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1 INTRODUCTION 

The challenge of securing machine learning models against adversarial attacks 

is a critical area of research, particularly in the realm of computer vision. With the 

increasing usage of these models in various real-world scenarios, ensuring robustness 

to adversarial perturbations is paramount. Previous works have researched different the 

paradigms and mechanisms of adversarial robustness and resistance to adversarial 

attacks [1-3]. Researchers studied multiple variants and enhancements of adversarial 

attacks to create more elaborate and imperceivable perturbations [4-8] as well durable 

and robust adversarial defenses [9-11] to combat and successfully mitigate perturbed 

samples. A separate attention of research community was focused on establishing 

robustness-accuracy trade-off [12-13] and tending to overestimated robustness of 

numerous defenses due to the gradient obfuscating phenomenon [14]. 

Olivier and Raj in their recent work [15] propose to constrain the attack to only 

look in a subset of the set of admissible perturbations ∆. They try to answer the question 

of how large such subset must be to find an adversarial perturbation in it. They quantify 

the expected size of the subset: the larger the size, the fewer perturbations there are. 

They denote this metric adversarial sparsity - a devoted focus of our work. 

The purpose of this research is to investigate adversarial sparsity in computer 

vision models and introduce a more efficient method for adversarial sparsity 

estimation. To fulfil this objective, the following tasks have been undertaken: 

1. To implement and evaluate an n-Ary search algorithm as an improvement over 

the conventional binary search method used in adversarial sparsity estimation. 

2. To benchmark and compare the performance of the proposed n-Ary search 

algorithm against the traditional binary search algorithm. 

3. To explore the implications of adversarial sparsity on the robustness of machine 

learning models. 

The object of our study is adversarial sparsity, specifically L∞ sparsity, in 

machine learning models designed for computer vision tasks. The research primarily 
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employs the methodology of adversarial attack simulations and sparsity estimation, 

combined with a comparative analysis of different search algorithms. We utilize robust 

computer vision models, tested against a range of adversarial attacks, and evaluate their 

performance using the L∞ sparsity measure. We used RobustBench [16] repository of 

trained models for our experiments. 

The novelty of this research is in the introduction and evaluation of an improved 

n-Ary search algorithm for adversarial sparsity estimation. The algorithm shows 

improved computational efficiency while maintaining the accuracy of the sparsity 

estimates. Furthermore, we present novel findings on the effect of adversarial sparsity 

on the robustness of machine learning models. 

The practical significance of this research is twofold. First, it provides a more 

efficient method for adversarial sparsity estimation, which can benefit other 

researchers and practitioners in the field. Second, the insights on the relationship 

between adversarial sparsity and model robustness can potentially guide the 

development of more robust machine learning models, thus enhancing their 

performance in real-world scenarios subject to adversarial threats. 

This research work is divided into comprehensive sections, each detailing a 

significant aspect of adversarial robustness and sparsity in machine learning models 

used in computer vision.  

Section 2 is devoted to a thorough exploration of adversarial robustness in the 

context of machine learning. It delves into the concepts of Lipschitz continuity, r-

separability of datasets [3], and the robustness-accuracy trade-off [12-13]. 

Additionally, this section covers several mathematical preliminaries crucial to 

understanding the nuances of adversarial attacks and their implications for model 

robustness. 

Section 3 of this work focuses on adversarial attacks and defenses [4-8]. It 

elaborates on the mechanisms underlying these attacks, their objectives, and the 

defenses employed against them. Moreover, it introduces the metrics used to evaluate 
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the efficacy of these defenses, specifically natural accuracy, robust accuracy, and 

adversarial sparsity – the principal metric of our study. 

Section 4 describes the experiments conducted to explore adversarial sparsity. 

This chapter outlines the reimplementation of an existing adversarial sparsity code 

solution [34], leveraging RobustBench and timm models to validate the algorithm. It 

further details the choice of employing these techniques in Computer Vision tasks, 

specifically on the CIFAR-10 dataset with L∞ sparsity and an epsilon value of 8/255. 

Section 5 describes the results of this work. The conclusions are outlined in 

section 6. 

Through this structured approach, our research aims to provide a comprehensive 

exploration of adversarial sparsity and its implications for the robustness of machine 

learning models. We anticipate that our findings will contribute to the ongoing effort 

to enhance the security and performance of these models in adversarial environments. 
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2 PRELIMINARIES 

Understanding adversarial robustness, the ability of a machine learning model 

to resist adversarial attacks, is a crucial aspect of model security in the field of machine 

learning.  

2.1 Robustness and astuteness 

Let X ⊆ Rd be an instance space equipped with a robustness-measuring 

distance: X × X → R+. Let [C] = {1, 2, . . . , C} be the set of available labels with C ≥ 

2. For a function f : X → RC , let f(x)i denote the coordinate i. 

 

Let B(x, ε) denote a ball of radius ε > 0 around x in a metric space. B∞ denotes 

the L∞ ball. A classifier g is robust at x with radius ε > 0 if for all x' ∈ B(x, ε), holds 

g(x') = g(x). Additionally, g is astute at (x, y) if g(x') = y for all x' ∈ B(x, ε). The 

astuteness of g at radius ε > 0 under a distribution µ is 

Pr(x,y)∼µ [g(x') = y for all x' ∈ B(x, ε)]. 

Finding the most astute g defines the task of robust classification [36]. Natural 

accuracy describes a standard (without perturbations) accuracy. 

2.2 Local Lipschitzness 

Definition 1. Let (X , dist) be a metric space. A function f : X → RC is L-locally 

Lipschitz at radius r if for each i ∈ [C], we have |f(x)i−f(x')i | ≤ L·dist(x, x') for all x' 

with dist(x, x') ≤ r. 

 

Definition 2. Separated data distributions are formally defined as follows. Let X 

contain C disjoint classes X(1) , . . . , X(C) , where all points in X(i) have label i for i ∈ 

[C].  
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2.3 r-separability 

The r-separability of a dataset is a key concept in understanding adversarial 

robustness. It is a measure of how easily the data points from different classes can be 

separated by a margin of radius r in the input space. High r-separability means that data 

points from different classes can be distinctly identified, making it difficult for an 

adversary to cause misclassification through small perturbations.  

 

Definition 3. We say that a data distribution over ∪i∈[C]X
(i) is r-separated if dist(X(i), 

X(j)) ≥ 2r for all i ≠ j, where dist(X(i), X(j)) = minx∈X(i),x’∈X(j) dist(x, x’). 

 

 The separation between any two instances belonging to distinct classes is never 

less than 2r. In many real-life classification activities, classes are clearly divided. For 

instance, when the L∞ norm is used as the distance measure, images of differing classes 

(such as a boat, a house, a person, and so on) will exhibit r-separation. The value of r, 

greater than 0, depends on the specific characteristics of the image space. 

2.4 L-ball and Epsilon Parameter 

 

Figure 1. The classifier represented by the orange boundary exhibits low local 

Lipschitzness as it remains constant within the L∞ spheres surrounding the data points. 



9 

 

On the other hand, the classifier associated with the black curve, while possessing high 

accuracy on unaltered data, is susceptible to adversarial examples [3] 

3 ADVERSARIAL ROBUSTNESS 

Understanding adversarial attacks and defenses, as well as the effect of different 

model architectures on robustness, is essential in the realm of adversarial robustness. 

This section aims to provide an exhaustive background on the existing adversarial 

attacks, defenses, and the impact of various model structures on robustness. 

3.1 Adversarial Attacks 

Since the ground-breaking discovery in [37], a range of adversarial attacks have 

emerged. These can be broadly classified into two categories: white-box and black-box 

attacks. White-box attacks, as detailed in studies by Gu et al. [38], Carlini and Wagner 

[4], and Gowal et al. [39], are granted access to the model, allowing them to iteratively 

perturb the input to maximize the loss value. 

On the other hand, black-box attacks, where the attackers do not have access to 

gradient information, typically launch attacks by transferring adversarial examples as 

demonstrated by Tramèr et al. [40], or by extensive queries as shown in studies by 

Andriushchenko et al. [7], and Chen et al. [8]. 

3.1.1 White-Box & Black-Box Attacks 

White-box attacks assume complete access to the target model, including its 

architecture, parameters, and training data. These attacks often employ gradient-based 

methods to compute adversarial perturbations. Notable examples include the Fast 

Gradient Sign Method (FGSM) [1], the Basic Iterative Method (BIM) [17], and the 

Projected Gradient Descent (PGD) [2]. 

In contrast, black-box attacks [18] do not have direct access to the model's 

internals. They might only have access to the model's input-output pairs, and they 
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generate adversarial examples based on this limited information. Techniques such as 

substitute model training and query-based attacks are typically used in black-box 

settings. 

3.1.2 Targeted & Untargeted Attacks 

In a targeted adversarial attack, the attacker aims to manipulate the model into 

misclassifying an input as a specific incorrect class. Conversely, untargeted attacks aim 

to cause any misclassification, irrespective of the output class. 

3.1.5 Logit-Based & Hard-Label-Based Attacks 

Logit-based attacks, such as the Carlini & Wagner (C&W) attack [4], modify 

the inputs based on the model's logit outputs (the outputs before the final activation 

function). C&W finds the smallest perturbation that can change the model's prediction 

to a specific target class. 

Hard-label-based attacks, on the other hand, assume access only to the model's 

final predictions. The Boundary attack [19] is a notable example that starts with an 

adversarial example and gradually reduces the perturbation while keeping the example 

adversarial. 

3.2 Adversarial Defenses 

Adversarial defenses aim to improve the model's robustness against adversarial 

attacks. Various strategies exist, including adversarial training, regularization 

techniques, input transformation, weight perturbations, etc. 

3.2.1 Adversarial Training (AT) 

Adversarial Training is a widely used defense strategy that involves augmenting 

the training set with adversarial examples generated using a specific attack algorithm. 

During training, the model is exposed to both clean examples and adversarial examples 
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and is trained to minimize the loss on both types of examples. By incorporating 

adversarial examples into the training process, Adversarial Training helps to improve 

the model's robustness and its ability to generalize to unseen adversarial samples. It 

encourages the model to learn more robust and discriminative features that are resilient 

to adversarial perturbations. Adversarial Training has shown to be effective in 

enhancing the robustness of models against a wide range of adversarial attacks. 

3.2.2 Locally-Linear Regularization (LLR) 

Locally-Linear Regularization [20] is a defense technique used to improve the 

robustness of neural networks against adversarial attacks. It introduces a regularization 

term to the loss function during training, which encourages the model to have locally 

linear behavior around each training example. The motivation behind LLR is that 

adversarial examples often lie in regions of the input space where the model's behavior 

is nonlinear. By promoting locally linear behavior, LLR aims to make the model more 

robust to adversarial perturbations. 

 

Proposition. Consider a loss function l(x) that is once-differentiable, and a local 

neighbourhood defined by B(ε). Then ∀δ ∈ B(ε), |l(x + δ) − l(x)| ≤ |δT ∇xl(x)| + γ(ε, x).  

Adversarial loss tends to l(x), i.e., l(x + δ) → l(x). 

 

Following the analysis above, authors propose the following objective for adversarially 

robust training: 

L(D) = ED[l(x) + λγ(ε, x) + µ|δT
LLR∇xl(x)|],  

where the underlined part is the LLR, λ and µ are hyper-parameters to be optimized, 

and δLLR = argmaxδ∈B(ε) g(δ; x) (recall the definition of g(δ; x) from Eq (5), δ ∈ B(ε) is 

an adversarial perturbation, and g(δ; x) = |l(x + δ) − l(x) − δT ∇xl(x)| - an indicator of 

how linear the surface is. 
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3.2.3 Robust self-training (RST) 

Robust Self-Training [11] is a defense strategy that leverages the concept of self-

training to improve the robustness of a model. In self-training, the model is initially 

trained on the original training data and then used to generate pseudo-labeled data from 

unlabeled examples.  

RST extends this approach by incorporating adversarial examples into the self-

training process. It generates adversarial examples based on the current model's 

predictions on unlabeled data and uses these adversarial examples, along with their 

pseudo-labels, to further train the model. By iteratively refining the model using both 

clean and adversarial examples, RST aims to enhance the model's robustness. 

 

Robust Self-Training (RST) is a semi-supervised learning technique that aims to 

improve the performance of models on adversarial examples by leveraging unlabeled 

data. 

The procedure generally involves two main steps: 

I. Training a robust teacher model - This step involves training a model, referred 

to as the teacher, on labeled data (X, Y) using robust optimization techniques to 

resist adversarial examples. If F represents the function associated with the 

teacher model, this can be expressed mathematically as: 

minF max{||δ|| ≤ ε} L(F(X+δ), Y) 

L represents the loss function, δ denotes the adversarial perturbations, and ε is the 

allowable perturbation magnitude. 

II. Generating pseudolabels and training a student model - The robust teacher model 

is then used to predict labels (pseudolabels) for the unlabeled data U. A new 

model, referred to as the student, is trained on the union of the original labeled 

data and the newly created (U, pseudolabels) data: 

minG max{||δ|| ≤ ε} L(G(X+δ), Y) ∪ L(G(U+δ), pseudolabels) 
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Here, G represents the function associated with the student model. 

By iterating these two steps, RST can significantly improve the model's 

robustness against adversarial attacks while making effective use of unlabeled data. It 

is noteworthy that the selection of pseudolabels requires careful consideration to avoid 

reinforcing incorrect predictions. 

3.2.4 TRADES 

TRADES [13] is a defense method designed to strike a trade-off between natural 

accuracy and robust accuracy. It achieves this trade-off by minimizing a surrogate loss 

function that combines the cross-entropy loss on clean examples and the robust loss on 

adversarial examples.  

The robust loss is typically measured using the KL-divergence between the 

model's predictions on clean and adversarial examples. By jointly optimizing the 

surrogate loss, TRADES aims to improve the model's robust accuracy while 

maintaining a reasonable level of natural accuracy. It is known for its effectiveness in 

improving robustness against various adversarial attacks. 

3.2.5 Gradient Regularization 

Gradient Regularization (GR) [21] is a defense technique that introduces an 

additional regularization term to the loss function during training to enhance the 

model's robustness against adversarial attacks. It aims to minimize the sensitivity of 

the model's output to small perturbations in the input space by penalizing large 

gradients. The regularization term is usually formulated as the L2 norm or L1 norm of 

the gradients of the model's output with respect to the input. By discouraging large 

gradients, Gradient Regularization helps to mitigate the impact of adversarial 

perturbations and improve the model's robustness. 
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3.2.6 Input Transformation and Augmentation 

Input transformation and augmentation defenses [23, 24] preprocess the inputs 

or augment the training data to reduce the effect of adversarial perturbations. 

Techniques include Gaussian noise injection, image quilting, JPEG compression [26], 

and adversarial patch augmentation. 

3.2.7 Adversarial Weight Perturbation 

The Adversarial Weight Perturbation (AWP) [25] addresses the issue of non-flat 

weight loss landscapes in deep neural networks. The main idea behind AWP is to 

introduce worst-case weight perturbations into the model during training to improve 

both training robustness and the robust generalization gap. 

By introducing worst-case weight perturbations, AWP encourages the model to 

explore and learn more robust features that are less sensitive to small input 

perturbations. This results in improved training robustness, allowing the model to 

better withstand adversarial attacks.  

3.3 Model Architectures and Their Impact on Robustness 

Different model architectures have varying levels of inherent robustness against 

adversarial attacks. This section will discuss two influential types of models: 

Convolutional Neural Networks (CNNs) and Transformer models, and a novel class of 

generative models, diffusion models, and their effects on robustness. 

3.3.1 Convolutional Neural Networks (CNNs) 

CNNs [27] are primarily used in image recognition tasks and have been a 

popular target for adversarial attacks due to their widespread use. They exhibit varying 

degrees of robustness depending on their depth, width, and specific architectural 

choices. In general, models with larger capacity, such as deeper or wider CNNs, can 

achieve higher robustness when trained with proper regularization. 
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Table 1. Neural architecture dilation for adversarial robustness (NADAR) [41], with 

various backbones. 

 

Figure 2. Basic architecture of CNN [42]. 

3.3.2 Vision Transformers 

Vision Transformers (ViT) [28], depicted in figure 3,  are a class of models in 

machine learning that apply the transformer architecture, originally designed for 

natural language processing tasks, to computer vision tasks. 

The key innovation of Vision Transformers is their ability to model global 

dependencies within the image, which is something that traditional convolutional 

neural networks (CNNs) struggle with due to their local receptive fields. The 

performance of ViTs has been shown to be competitive with state-of-the-art CNNs on 

several benchmark datasets, which has generated significant interest in the research 

community. ViTs are actively researched in the community of adversarial robustness. 
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Figure 3. The high-level overview of Vision Transformer: Patch and Positional 

embeddings combined with linear projection (left); encoder part that incorporates 

multi-head attention (right) [28]. 

3.3.3 Diffusion Models 

 

Figure 4: The directed graphical model of denoising diffusion probabilistic model 

[29]. 

 

Diffusion models [29] (figure 4) are a new class of generative models that can 

simulate the data distribution by a process of noisy diffusion. These models have shown 

promise in enhancing model robustness as they can generate diverse and realistic 

samples, potentially improving the model's understanding of the data distribution [32]. 
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3.4 Adversarial Sparsity 

3.4.1 Prior definitions 

Throughout the following sections f designates a machine learning model, and L its 

loss function. ε is the radius of the attack, and ∆ is the set of admissible perturbations. 

Usually ∆ = 𝐵𝑘
𝑛 with 𝐵𝑘

𝑛 the n-dimensional hyperball in norm Lk: 

𝐵∞
𝑛 = [0,1]𝑛

 

𝐵𝑘
𝑛 = {𝑥 ∈  𝑅𝑛|𝑥1

2+. . . +𝑥𝑛
2 ≤ 1}, 

where xk is the kth coordinate of x.  

3.4.2 Adversarial set and adversarial accuracy 

Authors compute sparsity is a simplified manner by only considering adversarial 

examples that use all of their perturbation limit. For k < ∞ ∆ = 𝑆𝑘
𝑛 , using the 

hypersphere (॥x॥ = 1) rather than the hyperball (॥x॥ ≤ 1). For k = ∞, ∆ = {±1}n, i.e. 

only the finite set of vertices of the hypercube is considered. This is achieved without 

significantly limiting generality because potent attacks like PGD utilize their full 

perturbation limit (and the simpler FGSM attack is limited to do the same). Given a 

point x and a radius ε, we define the adversarial set as the set of successful admissible 

perturbations:  

𝐴𝑑𝑣(𝑓, 𝑥, 𝜀) ∶=  {𝛿 ∈  ∆ / (𝑥 + 𝜀 ∗ 𝛿)  ≠  𝑓(𝑥)}   

Adversarial perturbations are always unit vectors to be scaled by factor ε when applied. 

Adversarial accuracy over a point x is then defined as follows: 

𝐴𝐴(𝑓, 𝑥, 𝜀): = 1[𝐴𝑑𝑣(𝑓, 𝑥, 𝜀) = ∅] 

The points are sampled from probability distributions. U(X) designates the uniform 

distribution over measurable set X. 
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3.4.3 Sparsity 

 Adversarial sparsity is a metric that gauges the usual size required for a subset 

of ∆ to include an adversarial perturbation. More formally, we consider a series of 

expanding subsets of ∆: with m1 < m2, ∅ ⊆ ∆m1 ⊆ ∆m2 ⊆ ∆. We can define adversarial 

sparsity relative to ∆m as:  

𝐴𝑆(𝑓, 𝑥, 𝜀, ∆𝑚): = 𝑖𝑛𝑓{𝑚, ∆𝑚 ∩  𝐴𝑑𝑣(𝑓, 𝑥, 𝜀)  ≠  ∅}  

If a distribution D of such sequences is provided, we can define adversarial sparsity 

as the expected value of AS: 

𝐴𝑆𝑓𝑢𝑙𝑙(𝑓, 𝑥, 𝜀): = 𝐸(∆𝑚)~𝐷[𝐴𝑆(𝑓, 𝑥, 𝜀, ∆𝑚)]. 

In a broader sense, greater adversarial sparsity implies more robust models, 

under the condition that certain plausible constraints are applied to the distribution D. 

Specifically, the distribution should be isotropic, meaning it does not favor any 

specific direction. 

 We'll provide more specific definitions related to the threat model used in this 

study below. For L∞ perturbations, we sample both a vertex u ∈ U({±1}n) and a 

permutation of dimensions σ ∈ Sn. For m ∈ {1, ..., n} we define ∆m as the set of 

perturbations differing of u only over dimensions σ(1), ..., σ(m): 

∆𝑚∶= {𝛿 ∈  𝑆∞
𝑛 /∀𝑘 > 𝑚 𝛿𝜎(𝑘)  = 𝑢𝜎(𝑘)} 

In other words ∆m is the set of perturbations differing from u by at most m specific 

pixels σ(1), ..., σ(m). The permutation σ is required to enforce that all dimensions are 

equally probable under the distribution. 

3.4.4 Sparsity and number of perturbations 

If Adv(f, x, ε) represents "one half" of ∆ (e.g., all perturbations where the 

perturbation of the bottom left pixel is positive), then its sparsity will be zero for half 

the directions, but significantly larger for many others. This leads to an expected 

sparsity that doesn't accurately reflect the vastness of this adversarial set. 
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Consider a simplified scenario where the set of perturbations is finite: Adv(f, x, 

ε) equals {δ1, ..., δk}. If δk is presumed to be uniformly sampled over the permissible 

set, then there are no favored directions with high adversarial concentration, unlike the 

previous example. In such a case, a mathematical relationship between sparsity and k 

can be established. For L∞ sparsity, the expected value of AS(f, x, ε) when sampling δj 

is: 

𝐸[𝐴𝑆(𝑓, 𝑥, 𝜀)] = ∑

𝑛

𝑚=0

(1 − 2−𝑚)𝑘 

𝑛−𝑙𝑜𝑔2
𝑘

4
 ≤  𝐸[𝐴𝑆(𝑓, 𝑥, 𝜀)]  ≤  𝑛 −  𝑙𝑜𝑔2

𝑘  +
𝑒

𝑒−1
, 

Sparsity tends to vary like 𝑛 − 𝑙𝑜𝑔2
𝑘 . In the general case Adv(f, x, 𝜀) is infinite (even 

though AS(f, x, 𝜀) is finite in L∞) and we are interested in its volume relative to ∆, 

rather than its cardinal. Both situations can be linked if considering  

𝐴𝑆(𝑓, 𝑥, 𝜀) = ∪𝑘
𝑗=1 𝑆𝑐(δj, β) 

In other words, Adv(f, x, ε) constitutes the union of spherical caps with the same 

radius δ. The term "local adversarial radius" could be used to describe β, which is the 

extent to which a typical adversarial perturbation must be modified to return to the 

original input. Under this scenario, the volume of Adv(f, x, ε) equates to k * V(Sc(u, β)) 

(assuming a disjoint union), and the divergence of AS(f, x, ε) from the finite case would 

be at most β. This implies that sparsity is influenced by both k and β. Thus, comparing 

the sparsity of two models is similar to comparing the size of their adversarial sets, 

provided these sets have comparable local radii.  

3.4.5 Constrained PGD 

For L∞ attacks this is straightforward: given a vertex u, a perturbation σ and a 

number of dimensions m, we append after projection an additional step enforcing the 

constraints: 

∀𝑘 > 𝑚 𝛿𝜎(𝑘)  ←  𝑢𝜎(𝑘) 
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Such a constrained attack shall be denoted PGDm  in this work. 

3.4.6 Computing sparsity 

In order to estimate sparsity for L∞ attacks, we employ binary search to examine 

potential values of m, given a direction u and direction permutation σ, and execute the 

constrained attack at each step. We calculate the average over multiple sampled 

directions to estimate the full adversarial sparsity (ASfull), with 100 samples as 

suggested by the authors. 

Adversarial sparsity is only applicable when adversarial perturbations exist near 

an input x and is designed to quantify the degree of susceptibility in models lacking 

robustness. When assessing a model that exhibits robustness around x (where Adv(f, x, 

ε) is an empty set), we default it to a maximum value of dimensions n for L∞ attacks. 
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4 EXPERIMENTS 

4.1 Dataset and threat-model selection 

The dataset choice for the experiments was CIFAR-10 with L∞ distance and eps 

of 8/255. While it is the most relevant and consistent benchmark in adversarial 

robustness, it has also got various pretrained adversarial models for inference. 

Following up the previous work on the topic, we use RobustBench as a main 

framework for conducting experiments. All the experiments were conducted on a 

single RTX 3060 GPU. 

Data subsampling 

Adversarial sparsity takes a considerable amount of time to be computer, and in 

order to maximize the number of experiments in this work, the subset of 50 class-

balanced samples of CIFAR-10 dataset was selected. 

4.2 Experiments flow 

Initially, we focused more on investigating the newest state-of-the-art 

transformers, their ability to wrangle perturbed samples, and, of course, how 

adversarial sparsity changes in the models of this architecture. It was mentioned by 

Debenedetti et al [30] that the perturbations found for their XCiT transformer-based 

variation are more semantic than those of ResNet, suggesting that the robust XCiT’s 

perturbations are more aligned with human perception. The usage of XCiT in their light 

recipe is thus much stronger for a capable assailant. We planned to train multiple 

Vision Transformers from scratch, following the training procedure outlined in [30], 

but having measured the compute time for a single sufficient experiments with a full 

train dataset on our GPU, we decided that it would be aimless to concentrate our efforts 

on such approach. The transformer models’ size varies from 26M to 104M parameters, 

yielding 19-30h full training length depending on the model. We decided to go the 
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more traditional way and focused on inferring 3 different models – a completely 

adversarially untrained MobileViTv2 (1.12M) [31],  XCiT-M12 (46M) [30], and a 

state-of-the-art CIFAR-10 benchmark Wang2023Better_WRN_70-16 (267M) [32], 

diffusion-based WideResNet. MobileViTv2 is a lightweight untrained vision 

transformer, XCiT is a thoroughly trained cross-variance image transformer trained 

with strong and basic augmentation in an adversarial fashion, and WRN_70-16 is a 

diffusion probabilistic model with wide ResNet backbone trained with TRADES [13]. 
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4.3 Sparsity algorithms 

4.3.1 L2 sparsity 

 

Algorithm 1. Computation of L2 sparsity specified in [32]. 

 

The pseudocode for L2 sparsity involves K - a number of directions (defaulting 

to 100), namely the vectors in the input space along which the adversarial perturbations 

are created; N - a number search steps (defaulting to 10);  𝛼0, 𝛼1 - the min and max 

values of the range of arc angle to consider for creating the adversarial attack (exclusive 

to L2); ui - uniform directions on the L2 sphere; PGD - the constrained Projected 

Gradient Descend attack. 

To estimate sparsity for L2 (resp. L∞) attacks, given a direction u (resp. u, σ) we 

explore values of α (resp. m) with binary search, and at each step run the constrained 

attack. Adversarial sparsity is the expected value over uniformly sampled directions. 
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We adjust the search range (m0, m1) dynamically based on the success of the attack. If 

the attack is successful, we reduce the upper bound of the search range; if it is not 

successful, we increase the lower bound. 
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4.3.2 L∞ Sparsity re-implementation. 
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Algorithm 2. Our implementation of L∞ sparsity: the main differences being m0, m1 

parameters used instead of 𝛼0, 𝛼1; their boundary values are the minimum resp. 

maximum number of pixels to be perturbed in each direction, i.e. 0.5ε * (32x32x3) for 

m0, and 6ε * (32x32x3) for m1; the attack is now constrained under L∞ PGD, and the 

directions u are sampled with a permutation setting σ. 
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4.3.3 Proposed approach: L∞ sparsity with hybrid search with n-Ary and binary 

counterparts 

According to the authors of the work [32], while attacks over multiple directions 

can be computed in batches, binary search constitutes the major bottleneck of this 

algorithm. Some heuristics could help speeding up sparsity computation. They suggest 

using batched n-Ary search with fewer directions to find a first approximation of 

sparsity, then confirming/refining it with more directions. We tested the speed and 

approximation accuracy of traditional L∞ sparsity computation, and decided to modify 

the bottle-neck part of the algorithm to speed up the process while retaining the good 

approximation of sparsity.  
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Algorithm 3. The approach now involves two phases - n-Ary search phase that uses 

higher arity to quickly narrow down the range of parameters m; and the binary search 

phase which uses more directions for refined sparsity approximation. 
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We consider applying a hybrid approach, starting with a larger n-Ary search to 

quickly narrow down the potential range, and then switching to a binary search for 

fine-tuning. 

This new version of the function processes each data sample separately and 

then computes the average sparsity over all samples. The n-ary search phase uses 

fewer directions, which should speed up the computation, while the binary search 

phase uses more directions for more accurate results. This hybrid approach should 

offer a good balance between computational efficiency and result accuracy. 

4.4 Initial contribution 

The authors provide an implementation of adversarial sparsity computation 

(both L2 and L∞) in their GitHub repository [36]. However, the initial code design and 

lack of intuitiveness of reproducing the results or at least measuring sparsity in our 

custom pipeline urged us to restructure and re-implement the modules and the 

algorithm in a more concise and convenient-to-use way.  

This is the first, in our opinion, major contribution of our work – the redesigned 

pipeline that consists only of a singular 'linf_sparsity' method fully reflects the 

mechanisms described in [32] and implemented in [36], while also introducing a 

convenient wrapper for adversarially trained models’ inference, and an incorporation 

of a main evaluation metric for adversarial robustness, i.e. robust accuracy. The 

snippets of code are displayed in in the Appendix 1. 

 

 

 The results of the aforementioned experiments and notable observations are 

depicted in section 5. 
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5 RESULTS 

Two approaches for n-Ary configuration were tested: 5-ary with 5 steps (all-

round balanced), and 3-ary with 7 steps (quicker estimation and faster convergence at 

the cost of preciseness in sparsity approximation). The values for number of steps for 

n-Ary phase were chosen ad hoc, aiming to highlight the edges of possible 

configurations for this search phase, namely a comparison of robust binary search to 

an all-round consistent, but fast 5-ary search (half the number of steps), and the 

opposite extreme - 3-ary search, less arity but with more directions and more steps 

(predicted time efficiency).  

The more comprehensive and detailed investigation of different sets of values 

for both the arity and the number of steps is planned for future work. Table 2 depicts 

all 3 models tested under different search configurations. It is important to outline that 

the model with the best sparsity approximation is always going to be  a binary search-

based one.  

The first notable observation of our work is that application of hybrid n-Ary 

search is a classical accuracy-speed trade-off problem. Raising the arity and the number 

steps for the n-Ary stage yields a much faster approximation of sparsity, though it 

overestimates the sparsity, making the model seem more robust than it is in reality. The 

concept is similar to the one described in [33].  

5.1 The key takeaways of the experiments 

● Employing 3-ary search with 7 steps yields 30-34% computational time saving, 

while it also increases sparsity overestimation by 4-15%.  

● The 5-ary search with 5 steps saves 7-12% time, but also lacks such a steep 

sparsity overestimation increase – 0.3-4%. This is explained by the fact that such 

a configuration is a “golden middle”, it balances the trade-off quite well, and 

was therefore chosen in our experiments. 
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● It is interesting to note that the sparsity overestimation is more impactful for less 

trained models. MobileViTv2 suffers 15% overestimation, WRN-70-16 though 

- only 6%, and XCiT, the most robust transformer, only is impacted by 4% of 

such overestimation. 

● The sparsity ranges for each model correlate very well with the respective robust 

accuracy values - the higher the sparsity, the higher the set of minimum 

perturbed pixels is needed to fool the model. 

● WRN, being the largest model, does not suffer too much from its lighter 

transformers counterparts (MobileViTv2 & XCiT) as the computational 

intrinsics of self-attention mechanism in transformers require more resource and 

time to backpropagate through all the nodes and more time for the model to 

converge. 

 

Model 
Model size, 

mil params 

Search 

configuration 
Robust Acc., % Sparsity Time, it/s 

Time 

saved, % 

Sparsity 

deviation, % 

MobileViTv2 1.12 binary 0.12 62.4 13.1 - - 

MobileViTv2 1.12 3-ary, 7 steps 0.12 71.5 9.8 34 15 

MobileViTv2 1.12 5-ary, 5 steps 0.10 64.9 11.6 12 4 

WRN-70-16 267 binary 0.84 142.4 24.5  - 

WRN-70-16 267 3-ary, 7 steps 0.84 150.4 18.8 30 6 

WRN-70-16 267 5-ary, 5 steps 0.84 142.8 22.0 11 0.3 

XCiT-M 46 binary 0.56 115.2 21.1 - - 

XCiT-M 46 3-ary, 7 steps 0.56 119.7 16.1 31 4 

XCiT-M 46 5-ary, 5 steps 0.56 116.4 19.7 7 1 

 

Table 2. The comparison of binary- and n-Ary-based sparsity computation 

configurations between MobileViTv2, WRN-70-16, and XCiT-M on 50 CIFAR-10 

samples. Time consumption decrease is best with 3-ary, 7 steps and the overestimation 

of sparsity gained - with 5-ary, 5 steps (bold); the baseline, most accurate 
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approximation of sparsity is considered to be achieved with binary configuration 

(underlined). 
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5.2 Impact of number of directions 

The further study of time saving impact has been incorporated. The analysis 

compared binary and n-Ary search setups on single sample under different 

n_cones_sparsity configurations (from 10 to 100 with step 10).  

The average time gain for this experiment comprised 6.84% (figure 5). 

Interestingly, the highest efficiency increase is reached at either small or very large 

numbers of directions. This can potentially be explained that arity-based time decrease 

is the most impactful during early stages of the directions approximation, or much 

farther into the numbers. 

 

 

Figure 5. The demonstration of relative time gain for each setup with 10, 20, …, 100 

dimensions and a the mean relative time gain across all the experiments. 

 

 As number of directions n increases, the change in approximation of sparsity 

over time, i.e. increased number of directions, decreases. Further increasing the 

direction count will not yield more exact approximation of sparsity while only 

increasing the computational cost of the algorithm. 
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5.3 Sparsity estimation time and directions count analysis 

In this work, we also conducted analyses of the dependence of sparsity and 

computational time against the number of directions. 

 

Figure 6. The plot of sparsity estimation against the number of directions. We can 

observe a sparsity overestimation pattern similar to hyperbolic decay. Choosing the 

right number of directions, perhaps similar to “elbow” method, may yield an optimally 

selected trade-off between speed and estimation accuracy. 

  

 Finding the optimal number of directions for sparsity approximation, i.e. with 

best speed and approximation consistency, is without a doubt an important and separate 

point for investigation. We assume there is an optimal stopping point where the cost of 

another iteration does not supersede the gain from the target loss decrease (in our case, 

sparsity overestimation), similar to the know mechanism of early stopping [35]. For 

instance, experiments on finding the optimal value of absolute or relative decrease in 

margin (e.g. delta of sparsity change) can be conducted in order to pinpoint a well-

balanced setup of parameters for a more convenient and easier testing of new 
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hypotheses concerning adversarial sparsity. It should be noted, however, that such a 

preliminary parameter setup requires individual tuning for each dataset, as per different 

levels of r-separability, and for each model due to their innately high intra-class 

variation.  

 

Figure 7. The plot of computational time spent against the number of directions. It is, 

expectedly, linear, therefore the selection of directions revolves around the number of 

samples in O(N) time complexity. 
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6 CONCLUSIONS 

The study of adversarial robustness in machine learning models, particularly in 

the field of computer vision, has been the crux of our research. This important aspect 

of model development has far-reaching implications for a wide array of real-world 

applications, from autonomous vehicles to medical imaging, and has the potential to 

significantly influence the resilience of models in the face of adversarial attacks. 

The research presented in this work revolved around adversarial sparsity 

estimation in computer vision models, aiming to further illuminate the underlying 

mechanisms contributing to their robustness or vulnerability. To this end, we 

introduced an improved n-Ary search variation of the traditional binary search 

algorithm. This novel modification successfully mitigated the inefficiencies associated 

with high-dimensional inputs, and demonstrated a more efficient computation process, 

while ensuring comparable sparsity estimates. 

In our research, we explored two different approaches for the n-Ary 

configuration: a 5-ary search with 5 steps and a ternary search with 7 steps. One 

important observation is that the model with the best sparsity approximation always 

relies on a binary search-based approach. 

Our experiments revealed that the use of a hybrid n-Ary search introduces a 

classic accuracy-speed trade-off. Increasing the arity and the number of steps in the n-

Ary stage leads to faster sparsity approximation but at the cost of overestimating the 

sparsity. This means that the model may appear more robust than it is.  

The key takeaways from our work are as follows. Employing a ternary search 

with 7 steps resulted in computational time savings of 30-34%, accompanied by a 

sparsity overestimation increase of 4-15%. On the other hand, the 5-ary search with 5 

steps offered time savings of 7-12% with a smaller increase in sparsity overestimation 

of 0.3-4%. This configuration strikes a balance between time savings and sparsity 

approximation, making it an optimal choice for our experiments. 
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We also observed that the impact of sparsity overestimation is more pronounced 

in less trained models. MobileViTv2 exhibited a 15% overestimation, while WRN-70-

16 showed only a 6% overestimation. XCiT, the most robust transformer, experienced 

a 4% overestimation. One of the key findings was an approximate 6.84% increase in 

inference time, a significant reduction compared to the binary search procedure, 

showcasing the efficacy and efficiency of the n-Ary search algorithm.  

Furthermore, we found a strong correlation between sparsity ranges and robust 

accuracy values for each model. A higher sparsity indicates the need for a larger set of 

admissible perturbations to fool the model. 

Lastly, we observed that the larger WRN model was less affected by its lighter 

transformer counterparts (MobileViTv2 and XCiT) due to the computational demands 

of the self-attention mechanism in transformers. The self-attention mechanism requires 

more resources and time for backpropagation and convergence. 

These findings shed light on the trade-offs involved in the hybrid n-Ary search 

approach and its impact on sparsity approximation and computational efficiency. The 

insights gained from this research can contribute to the development of more efficient 

and accurate algorithms for adversarial sparsity calculation, ultimately improving the 

understanding and robustness of models against adversarial attacks. 
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APPENDIX 1 

 

Figure 8. Data loading, util function for direction sampling, and initialization of 

directions, pixel masks, and m0, m1 parameters. The higher the arity, the fewer 

directions are to be explored during n-Ary stage of the algorithm (1/n dependency). 

 

 

Figure 9. The main part of the algorithm: a hybrid search which first performs an n-

Ary search for a predefined number of steps in order approximate sparsity efficiently, 

and a binary counterpart which solidifies the expected outputs by approving the 

perturbations and directions and strengthening sparsity. 
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Figure 10. The technical part of the algorithm that loops over each direction, creates a 

unique perturbation by taking into account ε-boundary and PGD-constrained attack. 

The model then infers on the perturbed image; failing to correctly classify the class 

results in robust accuracy being reduced; once all the directions have been covered, a 

mask with successful attacks is created in order to update each direction in upper and 

lower boundaries (m0, m1) with the appropriate values from the n-Ary search list. 

 

 

Figure 11. The algorithm’s step converges with a simple robust accuracy estimate and 

a mean of all the accumulated samples’ sparsity during inference for the expected value 

of L∞ sparsity. 
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