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Introduction 

The course work is devoted to A multicriteria competitive Markov decision 

process; proposed software implementation of their solution.  

The work consists of an introduction, the main part that consists of six 

sections, a conclusion, a list of used sources and an appendix. 

Relevance. The modern-day world makes people face more and more 

complicated problems which require a solution and the price of mistake for them 

can be really high. Besides that, nowadays there is so much data that making a 

decision based on that intuitively and without analysis and math is not an option 

anymore. The multicriteria Markov decision process is much more similar to real-

life than some other common games and decision models – choosing one of the 

available actions without knowing action chosen by the opponent as well as having 

vector reward rather than single reward are both much more common in a real 

application. However, solving such problems as they are is complicated. Therefore 

in this paper considered algorithm to transform them into linear programming 

problems, which have more well-known solution algorithms. 

The object of the study is a multicriteria Markov decision process. 

The subject of the study is an algorithm for solving the multicriteria 

competitive β-discounted Markov decision model. 

Purpose to study multicriteria competitive Markov decision games and 

algorithm to solve them. 

Theoretical research methods were used in the study; information from 

various scientific sources is analyzed, compared and summarized.  



1. Markov decision process 

Markov decision processes (MDPs) are discrete-time stochastic state-

transition sequential models with outcome partially random partially under the 

control of the decision-maker. In MDP state changes randomly reacting to the 

actions of decision-maker (also known as an actor). Each state defines immediate 

reward obtained by actor and probabilities of other transitions from state to state 

[7]. A Markov decision process is a Markov chain with a choice that comes from 

actions, and motivation which resulted from rewards [8]. Therefore, MDP shares 

Markov property: The future is independent of the past given the present. 

𝑃[𝑆𝑡+1|𝑆𝑡] =  𝑃[𝑆𝑡+1|𝑆1 … 𝑆𝑡] 

Having the current state, previous states are irrelevant. 

A Markov decision process problem consists of the state space, the set of 

actions,  the cost or immediate reward function, and the set of transition 

probabilities. The objective is to minimize expected accumulated costs or 

maximize the expected accumulated rewards. A solution to MDP, also called 

Policy [3], is a correspondence of each state to an action to be taken in this state. 

Markov decision processes have a finite number of states and actions that 

can be made by each actor in each state. Usually, it’s assumed that perfect 

knowledge of what state the actor is in is available. [3] Perfect knowledge is 

unrequired in the case of partially observable Markov decision process problems.  

In this paper, we generalize Markov decision processes to stochastic games 

and consider only the case with two decision-makers. 

2. Multiple noncomparable criteria vector  

In this paper, we consider games with multiple noncomparable criteria 

vector. Such games gain more interest nowadays as they better represent real-life 

situations [2][12]. Competitive games that can be modelled as a scalar zero-sum 

game can also be represented as a multicriteria zero-sum game that concurrently 

compares different scenarios. In such games not only a conflict of interest between 



players appear but also for each individual. [9] Multiple noncomparable criteria 

vector would for example represent resources and/or gain and/or losses of the 

company on the competitive market: money, human resources, trust level among 

customers, market share etc. Therefore these resources cannot be compared and 

would be represented as a vector. 

As we are working with vector standard solution approaches of scalar games 

cannot be used (optimization of one element of the vector could lead to a worse 

scenario for other elements). A number of new approaches were proposed, one of 

the popular ones including the concept of Pareto-optimality, to be precise of 

Pareto-optimal security strategy (POSS) [4].  Multi-objective optimization also 

known as Pareto optimization. As the solution of games considered in this paper, 

we consider a set of all POSS. 

𝑥∗ 𝑋 is called Pareto optimal solution if and only if there are no other x 𝑋 

such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥∗) for all 𝑖 = 1, … , 𝑘, and 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗) for at least one 𝑖. 

Pareto optimal solution also called a non-inferior solution or nondominated. There 

is also exist the concept of Weak Pareto optimal solution. 𝑥∗ 𝑋 is called Weak 

Pareto optimal solution if and only if there does not exist other x 𝑋 such that 

𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗) for at least one 𝑖. [10]  

Pareto frontier, also known as Pareto front or Pareto set, is the set of 

allocations that are all Pareto efficient. Or as defined in [1] “The non-dominated 

set of the entire feasible search space S is the globally Pareto-optimal set”. 

There are two common methods to calculate the Pareto front [6]:  

1. presenting the multi-objective optimization problem as a series of 

single-objective optimization problems; 

2. apply evolutionary methods which evolve solution from initial guess 

to the Pareto set.  

 Pareto-optimal security strategies (POSS) were introduced by Ghose and 

Prasad [5] as a solution concept in multicriteria zero-sum matrix games. 



3. Basic notation 

We observe the process in discrete time points. Process observed at a certain 

point of time called state and discrete moments of time stages [9]. 𝑆𝑡 – is a random 

variable representing the state observed at the point of time t (t = 1, 2, 3, 4, …), 

that takes values from set 𝑆 = {1, … , 𝑁}. Set S is finite, and s – represents the value 

from set S. 

We refer to two decision-makers as to player 1 and player 2. For each 

player, there are a set of actions they can choose from at each state and a vector of 

rewards for each of the players that depend on the state and action are chosen by 

each player: player 1 choosing action 𝑎1 𝐴1(𝑠) and player 2 choosing action 

𝑎2 𝐴2(𝑠) will result in player 1 receiving a reward vector 

(𝑟1
1(𝑠, 𝑎1, 𝑎2), … , 𝑟𝑘

1(𝑠, 𝑎1, 𝑎2)) and player 2 receiving reward vector 

(𝑟1
2(𝑠, 𝑎1, 𝑎2), … , 𝑟𝑘

2(𝑠, 𝑎1, 𝑎2)) [9]. Both players receive k different rewards (k – 

length of reward vector).  

Stationary transition probabilities are the probability of the game moving to 

a certain state given the current state and action chosen. It is being assumed that it 

is a single controller case, meaning that stationary transition probabilities depend 

only on the action of one player [9]. 

𝑃(𝑠′|𝑠, 𝑎1) =  𝑃(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡
1 = 𝑎1) 

4. Strategy and rewards 

Each player has a set of stationary strategies denoted by 𝐹𝑆 for player 1 and 

𝐺𝑆 for player 2. Then we have 𝑓 = (𝑓(1), … , 𝑓(𝑁))𝐹𝑆, where each 𝑓(𝑠) is a 

probability vector which dimension is equal to a number of actions that can be 

made by player 1 in state s (|𝐴1(𝑠)|) and marked 𝑚1(𝑠). Obviously, the sum of all 

elements of 𝑓(𝑠) equals 1.  

𝑓(𝑠): = (𝑓(𝑠, 1), … , 𝑓(𝑠, 𝑚1(𝑠))) 

𝑓(𝑠, 𝑎1) is a probability of player 1 choosing in state 𝑠 action 𝑎1 [9]. 



Similarly, we will have, 𝑔 = (𝑔(1), … , 𝑔(𝑁))𝐺𝑆, g(𝑠): =

(𝑔(𝑠, 1), … , 𝑔(𝑠, 𝑚2(𝑠)))
𝑇
 (T meaning transposed), with a sum of all elements of 

𝑔(𝑠) equals 1. 

𝑔(𝑠, 𝑎2) is a probability of player 2 choosing in state 𝑠 action 𝑎2. 

A strategy called pure or deterministic if the probability of player choosing 

one particular action in this state equal to 1 (𝑓(𝑠, 𝑎1)  {0,1} for all 𝑎1𝐴1(𝑠),

𝑠𝑆 (𝑔(𝑠, 𝑎2)  {0,1} for all 𝑎2𝐴2(𝑠), 𝑠𝑆)). This means that deterministic 

(pure) control always selects one action (𝑎𝑠
𝑗
, j=1,2) for state 𝑠. A probability 

transition matrix is a matrix of probabilities to move to a certain state given the 

current state and strategy. 𝑃(𝑠′|𝑠, 𝑓) = ∑ 𝑓(𝑠, 𝑎1𝑚1(𝑠)
𝑎1=1 )𝑝(𝑠′|𝑠, 𝑎1) ≔ 𝑓(𝑠)𝑃(𝑠′|𝑠) 

(sum of probabilities to choose action given state multiplied by probability to move 

to a certain state, given current state and action) [9]. 

Reward vector at time t player 1 is denoted as (𝑅1,𝑡
1 , … , 𝑅𝑘,𝑡

1 ) and for player 2 

as (𝑅1,𝑡
2 , … , 𝑅𝑘,𝑡

2 ). We consider two denoting for immediate expected reward (IER): 

• IER for the strategy pair (𝑓, 𝑔)𝐹𝑆 × 𝐺𝑆 at state 𝑠 denoted as 

𝑟1
1(𝑠, 𝑓, 𝑔), … , 𝑟𝑘

1(𝑠, 𝑓, 𝑔)) for player 1 and (𝑟1
2(𝑠, 𝑓, 𝑔), … , 𝑟𝑘

2(𝑠, 𝑓, 𝑔)) for player 

2. 

• And we already considered IER vectors at state s with 𝑎1 and 𝑎2 

action is chosen by players  - (𝑟1
1(𝑠, 𝑎1, 𝑎2), … , 𝑟𝑘

1(𝑠, 𝑎1, 𝑎2)) and 

(𝑟1
2(𝑠, 𝑎1, 𝑎2), … , 𝑟𝑘

2(𝑠, 𝑎1, 𝑎2)). [9] 

As the games we consider zero-sum games, it means that what one player 

gains another player loses and therefore we denotes 𝑟1(𝑠, 𝑎1, 𝑎2) ≔ 𝑟1
1(𝑠, 𝑎1, 𝑎2) =

−𝑟1
2(𝑠, 𝑎1, 𝑎2).  

Considering expected rewards in the state s for one of the strategies we get  

𝑟𝑙(𝑠, 𝑓, 𝑎2) = ∑ 𝑓(𝑠, 𝑎1)𝑟𝑙(𝑠, 𝑎1, 𝑎2)𝑚1(𝑠)
𝑎1=1 ≔ 𝑓(𝑠)𝑅𝑙(𝑠, 𝑎2),      (1) 



and 

𝑟𝑙(𝑠, 𝑎1, 𝑔) = ∑ 𝑟𝑙(𝑠, 𝑎1, 𝑎2)𝑔(𝑠, 𝑎2)
𝑚2(𝑠)
𝑎2=1 ≔ 𝑅𝑙(𝑠, 𝑎1)𝑔(𝑠).      (2) 

Therefore expected reward in state s for a pair of strategies (𝑓, 𝑔) would be  

𝑟𝑙(𝑠, 𝑓, 𝑔) = ∑ ∑ 𝑓(𝑠, 𝑎1)𝑟𝑙(𝑠, 𝑎1, 𝑎2)𝑔(𝑠, 𝑎2)

𝑚2(𝑠)

𝑎2=1

𝑚1(𝑠)

𝑎1=1

≔ 𝑓(𝑠)𝑅𝑙(𝑠)𝑔(𝑠) 

Vector of l-th reward for all states is 𝑟𝑙(𝑓, 𝑔) = (𝑟𝑙(1, 𝑓, 𝑔), … , 𝑟𝑙(𝑁, 𝑓, 𝑔))
𝑇
.  

5. Multicriteria β-discounted Markov decision model 

As rewards are received at different point of times we need to account for 

discounting of values of such rewards. The model of such game described in this 

chapter was presented in ‘A multicriteria competitive Markov decision process’ 

article [9].  

Let the sequence of random reward vectors for the period from stage till next 

stage [𝑡, 𝑡 + 1) be denoted as {𝑅𝑡}𝑡=0
∞ = {(𝑅1,𝑡 , … , 𝑅𝑘,𝑡)}𝑡=0

∞ . The probability of 

distribution of 𝑅𝑡 for each 𝑡 is specified when state and strategies are known.  

We can define expected reward in criterion 𝑙, at stage 𝑡, state 𝑠, applying 

strategies 𝑓, 𝑔. 

𝐸𝑠𝑓𝑔(𝑅𝑙,𝑡) = ∑ 𝑝𝑡(𝑠′|𝑠, 𝑓)𝑟𝑙(𝑠′, 𝑓, 𝑔) ≔ 𝑃𝑡(𝑠, 𝑓)𝑟𝑙(𝑓, 𝑔)

𝑁

𝑠′=1

 

𝑝𝑡(𝑠′|𝑠, 𝑓)𝑟𝑙 – is transition probability from state 𝒔 into state 𝒔′ on step 𝒕 in 

the Markov chain. 

The overall discounted reward value for 𝑙 = 1, … , 𝑘, for a strategy pair 

(𝑓, 𝑔)𝐹𝑆 × 𝐺𝑆 with initial state 𝑠 is 

𝑣𝛽,𝑙(𝑠, 𝑓, 𝑔) ≔ ∑ 𝛽𝑡

∞

𝑡=0

𝐸𝑠𝑓𝑔(𝑅𝑙,𝑡),     ∀𝑙 = 1, … , 𝑘, ∀𝑠𝑆, 𝛽[0,1) 



which is the element of the following vector. 

𝑣𝛽,𝑙(𝑓, 𝑔) = (𝑣𝛽,𝑙(1, 𝑓, 𝑔), … , 𝑣𝛽,𝑙(𝑁, 𝑓, 𝑔))
𝑇
 

𝛽 – is called the discount factor. 

Having defined discount rewards we can now redefine MDP. The 

multicriteria competitive 𝜷-discounted Markov decision process for initial state 

𝑠 and strategy pair (𝑓, 𝑔)𝐹𝑆 × 𝐺𝑆 is the model using vector 

(𝑣𝛽,1(𝑓, 𝑔), … , 𝑣𝛽,𝑘(𝑓, 𝑔)) as a criterion and denoted as Г𝛽 or 𝐺𝑎𝑚𝑒 Г𝛽 [9]. 

Using notation just introduced the ideal solution would be strategy pair 

(𝑓∗, 𝑔∗) such that 𝑣𝛽,𝑙(𝑓, 𝑔∗) ≤ 𝑣𝛽,𝑙(𝑓∗, 𝑔∗) ≤ 𝑣𝛽,𝑙(𝑓∗, 𝑔) for any 𝑙 = 1, . . 𝑘 and 

any strategies 𝑓 and 𝑔 which are not equal 𝑓∗ and 𝑔∗ respectively. Such an ideal 

pair of course may not exists as 𝑣𝛽,𝑙 is a vector. 

To define another idea of the solution concept of security levels has to be 

introduced.  

Every strategy 𝑓𝐹𝑆 defines the lower security level 𝒗𝜷,𝒍(𝒔, 𝒇) for all states 

as the payoff with respect to every criterion 𝑣𝛽,𝑙(𝑠, 𝑓, 𝑔), 𝑙 = 1, … 𝑘, when player 1 

bets to maximize criterion [9]. Security level 𝑣𝛽,𝑙(𝑠, 𝑓)  represents the minimal 

reward of player 1 who choose strategy 𝑓. 

𝑣𝛽,𝑙(𝑠, 𝑓) = min
𝑔𝐺𝑆

𝑣𝛽,𝑙(𝑠, 𝑓, 𝑔) 

Every strategy 𝑔𝐺𝑆 defines the upper-security level 𝒗𝜷,𝒍(𝒔, 𝒈) for all 

states as the payoff with respect to every criterion 𝑣𝛽,𝑙(𝑠, 𝑓, 𝑔), 𝑙 = 1, … 𝑘, when 

player 2 bets to minimize criterion. Security level 𝑣𝛽,𝑙(𝑠, 𝑔) represents a maximum 

loss of player 2 who choose strategy 𝑔. 

𝑣𝛽,𝑙(𝑠, 𝑔) = max
𝑓𝐹𝑆

𝑣𝛽,𝑙(𝑠, 𝑓, 𝑔) 

As the security level is now defined, we can use it to search for solutions: 

maximize minimum reward or minimize maximum loss. 



𝑣𝛽,𝑙(𝑠, 𝑓∗) = max
𝑓𝐹𝑆

𝑣𝛽,𝑙(𝑠, 𝑓) 

𝑣𝛽,𝑙(𝑠, 𝑔∗) = min
𝑔𝐺𝑆

𝑣𝛽,𝑙(𝑠, 𝑔) 

Strategies 𝑓∗ and 𝑔∗ here are Pareto-optimal solutions as we optimize 

vector. Hence 

𝑣𝛽(𝑓) = (𝑣𝛽,1(𝑓), … , 𝑣𝛽,𝑘(𝑓)) 

𝑣𝛽(𝑔) = (𝑣𝛽,1(𝑔), … , 𝑣𝛽,𝑘(𝑔)), 

 

where 

𝑣𝛽,𝑙(𝑓) = (𝑣𝛽,𝑙(1, 𝑓), … , 𝑣𝛽,𝑙(𝑁, 𝑓))
𝑇

, 𝑙 = 1, … , 𝑘 

𝑣𝛽,𝑙(𝑔) = (𝑣𝛽,𝑙(1, 𝑔), … , 𝑣𝛽,𝑙(𝑁, 𝑔))
𝑇

, 𝑙 = 1, … , 𝑘. 

Note that if the ideal solution (𝑓∗, 𝑔∗) to the game exist 

𝑣𝛽(𝑠, 𝑓∗, 𝑔∗) = 𝑣𝛽(𝑠, 𝑓∗) = 𝑣𝛽(𝑠, 𝑔∗). 

6. Solving a multicriteria Markov decision model 

First, we will redefine POSS using notations defined above. 

A strategy 𝑓∗𝐹𝑆 is Pareto optimal security strategy for player 1 if there are 

no 𝑓𝐹𝑆 so �̅�𝛽(𝑓∗) ≥ �̅�𝛽(𝑓), [there is at least one f’] so �̅�𝛽(𝑓∗) ≠ �̅�𝛽(𝑓′). [9] 

A strategy 𝑔∗𝐺𝑆 is Pareto optimal security strategy for player 2 if there is 

no g𝐺𝑆 so �̅�𝛽(𝑔∗) ≥ �̅�𝛽(𝑔), [there is at least one g’] so �̅�𝛽(𝑔∗) ≠ �̅�𝛽(𝑔′).  

From [11], if decision space is compact and criterion vectors are continuous 

POSS exist. 



Theorem proven in [9] states that The Pareto-solution set of Problem 

presented bellow coincides with the Pareto-optimal security strategies set of 

𝐺𝑎𝑚𝑒 Г𝛽. 

Problem*:  

min ∑ 𝑣1(𝑠)

𝑁

𝑠=1

, … , ∑ 𝑣𝑘(𝑠)

𝑁

𝑠=1

 

𝑣𝑙(𝑠) ≥ 𝑅𝑙(𝑠, 𝑎1)𝑔(𝑠) + 𝛽𝑃(𝑠, 𝑎1)𝑣𝑙      

∑ 𝑔(𝑠, 𝑎2) = 1 

𝑎2𝐴2(𝑠)

 

𝑔(𝑠, 𝑎2) ≥ 0 

𝑣𝑙 = (𝑣𝑙(1), … , 𝑣𝑙(𝑁))
𝑇

  

∀𝑠𝑆, ∀𝑎1𝐴1(𝑠), ∀𝑎2𝐴2(𝑠), 𝑙 = 1, … , 𝑘 

This theorem is very important for multicriteria Markov decision processes 

represented by 𝐺𝑎𝑚𝑒 Г𝛽; it allows to obtain a solution set by solving a 

multicriteria linear programming problem, which is much more studied. 

Method of solving such games and code developed for such purpose will be 

applied to the following example. 

Let there be two states with rewards vectors of length 2 and each player can 

choose between two actions. 

𝑆 = {1,2} 

𝐴1(𝑠) = 𝐴2(𝑠) = {1,2}, 𝑓𝑜𝑟 𝑠𝑆 

𝛽 = 0.7 

There are the following rewards.  



(𝑅1(1), 𝑅2(1)) = (
(10, 6) (−6, 4)
(−4, 0) (8, 3)

) 

(𝑅1(2), 𝑅2(2)) = (
(−2, 0) (5, 3)
(4, 2) (−10, −10)

) 

Elements of the matrixes (𝑅𝑎2=1(𝑠), 𝑅𝑎2=2(𝑠)) of the size 2×2 are reward 

vectors (𝑟𝑙=1(𝑠, 𝑎1, 𝑎2), 𝑟𝑙=1(𝑠, 𝑎1, 𝑎2)) with different values of 𝑠, 𝑎1, 𝑎2 as 

elements. The matrixes above representing the following. 

(𝑅1(1), 𝑅2(1)) = (
(𝑟1(1,1,1), 𝑟2(1,1,1)) (𝑟1(1,1,2), 𝑟2(1,1,2))

(𝑟1(1,2,1), 𝑟2(1,2,1)) (𝑟1(1,2,2), 𝑟2(1,2,2))
) 

(𝑅1(2), 𝑅2(2)) = (
(𝑟1(2,1,1), 𝑟2(2,1,1)) (𝑟1(2,1,2), 𝑟2(2,1,2))

(𝑟1(2,2,1), 𝑟2(2,2,1)) (𝑟1(2,2,2), 𝑟2(2,2,2))
) 

There are the following transition data. 

𝑃(1) = (𝑝(𝑠′|1, 𝑎1)
𝑎1=1,
2,

𝑠′=1

2
= (

0.5 0.5
0.8 0.2

) 

𝑃(2) = (𝑝(𝑠′|2, 𝑎1)
𝑎1=1,
2,

𝑠′=1

2
= (

0.3 0.7
0.9 0.1

) 

P(1) – is probability in state 𝑠 = 1, move to a state 𝑠′ = {1,2}, if player 1 

choose action 𝑎1 = {1,2}. For example, 0.3 is a probability to move from state 𝑠 =

2 to state 𝑠′ = 1 if player 1 choose action 𝑎1 = 1; and 0.7 is a probability to move 

from state 𝑠 = 2 to state 𝑠′ = 2 if player 1 choose the same action 𝑎1 = 1. 

These matrixes are the input for the program. 

 

Next, reformulate the Problem* using the data above.  

min ∑ 𝑣1(𝑠)

2

𝑠=1

, ∑ 𝑣2(𝑠)

2

𝑠=1

 

𝑣𝑙(𝑠) ≥ 𝑅𝑙(𝑠, 𝑎1)𝑔(𝑠) + 𝛽𝑃(𝑠, 𝑎1)𝑣1    (𝑢𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑢𝑙𝑎(2)) => 



𝑣𝑙(𝑠) ≥ ∑ 𝑟𝑙(𝑠, 𝑎1, 𝑎2)𝑔(𝑠, 𝑎2)

2

𝑎2=1

+ 𝛽𝑃(𝑠, 𝑎1)𝑣𝑙  => 

   𝑣𝑙(𝑠)𝑎1=1
2 ≥ ∑ 𝑟𝑙(𝑠, 𝑎1, 𝑎2)𝑔(𝑠, 𝑎2)

2

𝑎2=1

+ 𝛽 ∑ 𝑝(𝑠′|𝑠, 𝑎1)𝑣𝑙

2

𝑠′=1

  

∑ 𝑔(𝑠, 𝑎2) = 1 

𝑎2𝐴2(𝑠)

 

𝑔(𝑠, 𝑎2) ≥ 0 

𝑣1 = (𝑣1(1), … , 𝑣𝑙(𝑁))
𝑇

  

∀𝑠 {1,2}, ∀𝑎1 {1,2}, ∀𝑎2 {1,2}, 𝑙 = 1,2 

After inserting all the data in this formulation we get the following  

min(𝑣1(1) + 𝑣1(2), 𝑣2(1) + 𝑣2(2)) 

𝑣1(1) ≥ 10𝑔(1,1) − 6𝑔(1,2) + 0.7(0.5𝑣1(1) + 0.5𝑣1(2)) 

𝑣1(1) ≥ −4𝑔(1,1) + 8𝑔(1,2) + 0.7(0.8𝑣1(1) + 0.2𝑣1(2)) 

𝑣2(1) ≥ 6𝑔(1,1) + 4𝑔(1,2) + 0.7(0.5𝑣2(1) + 0.5𝑣2(2)) 

𝑣2(1) ≥ 0𝑔(1,1) + 3𝑔(1,2) + 0.7(0.8𝑣1(1) + 0.2𝑣1(2)) 

𝑣1(2) ≥ −2𝑔(2,1) + 5𝑔(2,2) + 0.7(0.3𝑣1(1) + 0.7𝑣1(2)) 

𝑣1(2) ≥ 4𝑔(2,1) − 10𝑔(2,2) + 0.7(0.9𝑣1(1) + 0.1𝑣1(2)) 

𝑣2(2) ≥ 0𝑔(2,1) + 3𝑔(2,2) + 0.7(0.3𝑣1(1) + 0.7𝑣1(2)) 

𝑣2(2) ≥ 2𝑔(2,1) − 10𝑔(2,2) + 0.7(0.9𝑣1(1) + 0.1𝑣1(2)) 

𝑔(1,1) + 𝑔(1,2) = 1 

𝑔(2,1) + 𝑔(2,2) = 1 

𝑔(1,1), 𝑔(1,2), 𝑔(2,1), 𝑔(2,2) ≥ 0 



We can clearly see that this problem is now a multicriteria linear 

programming problem. 

To deal with vector the scalarization technic is used for the program. This 

technic uses the approach of combining multiple objective functions into one scalar 

objective function. 

min ∑ 𝑣1(𝑠)

2

𝑠=1

, ∑ 𝑣2(𝑠)

2

𝑠=1

 

min  α (∑ 𝑣1(𝑠)

2

𝑠=1

) + (1 − α) (∑ 𝑣2(𝑠)

2

𝑠=1

) , α [0,1] 

min  α ∗ 𝑣1(1) + α ∗ 𝑣1(2) + (1 − α) ∗ 𝑣2(1) + (α) ∗ 𝑣2(2)) , α [0,1] 

Going through a range of possible values of α - [0,1] allows us to find the 

whole Pareto front. 

 

Now we have a standard linear programming problem that can be solved 

with any of the standard methods. The program uses the simplex method. The 

whole program is in Appendix. 

The solution to the problem is the following Pareto-optimal solutions.  

𝑣1(1) = 6.86; 𝑣1(2) = 7.11; 𝑣2(1) = 12.31;  𝑣2(2) = 8.58;  𝑔(1,1) =

0.5;  𝑔(1,2) = 0.5;  𝑔(2,1) = 0.4;  𝑔(2,2) = 0.6;     

𝑣1(1) = 44.62; 𝑣1(2) = 83.09; 𝑣2(1) = 9.99;  𝑣2(2) = 7.13;  𝑔(1,1) =

0;  𝑔(1,2) = 1;  𝑔(2,1) = 0.48;  𝑔(2,2) = 0.52;     

𝑣1(1) = 10.46; 𝑣1(2) = 8.32; 𝑣2(1) = 11.76;  𝑣2(2) = 8.24;  𝑔(1,1) =

0.38;  𝑔(1,2) = 0.62;  𝑔(2,1) = 0.42;  𝑔(2,2) = 0.58;     



Such an approach allows solving Multicriteria Markov decision models in a 

quite simple way; however, it still has its own difficulties. Even small problem 

considered above, with only two actions available for players and rewards vectors 

of length two results in a rather big linear programming problem with 8 variables 

and 12 constraints. Moreover, such a problem has to be solved more than once for 

different α values in an objective, which takes a lot of time. 

  



Conclusion 

 

Course work was devoted to the study of A multicriteria competitive 

Markov decision process. 

In the first section of the work, a concept and definition of the Markov 

decision process were introduced.  

The second section covered basic concepts associated with Multiple 

noncomparable criteria vector.  

The third section of the work describes the basic notation used in the paper.  

The fourth section covers Concepts of strategy and rewards.  

The fifth section introduces a β-discounted model of the multicriteria MDM 

and covers the concept of security levels. 

The sixth section describes the algorithm of solving the problem properly 

defined in the previous section with an example. 
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Appendix. Code for solving multicriteria β-discounted Markov decision 

model 

 

import numpy as np 

S=[1,2] 

A1=[1,2] 

A2=[1,2] 

beta=0.7 

R11R21=[[[10,6],[-6,4]],[[-4,0],[8,3]]] 

R12R22=[[[-2,0],[5,3]],[[4,2],[-10,-10]]] 

P1=[[0.5,0.5],[0.8,0.2]] 

P2=[[0.3,0.7],[0.9,0.1]] 

def generateMatrix(variables,constraints): 

    #generates empty matrix of correct size 

    matrix = np.zeros((constraints+1, variables+constraints+2)) 

    return matrix 

 

def generateVariables(matrix): 

    nOfColumns = len(matrix[0,:]) 

    nOfRows = len(matrix[:,0]) 

    var = nOfColumns - nOfRows -1 

    variables = [] 

    for i in range(var): 

        variables.append('x'+str(i+1)) 

    return variables 

 

def checkBottom(matrix): 

    #check bottom row for negative values 

    nOfRows = len(matrix[:,0]) 

    m = min(matrix[nOfRows-1,:-1]) 

    if m>=0: 

        return False 

    return True 

 



def findPivotToRemove(matrix): 

    #what pivot with negative in right column to remove 

        total = []     

        nOfColumnsM = len(matrix[0,:]) 

        mm = min(matrix[:-1,nOfColumnsM-1]) 

        rowOfmM = None 

        if mm<=0: 

            rowOfmM = np.where(matrix[:-1,nOfColumnsM-1] == mm)[0][0] 

        rowWithNegative=rowOfmM 

        row = matrix[rowWithNegative,:-1] 

        minimal = min(row) 

        columnOfMinimalinRow = np.where(row == minimal)[0][0] 

        col = matrix[:-1,columnOfMinimalinRow] 

        #  find smallest ratio in column which is positive 

        for a, i in zip(col,matrix[:-1,-1]): 

            tempp=i/a 

            if a**2>0 and tempp>0: 

                temp=i/a 

                total.append(temp) 

            else: 

                total.append(0) 

        maxValueToReturn = max(total) 

        for t in total: 

            if t > 0: 

                if t < maxValueToReturn: 

                    element = t 

 

        index = total.index(maxValueToReturn) 

        return [index,columnOfMinimalinRow] 

     

 

def findPivot(matrix): 

    if checkBottom(matrix): 

        total = [] 

         



        nOfRowsM = len(matrix[:,0]) 

        mm = min(matrix[nOfRowsM-1,:-1]) 

        rowOfmM = None 

        if mm<=0: 

            rowOfmM = np.where(matrix[nOfRowsM-1,:-1] == mm)[0][0] 

         

        n = rowOfmM 

        for a,b in zip(matrix[:-1,n],matrix[:-1,-1]): 

            tempp=b/a 

            if a**2>0 and tempp>0: 

                total.append(tempp) 

            else:     

                total.append(0) 

        element = max(total) 

        for t in total: 

            if t > 0 and t < element: 

                element = t 

 

        index = total.index(element) 

        return [index,n] 

 

 

def pivot(row,col,matrix): 

    #pivot matrix removing negatives from last row and column 

    nOfRows = len(matrix[:,0]) 

    nOfColumns = len(matrix[0,:]) 

    temp = np.zeros((nOfRows,nOfColumns)) 

    roww = matrix[row,:] 

    if matrix[row,col]**2>0: 

        e = 1/matrix[row,col] 

        r = roww*e 

        for i in range(len(matrix[:,col])): 

            a = matrix[i,:] 

            b = matrix[i,col] 

            if list(a) == list(roww): 



                continue 

            else: 

                temp[i,:] = list(a-r*b) 

        temp[row,:] = list(r) 

        return temp 

    print('Pivot cannot be done') 

 

 

def canConstrainBeAdded(matrix): 

    nOfRows = len(matrix[:,0]) 

    #if at least 2 zero rows 

    empty = [] 

    for i in range(nOfRows): 

        summ = 0 

        for k in matrix[i,:]: 

            summ += k**2 

        # append zero if all elements in a row - zero 

        if summ == 0: 

            empty.append(summ) 

    if len(empty)>1: 

        return True 

    return False 

 

def constrain(matrix,equation): 

    if canConstrainBeAdded(matrix) == True: 

        nOfColumns = len(matrix[0,:]) 

        nOfRows = len(matrix[:,0]) 

        count = 0 

        while count < nOfRows: 

            rowCheck = matrix[count,:] 

            sumRow = 0  

            for i in rowCheck: 

                sumRow=sumRow+  float(i**2) 

            if sumRow == 0: 

                # first row with all zero found 



                row = rowCheck 

                break 

            count=count+1         

        equation = equation.split(',') 

        if 'G' in equation: 

            g = equation.index('G') 

            del equation[g] 

            equation = [float(i)*-1 for i in equation] 

        if 'L' in equation: 

            l = equation.index('L') 

            del equation[l] 

            equation = [float(i) for i in equation] 

        i = 0 

        while i<len(equation)-1: 

            row[i] = equation[i] 

            i +=1 

        row[-1] = equation[-1] 

        row[var+j] = 1 

    print('Constraint cannot be added') 

 

def canAddObjective(matrix): 

    #check if it possible to add objective function 

    nOfRows = len(matrix[:,0]) 

    empty = [] 

    for i in range(nOfRows): 

        summ = 0 

        for j in matrix[i,:]: 

            summ += j**2 

        if summ == 0: 

            # if zero row 

            empty.append(summ) 

    if len(empty)==1: 

        # one zero row 

        return True 

    return False 



 

 

def objectiveFunction(matrix,equation): 

    if canAddObjective(matrix)==True: 

        equation = [float(i) for i in equation.split(',')] 

        nOfRows = len(matrix[:,0]) 

        row = matrix[nOfRows-1,:] 

        i = 0 

        while i<len(equation)-1: 

            row[i] = equation[i]*-1 

            i +=1 

        row[-2] = 1 

        row[-1] = equation[-1] 

    print('Finish adding constraints before adding the objective function')   

 

def checkRight(matrix): 

    #looks for negatives above last row in the right column 

    minim = min(matrix[:-1,-1]) 

    if minim>= 0: 

        return False 

    return True 

         

def minimise(matrix, output='summary'): 

    matrix[-1,:-2] = [-1*i for i in matrix[-1,:-2]] 

    matrix[-1,-1] = -1*matrix[-1,-1] 

    while checkRight(matrix)==True: 

        matrix = pivot(findPivotToRemove(matrix)[0],findPivotToRemove(matrix)[1],matrix) 

    while checkBottom(matrix)==True: 

        matrix = pivot(findPivot(matrix)[0],findPivot(matrix)[1],matrix) 

    nOfColumns = len(matrix[0,:]) 

    nOfRows = len(matrix[:,0]) 

    var = nOfColumns - nOfRows -1 

    i = 0 

    values = {} 

    for i in range(var): 



        column = matrix[:,i]  

        maxColumn = max(column) 

        if float(sum(column)) == float(maxColumn): 

            loc = np.where(column == maxColumn)[0][0] 

            values[generateVariables(matrix)[i]] = matrix[loc,-1] 

        else: 

            values[generateVariables(matrix)[i]] = 0 

    values['min'] = matrix[-1,-1]*-1 

    for k,v in values.items(): 

        values[k] = round(v,6) 

    if output == 'matrix': 

        return matrix 

    return values 

 

if __name__ == "__main__": 

    matrix = generateMatrix(8,16) 

    alfa=0 

    constrain(matrix,(str((beta*(P1[0][0]))-

1)+','+str(beta*(P1[0][1]))+',0,0,'+str(R11R21[0][0][0])+','+str(R11R21[0][1][0])+',0,0,L,0')) 

    constrain(matrix,(str((beta*(P1[1][0]))-

1)+','+str(beta*(P1[1][1]))+',0,0,'+str(R11R21[1][0][0])+','+str(R11R21[1][1][0])+',0,0,L,0')) 

    constrain(matrix,('0,0,'+str((beta*(P1[0][0]))-

1)+','+str(beta*(P1[0][1]))+','+str(R11R21[0][0][1])+','+str(R11R21[0][1][1])+',0,0,L,0')) 

    constrain(matrix,('0,0,'+str((beta*(P1[1][0]))-

1)+','+str(beta*(P1[1][1]))+','+str(R11R21[1][0][1])+','+str(R11R21[1][1][1])+',0,0,L,0')) 

     

    constrain(matrix,(str((beta*(P2[0][0])))+','+str((beta*(P2[0][1]))-

1)+',0,0,0,0,'+str(R12R22[0][0][0])+','+str(R12R22[0][1][0])+',L,0')) 

    constrain(matrix,(str((beta*(P2[1][0])))+','+str((beta*(P2[1][1]))-

1)+',0,0,0,0,'+str(R12R22[1][0][0])+','+str(R12R22[1][1][0])+',L,0')) 

    constrain(matrix,('0,0,'+str((beta*(P2[0][0])))+','+str((beta*(P2[0][1]))-

1)+',0,0,'+str(R12R22[0][0][1])+','+str(R12R22[0][1][1])+',L,0')) 

    constrain(matrix,('0,0,'+str((beta*(P2[1][0])))+','+str((beta*(P2[1][1]))-

1)+',0,0,'+str(R12R22[1][0][1])+','+str(R12R22[1][1][1])+',L,0')) 

     

    constrain(matrix,('0,0,0,0,'+str(1)+',0,0,0,G,0')) 

    constrain(matrix,('0,0,0,0,0,'+str(1)+',0,0,G,0')) 

    constrain(matrix,('0,0,0,0,0,0,'+str(1)+',0,G,0')) 



    constrain(matrix,('0,0,0,0,0,0,0,'+str(1)+',G,0')) 

    constrain(matrix,('0,0,0,0,'+str(1)+','+str(1)+',0,0,G,1')) 

    constrain(matrix,('0,0,0,0,'+str(1)+','+str(1)+',0,0,L,1')) 

    constrain(matrix,('0,0,0,0,0,0,'+str(1)+','+str(1)+',G,1')) 

    constrain(matrix,('0,0,0,0,0,0,'+str(1)+','+str(1)+',L,1')) 

     

    e=0.1 

    alfa=0 

    while alfa<=1: 

        objectiveFunction(matrix,(str(alfa)+','+str(alfa)+','+str(1-alfa)+','+str(1-alfa)+',0,0,0,0,0')) 

        print(alfa) 

        print(minimise(matrix)) 

        alfa=alfa+e 


