentd

- to aggregate logs, Elasticsearch - to store logs, Kibana - to visualize logs.

18

Figure 3.1.2. Kibana dashboard

Use log context for instances. It is useful to log application version and

configuration properties except secrets on startup. It reduces time on troubleshooting.

Enable error handling. Provide a default error handler. Next fields must be

included into the error response for all error handlers: application name, instance

identifier, correlation identifier and error code.

Use health checks. Each service should have endpoint which provide information

about service health status. By default, HTTP method GET is used which returns

HTTP status 200.

Following list of items related to should to have category:

Enable tracing. Trace must be propagated to all services, message brokers and

event buses. This information must be collected on aggregation tool.

19

Figure 3.1.3. Zipkin tracing tool

Log context for invocations. Log a security and operation identifiers for each

invocation. These identifiers allow to extract the contextual information about client

and operational behavior.

Enable error tracking. All errors should be tracked. Logs also contains error but

it is essential to have additional separate place for errors that provides possibility to

send notification if necessary.

3.2 Portability checklist

Next items have significant impact on observability and are highly recommended

for implementation:

Enable containerization. Images should be used to deliver components. Configure

repository and version for images.

Use immutable tags. Use immutable tags. Avoid to use latest tag.

Follow to best practices for images. Use docker best practices to build images

since Docker is default tool for conternization.

20

Use external configuration. Do not embed configuration inside image.

Configuration file must be separate from image. There should be possibility to override

configuration properties via environment variables.

Use versioning. Versioning must be used for images and also recommended for

configurations files.

Don't embed infrastructure into services. SSL termination, rate limiting, CORS

and so on should be configured using infrastructure not application.

Following list of items related to should to have category:

Define quotas for CPU and memory. Leaks in resources for single service

should not crush machine on which other service might run. Also, it helps

orchestrator to find appropriate node in cluster faster.

3.3 Security checklist

Next items have significant impact on observability and are highly recommended

for implementation:

Segregate services by security traits. Services should be segregated by access type

(public, internal and so on) and by required privileges. PoLP principle should be used

(principle of least privileges).

Validate inbound data. Validate all incoming requests, responses, messages and

events before start processing them.

Don't expose sensitive data. Exposed sensitive data may be used by attackers to

compromised this data also this may lead to fines from regulators. Do not show stack

trace to client. This can be used to enable negative impact on system.

Control dependencies versions. Regularly update dependencies because updates

nest fixes for vulnerabilities.

21

3.4 Maintainability checklist

Next items have significant impact on observability and are highly recommended

for implementation:

Use branching strategy. It helps developers work separately and do not affect

each other. All changed in main branch should be done through pull requests.

There are three primary strategies that is widely used: GitHub Flow, GitLab Flow,

Git Flow.

GitHub flow is pretty simple and is best for small teams when team does not need

to support several different versions or environments simultaneously. There is main

master branch. When developer needs to introduce new changes, he creates feature

branch. After implementation phase is completed developer creates pull request for

review. When review is done and all comments were addressed feature branch can be

merged into master.

Figure 3.4.1. GitHub flow

GitLab Flow is good for the case where team have to support several different

environments. There is still master branch and developer create feature branch from

master. Additional branches are release-purposed for different environments. Team

can continue work on new feature regardless of changes from the appropriate release

branch but changes in release branch must be cherry-picked back into master. It is

very useful if team need to deploy some changes to a pre-production environment

without blocking other development activities.

22

Figure 3.4.2. GitLab flow

Git flow was created by Vincent Driessen in 2010 and it is based in two main

branches with infinite lifetime:

• master — branch with production code. All development code is merged

into master.

• develop —branch contains pre-production code. All features are merged

into develop when they are finished.

Several supporting branches are used:

• feature-* — feature branches are used to develop new features for the

upcoming releases. They are branched from develop and must be merged

into develop.

23

• hotfix-* — these branches are used when we have undesired status of

master and need to act immediately. They are branched from master and

must be merged into master and develop.

• release-* — release branches support preparation of a new release in

production. They used to fix many minor bugs and to prepare metadata for a

release. They are branched from master and must be merged into master

and develop.

24

Figure 3.4.3. Git flow

25

Enable build automation. Use single build script for local developers’ machine

and remote automation builds. All infrastructure tasks such as static code analysis

should be removed form build script.

Use unit tests. Test coverage may be different depends on organization standards

but recommended coverage is higher than 60%.

Figure 3.4.4. SonarQube dashboard

Define feedback activities. Define all activities and quality gates that must be

passed before code will be transferred to next stage. It helps shift feedback to the left

of feedback activity diagram and find out problems earlier.

26

Figure 3.4.4. Feedback activities diagram example

The cost of detecting and fixing defects in software increases exponentially with

time in the software development workflow. Fixing bugs in the field is incredibly

costly, and risky — often by an order of magnitude or two. The cost is in not just in the

form of time and resources wasted in the present, but also in form of lost opportunities

of in the future [15]. For example, it is much harder fix bug that was found in

production than during execution of unit tests and even during execution of automation

e2e tests.

Kent Beck in his book Extreme Programming Explained states that most defects

end up costing more than it would have cost to prevent them. Defects are expensive

when they occur, both the direct costs of fixing the defects and the indirect costs

because of damaged relationships, lost business, and lost development time.

On following graph created by NIST (National Institute of Standards and

Technology) we can see the effort in detecting and fixing defects increases through

the phases of software development.

27

Figure 3.4.5. Relative cost to fix bugs based on time of detection [15]

Use code conventions. It improves readability of the code. It is recommended to

have single convention in scope of all system but at least it should exist in scope of

single team. Code convention template can be exported into file and shared with

team. All modern IDEs support such feature.

Reduce code duplication. It is recommended to have less than 3% of code

duplication. Static code analysis cannot find semantic code duplication that is why

code review is necessary.

Remove dead code. Remove unused or commented code. Previous

implementation can be reverted from git log history.

Ensure methods and classes maintainability. Use clean code principles. These

principles were described in book Robert C. Martyn, Clean Code: A Handbook of Agile

Software Craftsmanship

28

Summary

Maintenance of the system after release is very important part of software life

cycle. System failures and delays in finding and fixing a problem can cause to huge

financial and reputational expenses. Also, the introducing of new features due to

changes on the market should take place on time.

Technical audit helps to find out technical dept and asses risks due to

maintenance and extension of the system. It is a mandatory during release preparation

and ownership transfer. Well defined criteria will help to conduct audit smoothly and

find out most of technical dept. It does not guaranty success of product or absence of

problems but properly conducted technical audit reduce risk to have them after release.

29

References

1. https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-

why-does-it-matter/

2. https://www.bmc.com/blogs/observability-vs-monitoring/

3. https://owasp.org/www-project-top-ten/

4. https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

5. Betsy Beyer, Chris Jones, Jennifer Petoff, Niall Richard Murphy, Site Reliability

Engineering: How Google Runs Production Systems

6. https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-

mutability.html

7. https://google.github.io/styleguide/javaguide.html

8. Robert C. Martyn, Clean Code: A Handbook of Agile Software Craftsmanship

9. https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf

10. https://jeffkreeftmeijer.com/git-flow/

11. https://medium.com/responsetap-engineering/monolith-to-microservices-to-

serverless-our-journey-745a2b9620ec

12. https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-

your-business/

13. https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-

cons-cc4b804022e9

14. https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-

faas-3hdp

15. https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

16. https://dzone.com/articles/go-microservices-part-12-distributed-tracing-with

https://www.bmc.com/blogs/observability-vs-monitoring/
https://owasp.org/www-project-top-ten/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html
https://google.github.io/styleguide/javaguide.html
https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
https://jeffkreeftmeijer.com/git-flow/
https://medium.com/responsetap-engineering/monolith-to-microservices-to-serverless-our-journey-745a2b9620ec
https://medium.com/responsetap-engineering/monolith-to-microservices-to-serverless-our-journey-745a2b9620ec
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-cons-cc4b804022e9
https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-cons-cc4b804022e9
https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-faas-3hdp
https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-faas-3hdp

