
 
 

Міністерство освіти і науки України 

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ» 

Кафедра математики факультету інформатики 

  

NK-моделі Кауффмана 
Курсова робота 

за спеціальністю „Прикладна математика ” 113 

 

Керівник курсової роботи 

д.т.н., доц. Чорней Р.К. 

___________ 

(підпис) 

“____” _________ 2020 р. 

  

Виконав 

студент 4 курсу  

факультету інформатики  

Крошин О. А.  

 

  



 
 

 

Міністерство освіти і науки України 
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ» 

Кафедра інформатики факультету інформатики 
 
 

ЗАТВЕРДЖУЮ 
    Зав. кафедри математики,  
проф., д.ф.-м.н. 
____________Б. В. Олійник 
 (підпис) 
„____”_______________2019 р. 

 
 

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 
на курсову роботу  

 
студенту Крошину О. А. факультету інформатики 4-го курсу БП 
ТЕМА NK-моделі Кауффмана 
Зміст курсової роботи: 

1. Індивідуальне завдання 
2. Календарний план 
3. Анотація 
4. Вступ 
5. РОЗДІЛ 1: Загальна інформація про NK-моделі Кауффмана 
6. РОЗДІЛ 2: Аналіз властивостей NK-моделей Кауффмана з різними K 
7. Висновки 
8. Список використаних джерел 

 
 
Дата видачі „___” _________ 2019 р.  Керівник _______________ 
                (підпис) 
          Завдання отримав __________ 
                                                                                                                     (підпис) 

  



 
 

 
Календарний план виконання роботи: 

 

№ 

п/п 

Назва етапу курсової роботи  Термін 

виконання 

етапу 

Примітка  

1. Отримання теми курсової роботи.  10.10.2019  

2. Огляд задачі  11.11.2019  

3. Побудова програми-симулятора 01.02.2020  

4. Написання першого розділу 01.03.2020  

5. Проведення досліджень 15.03.2020  

6.  Написання другого розділу 01.04.2020  

7. Корегування роботи згідно із зауваженнями 

керівника 

10.04.2020  

  

 

 

 

 

Студенту Крошину О.А. 

 Керівник Чорней Р.К.  

 “______”______________ 

 

 
 



1 
 

 

Table of contents 

Table of contents ............................................................................................................................ 1 

Abstract ........................................................................................................................................... 2 

Introduction .................................................................................................................................... 3 

1. The NK models, Boolean network dynamics and Fitness Landscape ..................................... 4 

1.1.The NK models. ........................................................................................................................ 4 

1.2. The NK-BN model ................................................................................................................... 5 

1.3 NK FL model. Fitness function. Landscape ruggedness ....................................................... 6 

1.4 Model representation ............................................................................................................... 7 

2. Tuning the NK Models. On the edge of chaos ........................................................................ 12 

2.1. The ruggedness of a landscape based on K ......................................................................... 12 

2.2. Stability of NK-model ............................................................................................................ 14 

3. Practical research .................................................................................................................... 15 

3.1. Analyzing the number of peaks based on tuning ................................................................. 15 

3.2. Analyzing the impact on system’s stability based on tuning K ............................................ 18 

Conclusion .................................................................................................................................... 19 

References .................................................................................................................................... 20 
 
  



2 
 

 

Abstract 

A given work focuses on the NK fitness models, focuses on classical NK 

models of Boolean networks dynamics, gives intuition of its basic properties 

and describes most useful ways to represent it. The paper is also focused on a 

fitness landscape and its corresponding NK model, concepts of ruggedness and 

smoothness. It also covers a concept of NK-models stability and researches an 

impact of internal and external parameters of a model (N, K, ruggedness of a 

landscape) on its stability. 

Experiments were implemented with Python 3.8 using libraries Numpy, 

matplotlib etc. 
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Introduction 

 

Proposed by S. Kauffmann, the NK simulation model was originally 

intended to serve the purposes of theoretical implications in evolutionary 

biology. With its capabilities for capturing network dynamics, it raised high 

interest in different fields. Its methodology is traditionally split between 

Boolean network modelling, which is studying proper boolean networks 

dynamics, and a problem of fitness-driven network evolution, dedicated to 

systems evolution based on search for optimizing its fitness value through a so-

called fitness landscape. The former is traditionally labelled as NK-BN, and the 

latter is referred to as NK-FL. Both approaches were linked by Kauffman 

himself, when he defined fitness landscape as a Boolean network space.  

Splitting the two NK models is justified by disciplinary interests: while 

NK-BN is mostly researched by authors in fields of biology, mathematics and 

computer science (e.g. viewing NK-model as an NP-complete problem 

(Weinberger, 2014), NK-FL attracts lots of attention in fields of project 

management (e.g. dealing with uncertainty, Levinthal and Workiewicz, 2017), 

business (modelling product launches, Sommer et al., 2004) and economics 

(forming governmental industrial policies, Li and Csaszar, 2018) 

The aim of this paper is to review both types of NK-model, discuss its 

limitations and give intuition of its landscape ruggedness based on tuning K and 

conducting additional experiments on model stability.  

Paper consists of three parts, where the first focuses on basic intuition 

around NK-model and its representation, the second on proper experiments and 

the third on interpreting their results. 
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1. The NK models, Boolean network dynamics and Fitness 

Landscape 

1.1.The NK models.  

The problem of capturing networks dynamics has a long history of 

generating new proposals and approaches. The computational limitations in 

determining all states of complex systems and transition between their phases 

led to creation of simpler models, which despite growing in time with an 

increasing number of parameters, let a researcher explore only some part of its 

states, providing some intuition of generalizing it further. This paper is 

dedicated to one of the fundamental approaches to the given problem. 

The NK model was originally defined by Kauffman as “meant to be applied 

to systems of many, N, parts, where the functional contribution of each part 

depends upon the state, among A alternatives, of that part, and is epistatically 

affected by average of K other parts” [2]. 

This particular quote lets us broadly define a component of NK-model as a 

sequence of N elements where each element takes one of A possible values and 

is calculated as function of other K elements, also known as a fitness function.  

K measures the richness of the interconnectivity of the parts of the given 

system, and the main problem behind NK-model in general is the following: 

does tuning just two parameters, a fitness function and its size K, change its 

behavior fundamentally? Do different values of K form different “regimes” 

with completely differently dynamics? Are there phase transitions between the 

regimes? Short answer: yes, it does, which will be demonstrated below. 
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1.2. The NK-BN model 

The standard version of NK-model, known as NK-BN, is heavily tied to a 

theory of random Boolean networks. NK-BN model (or system) methodology is 

built upon defining a model as topologically invariant, meaning that both its 

connections distribution and its size are defined stochastically as relationship of 

its nodes based on invariant interaction rules (fitness functions) and that a 

model does not change neither in size nor in its connections distribution. Its 

main principles may be stated as follows: 

1) Every node has a number of activation states (usually, two, 0 or 1, active or 

inactive) 

2) Edges between node are combined by Boolean functions, sometimes called 

activation rules. 

3) Every node receiving edges is determined as (in)active as output of a 

combination of edges and impacts a distribution of states at the whole 

network.  

4) Given a set of Boolean functions, we can determine all the states in of a 

network until it reaches a final stable state. 

5) A final stable state is called attractor, and may be either a single state or a 

series of consecutive and repetitive states which form a cycle, known as a 

cyclic attractor. 

6) Main property of an attractor is that its’ transition between states don’t affect 

distributions of nodes’ activation states. 

7) Every initial state starts a specific dynamics (trajectory), which can coincide 

with another trajectory. Finally, a set of all trajectories forms a network state 

space (combinatorial phase space). 
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For every initial state always exists at least one attractor. When a network 

reaches attractor states, its’ dynamics doesn’t stop, but its nodes distribution 

remains constant.  

For a BN model of size K and unique activation states T we can calculate 

total number of its possible states as 2𝑁𝑁, number of possible transitions between 

states as 22𝑁𝑁and number of possible activation rules as 2𝑇𝑇𝐾𝐾. A notion of how 

crucial K is may be illustrated with a following table:  

N K T Number of 

states 

Number of 

transitions 

Number of 

activation rules 

5 1 2 32 4294967296 2 

5 2 2 32 4294967296 16 

5 3 2 32 4294967296 256 

5 4 2 32 4294967296 65536 

… … … … … … 

N K T 2𝑁𝑁 22𝑁𝑁 2𝑇𝑇𝐾𝐾 

Table 1 –number of activation rules depending on K 

It may be seen that with the increase of K grows the computational resource 

to reach the stable state of the system. Kauffman demonstrated that the system 

becomes more chaotic. Note that in this paper we assume that T=2 unless other 

value of T is specified. 

1.3 NK FL model. Fitness function. Landscape ruggedness 

Evolutionary biology is rich for constructs. One of such constructs is called a 

fitness landscape. Proposed by S. Wright in 1932, it was created with an aim of 

exploring success rates of a particular gene or genotype through time. It is 
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heavily based on a concept of fitness function, a class of functions used as a 

metric of a gene’s similarity to a set goal (or to gene’s replication rate). From a 

biological point of view, the fitness landscape may be formed by the set of all 

necessary genotypes, some information about similarity between them and their 

specific fitness values. Main purpose of fitness landscapes in biology is 

evaluating proposed sets of previously fitted best parameters for a certain 

genetic problem. 

Abstractly, given a certain alphabet P, a set of all possible strings of length 

N we can form a combinatorial phase space, where each element defines its 

own value, called fitness. Every component of a string N depends in average on 

K previous components. With a defined distance metric between strings, the 

resulting structure is called a landscape (or fitness landscape) and may be 

applied to a wide range of tasks via imitating mechanisms of evolutionary 

biology. Main principles of NK-FL model: 

1) There are N components describing some characteristics. An average 

amount of connections between components is determined by K 

2) Fitness value of a characteristic is calculated as a mean of corresponding 

fitness elements. 

Fitness landscapes consist of local peaks – points with paths leading to lower 

fitness, and valleys – points, leading fitness values upwards.  

Fitness landscape with low number of peaks and valleys is called smooth, 

and the one with high amount of them is called rugged.  

1.4 Model representation 

To give an intuition of the concepts represented above we’ll finish this 

chapter by a review of different methods of representing an NK model and 
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providing some small examples of both NK-BN and NK-FL. There are several 

ways of representing and NK model.  

Firstly, the NK-model may be represented as an interaction matrix 𝐼𝐼 of size 

𝑁𝑁𝑁𝑁𝑁𝑁, where �
𝐼𝐼[𝑖𝑖, 𝑗𝑗] = 1 if I[i] 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝐼𝐼[𝑗𝑗]

𝐼𝐼[𝑖𝑖, 𝑗𝑗] = 0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

Example:𝑁𝑁 = 4,𝐾𝐾 = 2; 𝐼𝐼 = �

0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0

� 

Secondly, the NK-model may be represented as a directed graph, where each 

of N elements is represented as vertex, and an edge shows whether node X 

depends on node Y. 

Alternatively, the NK-model may be represented as a hypercube, where each 

node equals the value of a fitness function from K arguments. An actor will 

determine whether to stay at a current peak (if fitness value of a current node is 

higher than of its neighbors), or to choose between K options. The main 

problem of that approach is its dependency on an initial state, with a high risk 

of getting stuck in a local optimum. An example below will be given for N=3, 

Figure 2 – a model with N=4, K=2 
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however, for N>3 hypercube should be seen as a graph with N neighbors for 

each node. 

Example: Looking for an attractor 

For the NK-BN (N=3, K=2). and Boolean functions AND, OR, XOR, we 

will generate all possible initial states and determine steps to find a single (or 

cyclic) attractor. Keep in mind for small values of K the estimate of length of 

trajectory (√𝑁𝑁) [6, p.4] 

Initial state AND OR XOR 

{transitions}; number of steps to reach attractor 

000 {000 → 𝟎𝟎𝟎𝟎𝟎𝟎};0 {000 → 𝟎𝟎𝟎𝟎𝟎𝟎};0 {000 → 𝟎𝟎𝟎𝟎𝟎𝟎};0 
001 {001 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {001 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {001 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 
010 {010 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {010 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {010 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 
011 {011 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {011 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {011 → 𝟎𝟎𝟎𝟎𝟎𝟎};0 
100 {100 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {100 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {100 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 
101 {101 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {101 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {101 → 𝟏𝟏𝟏𝟏𝟏𝟏};0 
110 {110 → 𝟎𝟎𝟎𝟎𝟎𝟎};1 {110 → 𝟏𝟏𝟏𝟏𝟏𝟏};1 {110 → 𝟏𝟏𝟏𝟏𝟏𝟏};0 
111 {111 → 𝟏𝟏𝟏𝟏𝟏𝟏}; 0 {111 → 𝟏𝟏𝟏𝟏𝟏𝟏}; 0 {111 → 𝟎𝟎𝟎𝟎𝟎𝟎}; 1 

Table 2 –steps to reach an attractor state (cycle), N=3; attractors are in bold 

As may be noticed, all the initial states reached an attractor in no more than 

one step. Specifically, among 24 unique tuples (initial state, boolean function) 8 

tuples had the initial state and the attractor state being the same (among them 

Figure 3 – hypercube for a model with N=4, K=2 
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three “000” and two “111”), and distribution of boolean functions is the 

following: “{AND:2, OR:2, XOR:4}”. The aforementioned trajectories of 

length 0 are called garden-of-Eden states. 

Let’s have a look at a similar experiment with N=4: 

Initial 
state 

AND OR XOR 

{transitions}; number of steps to reach attractor 

0000 {0000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 {0000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 {0000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 
0001 {0001 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0001 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {0001 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 →

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 1011};3 
0010 {0010 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0010 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {0010 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 1101};3 
0011 {0011 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {0011 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {0011 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 0110};3 
0100 {0100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 
0101 {0101 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0101 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {0101 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 →

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 1011};3 
0110 {0110 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {0110 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

0110};2 
0111 {0111 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏}; 1 {0111 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏}; 1 {0111 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

→ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 0110}; 3 
1000 {1000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 {1000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 {1000 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};0 
1001 {1001 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1001 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {1001 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 →

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 1011};1 
1010 {1010 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1010 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {1010 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 1101};3 
1011 {1011 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {1011 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

1011};2 
1100 {1100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1100 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 
1101 {1101 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1101 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 →

1101};2 
1110 {1110 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎};1 {1110 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏};1 {1110 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 1101};3 
1111 {1111 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏}; 0 {1111 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏}; 0 {𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 → 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 →

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 → 0110};3 
Table 3 –reaching an attractor state (cycle); N=4, (cyclic)attractors are in bold 
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Among 48 unique pairs of initial states and boolean functions the 

distribution of trajectory length 𝐿𝐿 is the following: “{0: 8, 1: 29, 2: 3, 3: 8}”, 

with all trajectories of 𝐿𝐿 > 2 being produced by XOR. the distribution of 

boolean functions is the following: “{AND: {0:3,1:13}, OR: {0:3,1:13}, XOR: 

{0:2,1:3,2:3,3:8}}”. Note that in actual modelling the tautologies (e.g. “000”) 

will be automatically removed, as they don’t hold any particular sense. 
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2. Tuning the NK Models. On the edge of chaos 

2.1. The ruggedness of a landscape based on K 

As it was mentioned earlier, value of K determines whether system is stable, 

chaotic or in some intermediate state. However, along a question of chaoticity 

may be raised a list of other questions, such as: 

1) What number of local optima exists in a landscape? What distributions are 

they described with? 

2) What are the uphill lengths of trajectories? How fast is decreasing the 

number of neighbors with higher fitness? 

3) What quantity of alternative optima are available from a given initial state? 

What is the chance of hopelessly getting stuck in a local peak? 

4) What portion of initial states can reach (local) optima? 

5) How can be defined a fitness difference between local and global optima? 

The extensive search made by Kauffman [2] shows that the in general these 

characteristics don’t rely on the nature of the fitness landscape, but rather only 

by influence of N and K. For a fitness landscape, increasing N gives an agent 

higher range of choices, reducing number of possible local optima to get stuck. 

Thus, increasing N makes a landscape smoother. 

As of tuning K, we should formally start with specifying the state with K=0. 

Elements of such network don’t interact in any way, thus, the system in general 

ceases to exist.  

Case with K=1 makes the system very sparse, and if takes relatively long 

trajectories to reach a few local optima. 
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The NK-model with K=N-1 generates an absolutely random fitness 

landscape. Number of local optima is very high (on average, 2
𝑁𝑁

𝑁𝑁+1
), with a mean 

length of trajectory close to ln (𝑁𝑁). 

Finally, state with increasing N and K=N is defined by some researches as 

“the complexity catastrophe”, and is associated with decline in mean fitness 

value of local optima. Fitness value of global optima, however, stays the same 

after reaching the mean of fitness space [1][2]. 

 

Figure 2 – a model with N=4, K=2 

Overall, it is shown that increasing K from 1 to N-1 raises the number of 

peaks and valleys, consequently increasing the ruggedness of a landscape. 
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2.2. Stability of NK-model 

In one of his earliest works [4], Kauffman was using randomly initialized 

networks to make an extensive search over a wide set of question. One 

particular question was to observe system’s stability to infrequent noise. For an 

experiment, he used wide variety of nets of different N (between 15 and 2000) 

and up to 16 Boolean networks. The conclusion was that adding the noise 

provokes shift in cycles with low probabilities in range between 0.01 and 0.05 

for K=2 and comparable with K=3. However, he was stopped from providing 

analysis on the highly-connected network of N~K by the expected length of 

cycle being close to 10150. Later research introduced a notion of critical value 

of K, the aforementioned “edge of chaos”. Given NK-FL model of Kauffman, 

we can define system as stable if 𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, unstable if 𝐾𝐾 > 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Otherwise, we cannot say anything about its stability. [8]. For a random NK-

BN, we can define its stability as follows:  

Given 𝑝𝑝𝑖𝑖 – a probability of transition to an active state, we define its 

sensitivity as 𝑞𝑞𝑖𝑖 = 2 1
1
𝑝𝑝𝑖𝑖

(1−𝑝𝑝𝑖𝑖)−1
, and define the network is stable if max�𝜆𝜆𝑄𝑄� < 1, 

unstable if max�𝜆𝜆𝑄𝑄� > 1, and on the edge otherwise. 𝜆𝜆𝑄𝑄are the eigenvalues of 

𝑄𝑄 = 𝑞𝑞𝑞𝑞. 𝐴𝐴 stands for an adjacency matrix of a system. 
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3. Practical research 

3.1. Analyzing the number of peaks based on tuning  

Let’s analyze number of local peaks and mean value of fitness discussed in 

previous chapters. We’ll use a system with 𝑁𝑁 = 8, and 𝐾𝐾 = {0,1,2,3,4,5,7,8}, to 

give an intuition about the controllable states (𝐾𝐾 ≤ 1), chaotic states (𝐾𝐾 ≥ 7). 

We will generate 1024 random interaction matrices and then calculate the 

distribution of peaks for the corresponding K. 

Figure 3 – NK with K=0 – “not a system”, only one global peak; K=1 ~ 2.7 peaks 
sparsely connected data 

 

 

Figure 4 – NK the higher K, the bigger mean number of peaks 
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Figure 5 – K increased by 1, mean value increased by 25% 

 

 

Figure 6 – with K close to N, mean value of peaks is ~ 28.4  

 

 

Figure 7 – mean number of local peaks through K  
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Mean value of peaks for N=K=8 is same as Kauffman’s estimate of 2
𝑁𝑁

𝑁𝑁+1
=

256
9

= 28.4 It is clearly visible that Kauffman’s estimate of number of local peaks 
is totally correct. Overall, model’s behavior clearly shows that there is a 
relationship between increasing K and number of local peaks. Hence, we can 
make an assumption that increasing of K increases ruggedness of a generated 
random Fitness Landscape.   

Finally, we can see that increasing K raises average fitness of global peak as 

well, which is one of many indications of importance of K in ruggedness of a 

fitness landscape. 

  

Figure 8 – average fitness of global peak number of local peaks through K  
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3.2. Analyzing the impact on system’s stability based on tuning K  

This final part of the paper covers a peculiar question of whether or not 

changing two or more activation states makes impact on system’s stability. 

We’ll demonstrate the results on models with two changed activation states for 

𝑁𝑁 = 6 and 𝐾𝐾 =  {1; 2; 5}. Firstly, we’ll uniformly generate an interaction 

matrix 𝐼𝐼 of size 𝑁𝑁𝑁𝑁𝑁𝑁. After that, we’ll diagonalize 𝐼𝐼 and generate 𝑁𝑁 = 6 fitness 

values in range (0; 1) from normal distribution and call it A, a sequence of N 

states. A fitness function will be defined for the element 𝑖𝑖 as follows: 

𝐹𝐹(𝑖𝑖,𝐾𝐾) =
∑ 𝐼𝐼[𝑖𝑖][𝑖𝑖 − 𝐾𝐾] ∗ 𝐴𝐴[𝑖𝑖]𝑁𝑁
𝑖𝑖=1

𝑁𝑁   
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Conclusion 

This paper covers the basic principles of NK-modelling and the intuition behind 

tuning different values of K. In particularly, it describes: 

 NK-Boolean network models, ways of their representation  

 Concept of fitness landscape and a corresponding NK-model 

 Regimes of NK-models with regard to K and transition between them  

 Stability of NK-models with regard to K and changes to activation states 

It was shown that ruggedness (smoothness) of the NK model, length of a 

trajectory, its stability and number of local peaks and its global fitness values 

are crucially determined by its external parameters N and K and the distribution 

of the generated landscape makes little to no impact on the aforementioned 

characteristics.  

However, studying a model in an extensive way remains extremely 

computationally heavy, as the “catastrophe of complexity” for systems with 

K~N cumbers understanding the nature of both NK-model in particular and 

complex systems in general.  
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