

Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Факультет інформатики

Кафедра мережних технологій

Магістерська робота

Освітній ступінь: магістр

На тему: «MODELING DISTRIBUTED GENERALIZED SUFFIX TREES

FOR QUICK DATA ACCESS»

Виконала: студентка 2 року навчання

Спеціальності

122 Комп’ютерні науки

Діденко Віра Олексіївна

Керівник Глибовець А.М.

док. техн. наук

Рецензент Олецький О.В.

доцент, к.н.

Магістерська робота захищена

 з оцінкою______________

Секретар ЕК С.А. Мелещенко

«___» ______________2022

Київ 2022

2

Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF “KYIV-MOHYLA ACADEMY”

Network Technologies Department of the Faculty of Informatics

APPROVED

Head of the Network Technologies Department

associate professor, doctor of mathematics

_______________________ G.I. Malaschonok

 (signature)

“____” ____________ 2021 year.

INDIVIDUAL TASK

For the Master thesis

For 2-year Master Degree student of the Faculty of Informatics

TOPIC: MODELING DISTRIBUTED GENERALIZED SUFFIX TREES FOR QUICK DATA ACCESS

Output data:

Text part content of Master thesis:

Individual task

Calendar plan

Abstract

Introduction

Section 1: Background On Suffix Trees And Their Application

Section 2: Suffix Tree Construction Algorithms

Section 3: Modeling A New Distributed Generalized Suffix Tree Construction Algorithm By Optimizing

Era

Conclusion

References

Issue date “____” ____________ 2021 year

Supervisor ______________(signature)

Task received __________________(signature)_

3

CALENDAR PLAN

Theme: MODELING DISTRIBUTED GENERALIZED SUFFIX TREES FOR

QUICK DATA ACCESS

Stage Name Deadline Note

1 Acquiring Master thesis topic 01.09.2021

2 Finding appropriate literature 20.09.2021

3 Researching suffix tree construction

approaches

30.09.2021

4 Researching Generalized suffix trees 01.10.2021

5 Analyzing existing suffix tree construction

algorithms and their comparison

20.10.2021

6 Researching the ERa suffix tree construction

algorithm

01.11.2021

7 Targeting weak areas of ERa and developing

optimization approaches

01.12.2021

8 Optimizing the data distribution technique 01.01.2022

9 Optimizing the parallel subtree partitioning

stage

01.03.2022

10 Optimizing the parallel subtree construction

stage

15.05.2022

11 Calculating the new algorithm’s complexity 30.05.2022

12 Developed algorithm implementation 10.06.2022

13 Performance comparison tests and evaluation 14.06.2022

14 Master thesis main section and conclusion 14.06.2022

15 Master thesis analysis with the Supervisor 15.06.2022

16 Master thesis improvement 20.06.2022

17 Creation of the presentation 30.06.2022

18 Master thesis analysis with the Supervisor 30.06.2022

19 Defending the Master thesis 06.07.2022

Student: Didenko V.O. “____” ________________

Supervisor: Glybovets A.M. “____” ________________

4

TABLE OF CONTENTS

TABLE OF FIGURES .. 5

ABSTRACT .. 6

INTRODUCTION .. 7

Section 1: Background On Suffix Trees And Their Application 10

1.1 Introducing Suffix Trees ... 10

1.2 Introducing Generalized Suffix Trees ... 15

Section 2: Suffix Tree Construction Algorithms 19

2.1 Existing Algorithms Analysis And Comparison 19

2.2 The Elastic Range (ERa) Algorithm For Suffix Tree Construction 21

2.2.1 Vertical Partitioning .. 23

2.2.2 Horizontal Partitioning .. 26

Section 3: Modeling A New Distributed Generalized Suffix Tree

Construction Algorithm By Optimizing ERa ... 28

3.1 New Algorithm Preparation Stage - Data Distribution 29

3.2 New Algorithm - Parallel Subtree Partitioning Stage 33

3.3 New Algorithm - Parallel Subtree Construction Stage 39

3.4 New Algorithm Complexity Calculation ... 51

3.5 Analyzing Performance Test Results ... 53

CONCLUSION .. 58

REFERENCES ... 60

5

TABLE OF FIGURES

Figure 1: Example of the suffix tree data structure .. 10

Figure 2: The suffix tree data structure for string S=BANANA 15

Figure 3: Example of the generalized suffix tree data structure 17

Figure 4: The additional tail that is assigned to each partition 30

Figure 5: Overview of the parallel subtree partitioning stage algorithm 33

Figure 6: The frequency trie data structure ... 35

Figure 7: Overview of the parallel subtree construction stage algorithm 39

Figure 8: The LCP-Range data structure .. 47

Figure 9: The LCP-Range data structure for string S1=abcdeef and string S2=abcdffj . 48

Figure 10: An example of a 4-way loser tree ... 49

Figure 11: The overview of the Hadoop Distributed File System (HDFS)...................... 53

Figure 12: Graph comparison of the optimized and original ERa algorithm 56

6

ABSTRACT

Generalized suffix trees [1,2] are applied in a vast majority of

applications for accelerating string-based operations and processing text

data more efficiently. With the increase in volumes of data that need to be

processed, several approaches have been proposed to parallelize

generalized suffix tree construction in order to speed up the building process.

Still, when processing large alphabets where the input string exceeds the

available memory capacity, constructing the corresponding generalized

suffix tree becomes a challenge.

The aim of this work is to distribute generalized suffix tree construction,

so the process is efficient in terms of time complexity and memory

consumption. A distributed approach to constructing the suffix tree will allow

working with large alphabets and very long strings that exceed the available

memory capacity. In this work, an efficient and highly scalable algorithm for

constructing generalized suffix trees on distributed parallel platforms was

modeled. The experimental results proved that the modeled algorithm’s

efficiency is no less than the before known Elastic Range algorithm (ERa) [1]

while out-performing ERa [1] on specific data.

7

INTRODUCTION

The suffix tree [1,2] is a fundamental data structure for processing

string data and is used for numerous tasks, such as text processing and

information retrieval. The suffix tree data structure stores a string by indexing

all possible suffixes of that string and is applied in a variety of systems to

provide swift operations on strings. For example, a widely used string

operation is finding a substring in a string. A suffix tree can find the substring

in 𝑂(|𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔|). In contrast, the same operation without it would take

significantly longer, that is, 𝑂(|𝑠𝑡𝑟𝑖𝑛𝑔| + |𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔|), considering that the

searched string is in practice much longer than the requested substring.

Therefore, suffix trees are utilized to accelerate string operations and work

with strings more efficiently.

Considering the intense increase in volumes of data that need to be

processed, constructing the corresponding suffix tree takes up a significant

amount of time [3,4,5,6]. To solve the problem and optimize the suffix tree

construction process, several parallel suffix tree construction algorithms

have been proposed based on MPI [3]; however, they are limited in terms of

scalability and fault tolerance when large data volumes are introduced. At

the same time, the demand for effective algorithms for constructing suffix

trees on distributed parallel platforms such as Hadoop [7] and Apache Spark

[8] is constantly increasing.

This work introduces an efficient and highly scalable algorithm for

constructing generalized suffix trees on distributed parallel platforms. The

8

modeled algorithm consists of two main stages: parallel subtree partitioning

and parallel subtree construction.

During the first stage, a new data distributing strategy is implemented.

Next, an efficient subtree division algorithm is proposed, which constructs

the LCP-array [9,10,11,12,13] in a parallel manner, that is, parallel

calculation of how many times a substring occurs. In order to improve load

balancing and reduce data reading costs, an effective strategy for distributing

tasks among the parallel processes is provided.

During the second stage, the parallel subtree construction uses the

LCP-Range data structure and multilateral LCP-Merge sorting algorithm

[9,10,11,12,13] for parallel construction of the LCP-array [9,10,11,12,13]

Also, for comparison, a well-known algorithm for constructing suffix trees

Elastic Range (ERa) [1] is taken into account and further modified to improve

its capabilities to process strings with lengths that exceed the available

memory and adapted to run on the Apache Spark platform [8]. The purpose

of this work is to model an algorithm for constructing a distributed generalized

suffix tree that is no worse in terms of efficiency than the previously known

Elastic Range algorithm [1] and that outperforms it on specific data.

The rest of this work is organized in the following three sections: the

first section Section 1: Background On Suffix Trees And Their Application

provides background information on suffix trees and generalized suffix trees,

their characteristics, and application; the next section Section 2: Suffix Tree

Construction Algorithms provides a comparison of existing suffix tree

construction algorithms along with their pros and cons as well as provides

9

an overview of the ERa [1] generalized suffix tree construction algorithm;

finally, the third section Section 3: Modeling A New Distributed Generalized

Suffix Tree Construction Algorithm By Optimizing ERa proposes an

improved algorithm for constructing distributed generalized suffix trees and

provides details on the applied techniques for outperforming the

aforementioned ERa [1] algorithm - as a result, the modeled algorithm’s

complexity was calculated and the experimental performance comparison

results were provided.

10

Section 1: Background On Suffix Trees And Their Application

 1.1 Introducing Suffix Trees

Figure 1: Example of the suffix tree data structure

The suffix tree [1], shown in Figure 1: Example of the suffix tree data

structure, is a tree that indexes all suffixes in a string; the suffix tree is a

fundamental data structure designed to swiftly process operations on strings,

for example, phrase matching, finding the longest repeated substring in a

character sequence, or revealing the maximum repeated phrase in a long

sequence of characters [1,2]. A generalized suffix tree [1] is considered to

be an extended version of a suffix tree, except this data structure stores not

just one string but several - it indexes a set of suffixes of each string;

therefore, the generalized suffix tree provides more flexibility for speeding up

11

various text-based operations. Being performance efficient when it comes to

string processing, the generalized suffix tree data structure is widely

incorporated in many applications to accelerate different text processing

tasks, such as data compression, clustering of documents, etc.

For example, common text-based tasks that come across in the data

analysis field, especially big data, are searching for a phrase or filtering, for

instance, quickly performing the begin and not begin operation on a specific

part of the text data. In such cases, if the complete data set (the string data

collection) is indexed in a suffix tree, all lines in the data set that start with

the searched phrase can be returned under 𝑂(|𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑𝑃ℎ𝑟𝑎𝑠𝑒| time, which

is much faster than if a suffix tree wasn’t used which would have been

𝑂(|𝑒𝑛𝑡𝑖𝑟𝑒𝑆𝑡𝑟𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛| + |𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑𝑃ℎ𝑟𝑎𝑠𝑒|) time. Similarly, a

significant acceleration would be gained for other string operations such as

phrase matching, finding the longest substring that is present in both strings,

as well as finding all common substrings in a string data collection

[1,2,14,15,16,17,18].

With the advent of big data, there is a growing demand for efficient

algorithms for building a suffix tree for large alphabets [4,5]. However,

building a suffix tree is a complex process that imposes the usage of

intermediate data that takes up a significant portion of the available memory

[6]. In addition, the process of building a suffix tree for massive data sets is

a very time-consuming task [4,5,6].

To speed up the process of constructing the suffix tree and make it

possible for data beyond the machine’s available memory, a few parallel

12

algorithms were purposed that are designed to execute on several

machines. Examples of such algorithms are WaveFront [1,4,5,18], PCF

[1,16,18], and ERa [1], the latter is described in further detail in section 2.2

The Elastic Range (ERa) Algorithm For Suffix Tree Construction of this work.

However, it is important to consider that Both WaveFront [4,5,18] and ERa

[1] duplicate the entire string data collection for each of the computing nodes,

with each node processing the assigned subtree construction tasks [1,19],

which obviously creates a scalability problem when massive data volumes

are introduced.

Fast creation of suffix trees for an input string data collection is an

extremely important task since, for instance, modern DNA sequencers can

process multiple samples per hour, while financial programs generate

continuous data streams that must be indexed. If the suffix tree can be stored

in memory, there are already many quick and elegant solutions to build the

suffix tree itself that will cope with the task in 𝑂(|𝑆|), such as the Ukkonen's

algorithm [14], which maintains great performance, until the data goes

beyond the memory available on the machine - in such case, its efficiency

begins to drop. What is more, the built tree is in fact many times larger than

the initial string data collection; the constructed suffix tree can increase the

memory usage by more than 30 times [6].

At the same time, distributed parallel computing infrastructures such

as Hadoop [7] and Spark [8] have become standards for large-scale data

processing. They incorporate essential characteristics such as high

scalability, ease of use, and sufficient fault tolerance. Unfortunately, most

existing MPI-based parallel suffix tree algorithms [3] are unlikely to integrate

13

with the mentioned platforms. Attempts have been made to create a

distributed suffix tree on these platforms, still, they impose the same limit in

terms of scalability since the string data collection is duplicated for each

computing node (as in WaveFront [1,4,5,18] and ERa [1]). Moreover, these

approaches are not very effective for processing very long rows. Therefore,

in this work, a new algorithm based on ERa [1] for constructing a generalized

suffix tree on distributed parallel data platforms was created, which remains

efficient while at the same time providing great scalability. The modeled

algorithm supports indexing suffixes for a variety of long strings, ranging from

one long string to several long strings of different lengths.

In this work, to perform distributed processing, all rows of the string

data collection were merged into a single very long row - further referred to

as the input string - and then the input string was partitioned into sections.

Each partition (in other words, section) was assigned to a computing node

and further processed. The rest of the algorithm consists of two main

processing stages: parallel subtree partitioning and parallel subtree

construction. The entire algorithm was modeled according to the following

plan outline: 1. first, a new data-sharing strategy for subtree separation and

subtree construction in the data parallelism paradigm was developed; 2.

then, an efficient subtree distribution algorithm based on the parallel method

of calculating the frequency of occurrence of the substring was introduced;

3. to improve load balance and reduce reading costs, an effective strategy

for allocating subtree construction tasks was proposed; 4. at the subtree

construction stage, a new LCP-Range [9] data structure and a versatile LCP-

Merge [9] sorting algorithm for parallel LCP array [9] construction was

provided; 5. the modeled prototype was tested on the Spark platform [5] and

14

the performance was experimentally evaluated and compared to the original

ERa [1] algorithm implementation.

The next paragraph provides more background on generalized suffix trees

and their characteristics.

15

1.2 Introducing Generalized Suffix Trees

For illustration purposes, consider the following string S equal to

BANANA and consisting of the following suffixes: A, NA, ANA, NANA,

ANANA, BANANA. To represent and save these suffixes in a suffix tree, we

can construct a tree for string S, where $ denotes the terminal symbol. In

addition, concatenating node values on the way from the root to a particular

leaf results in one of the before-mentioned suffixes in string S; each leaf

contains a value that indicates the starting position of the corresponding

suffix in string S [1,2,3,4,5,6]. See Figure 2: The suffix tree data structure for

string S=BANANA below.

Figure 2: The suffix tree data structure for string S=BANANA

16

Next, for a general definition, let’s denote a set of characters that will

act as the alphabet: let S = s0,s1...sn−1 $, where si ∈ ∑, i ∈ [0, n−1] and $ ∉

∑. Then, the suffix S, which is denoted by Si, is a sequence of si...sn−1 $, i

∈ [0, n−1]; similarly, the prefix of the suffix Si is a sequence of si...sj, j ∈ [i,

n−1]. In the rest of this work, the prefix of the suffix Si shall be referred to as

the S-prefix. An important remark is that the terminal symbol $ is unique and

guarantees that no suffix is a prefix of another suffix. Consequently, the suffix

tree T is a tree that indexes all suffixes of string S. The properties and

characteristics of a suffix tree are listed below as follows:

● Each internal node, except for the root node, has at least two child nodes,

and each edge is denoted by a non-empty substring S.

● No two edges of a node can contain a value starting with the same initial

symbol.

● There are exactly n leaves marked from 0 to n−1. For each leaf vi, with i

ranging respectfully from 0 to n-1, concatenation of boundary values from

the root to the leaf vi corresponds to the suffix Si [1,2,3,4,5,6].

Similar to a suffix tree, a generalized suffix tree is a tree that indexes

all suffixes for a set of strings; the suffixes of each string are presented in the

generalized suffix tree. A typical approach for constructing a generalized

suffix tree for a set of strings is to add a unique terminal symbol (UTS) to

each string and then merge all strings together and build a suffix tree for the

merged string; in this case, the introduced terminal helper symbol that is

supplemented in each string D is used to make sure that no suffix is a

substring of another suffix. In this paper, all strings are merged directly

without adding a terminal symbol to each string: instead, in this

17

implementation, information about the location of each string in the merged

string, more specifically, the start and end position of each string in the

merged string, can be used to distinguish between different strings in the

merged string [1,2,3,4,5,6].

Figure 3: Example of the generalized suffix tree data structure

An example of a generalized suffix tree for a set of strings D = {ABAB,

BABA} is provided above in Figure 3: Example of the generalized suffix tree

data structure. Note that the leaves of the tree contain a value consisting of

18

two parts: the string ID and the suffix starting position. Considering that a

suffix tree is a special case of the generalized suffix tree where the size of

the set of strings D is equal to one (meaning a single string is being stored),

it can be concluded that the algorithm for constructing a suffix tree also

applies to the generalized version making it possible to focus on constructing

a suffix tree for one long string [1,2,3,4,5,6].

19

Section 2: Suffix Tree Construction Algorithms

2.1 Existing Algorithms Analysis And Comparison

Suffix tree construction algorithms are divided into three main

categories: in-memory (those that store data entirely in RAM), disk-based

(those that store data on one machine), and, finally, those that are

distributed. The following paragraphs go over each category, analyzing and

comparing the corresponding algorithms against the following criteria:

complexity, memory usage, string access, and the ability to be parallelized.

Category In-memory Disk-based Distributed

Algorithm Ukkonen TRELLIS WaveFront

Complexity O(n) O(n^2) O(n^2)

Memory usage Poor Good Good

String access Random Random Sequential

Can be parallelized No No Yes

Table 1: Existing suffix tree construction algorithms comparison

Approaches that store everything in memory perform well and fast, for

example, the Ukkonen suffix tree construction algorithm [14]; as shown in

Table 1: Existing suffix tree construction algorithms comparison above, they

have linear complexity as long as the input string can be stored in memory.

However, as soon as it is required to save an intermediate result on the disk,

the performance drops and such algorithms become inefficient.

20

The problem of limited memory is solved by algorithms that allow you

to dump intermediate results to the disk, by dividing the tree into subtrees

that are stored separately - the disk-based suffix tree construction

algorithms, such as TRELLIS [15]. If necessary, the required part can later

be retrieved by easily lifting it in memory. When the correct suffix is found,

the corresponding subtrees are combined into the appropriate full suffix tree.

The process of building subtrees can be easily parallelized, but the final step

that requires merging the subtrees into a complete tree requires good

coordination and is already quite difficult to parallel.

The last category includes algorithms that work on different machines,

in other words, that are distributed. For instance, an example of a well-known

distributed algorithm is WaveFront [1,4,5,18]. WaveFront [1,4,5,18] works

with the entire row on independent parts of the resulting suffix tree. The suffix

tree is partitioned using variable-length S-prefixes, making sure that each

subtree is currently in memory. Because the string S may not be in memory,

the algorithm may need to read the input string S several times. To minimize

the cost of the read operation, WaveFront [1,4,5,18] addresses the string S

strictly in sequential order. In addition, each subtree is processed

independently without the merge phase, so the algorithm is easily

parallelized [1,4,5,18].

21

2.2 The Elastic Range (ERa) Algorithm For Suffix Tree

Construction

Let us consider the ERa algorithm [1] that is noted for being able to

process very long strings and work with large alphabets; aside from

performing just as fast as the existing algorithms that are designed for a

limited amount of memory, ERa [1] is also very easy to parallelize.

The algorithm considers the machine’s memory capacity and divides

the task of constructing the suffix tree vertically by partitioning the given suffix

tree into independent subtrees, ensuring that the given tree can be stored in

memory and does not exceed the available memory [1].

The resulting subtrees are then divided horizontally into parts, in such

a way that the resulting parts can further be processed in memory in one

operation. At the same time, at each step, the horizontal division changes

and adjusts to the shape of the tree to maximize memory usage. The ERa

algorithm [1] goes even further and combines the subtrees in order to divide

the read operation cost when the input string S is read from the disk storage

[1].

In addition, horizontal partitioning is applied independently to each

subtree from top to bottom; the ERa algorithm [1] dynamically adjusts the

width of each horizontal partition based on how many paths in the subtree

are still undergoing processing which enables ERa [1] to allocate only a small

amount of memory for each buffer, making the algorithm cache-friendly and

at the same time minimizing overhead cost. Moreover, each group

22

represents an independent unit - groups can be processed sequentially or in

parallel. The resulting subtrees are then collected to represent the final suffix

tree that is extremely lightweight and consists of S-prefixes, which are used

for vertical partitioning [1].

23

2.2.1 Vertical Partitioning

To describe the vertical partitioning step, the following terms are

introduced. Let p be the S-prefix, Tp - the subtree corresponding to the S-

prefix p, and Fp - the number of suffixes corresponding to the S-prefix p.

Considering that each suffix corresponds to a node leaf in the subtree Tp, it

can be derived that the number of internal nodes corresponds to the number

of leaves which takes up the following number of bytes in size: 𝑇𝑝 −

2 × 𝐹𝑝 × 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒) bytes [1].

Next, let M denote the amount of memory reserved for the subtree,

meaning that the subtree Tp can fit in memory only when the number of

suffixes Fp (that correspond to the S-prefix p) is less than or equal to FM:

𝐹𝑝 <= 𝐹𝑀, with FM being calculated as:
𝑀

2×𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒)
, where M denotes

the amount of reserved memory for the subtree [1].

In order to split the tree T into subtrees that can be placed in the

reserved memory M, the idea of S-prefixes of variable length is utilized. The

algorithm begins by creating a workgroup that contains only one S-prefix for

each character of the alphabet. Then the entire input string S is scanned to

calculate the frequency of occurrences of each S-prefix for each character

of the alphabet. At the end of this step, each prefix that occurs with a

frequency that is at least equal to FM is removed from the workgroup. Each

remaining prefix is increased by one, and the process is then repeated until

the workgroup becomes empty [1].

24

However, this approach has a drawback since the resulting trees

become unbalanced. When parallelized, we are faced with a significant

disadvantage: certain nodes that contain small subtrees could remain idle at

the same time while other nodes are overloaded calculating large parts of

subtrees obtained after partitioning. In order to solve this problem, at the end

small trees should be grouped into a single group - this will optimize the work

of nodes during parallelization and further reduce the cost of disk read

operations that are known to be computationally intensive. The resulting

algorithm for vertical partitioning is provided in the code snippet below [1]:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: string S, alphabet А, frequency threshold FM

Output: tree set VirtualTrees

VirtualTrees := nul

P := nul // final S-prefix list

P’:= (for each symbol s ∈ A do generate S-prefix pi = s)

repeat

 scan the input string S

 fp := calculate occurrence frequency of each S-prefix pi in P`

 for each pi in P` do

 if (0 < fpi<= FM) then add pi to P

 else (for each character s ∈ A do add pis into P’)

 remove pi from P’

until P` = nul

sort Р in reverse fpi order

repeat

 G := nul //S-prefix group in tree

 add Р.head into G and remove it from Р

 next := next element in Р

 while not end of Р

 if fits into the available threshold for construction then

 add next into G and remove the corresponding element from Р

 next := next element in Р

25

23

24

25

26

 add G into VirtualTrees

until P = nul

return VirtualTrees

26

2.2.2 Horizontal Partitioning

During the horizontal partitioning step, the ERa algorithm [1] constructs

a suffix subtree Tp for the S-prefix p, where Tp fits into the available memory.

This process utilizes properties of the suffix tree that were not used in

previous approaches: first of all, access to the tree on the disk is optimized;

next, the tree is modified to save even more memory [1].

The preparation stage is performed using the SubTreePrepare

algorithm [1], which extends the optimized version of BranchEdge [1] that is

required to scan the input string and construct a subtree and uses a new

intermediate data structure instead of using a subtree for the subtree

construction process [1].

The construction stage is performed using the BuildSubTree algorithm

[1], which uses the data structure created during the preparation phase to

create the suffix subtree. By separating the subtree construction stage from

the preparation stage, we localize memory access and, therefore, avoid

costly traversals of the partial subtree for each new node [1].

The essence of the proposed method is the intermediate data

structure, consisting of the following two arrays: array L for storing the tree

leaves, and array B for storing information about the tree branches. More

precisely, the array L retains the position of the input S-prefix p in S, that is,

the leaves of the subtree [1].

27

Next, we will focus on developing an algorithm for constructing outside

the main suffix tree on distributed parallel data platforms, which are in turn

standards for big data processing due to their high scalability, ease of use,

and sufficient fault tolerance.

28

Section 3: Modeling A New Distributed Generalized Suffix Tree

Construction Algorithm By Optimizing ERa

Existing two-step suffix tree construction algorithms, such as

WaveFront [1,4,5,18] and ERa [1], do not provide sufficient scalability when

very long strings are introduced: first, at the subtree partition stage, the

frequency count for S-prefixes must be calculated from the input string

several times in succession; then, during the subtree construction phase,

both WaveFront [1,4,5,18] and ERa [1] duplicate the input string in each

computing node [1,4,5,18]. Therefore, it can be foretold that as the size of

the input string increases, these algorithms will become ineffective. To solve

the problem of scalability, this work introduces a new algorithm based on

ERa [1] by optimizing the approaches used in ERa [1] to achieve better

performance. The optimized new version of the generalized suffix tree

construction algorithm proposes efficient distributed parallel algorithms for

both the subtree partitioning and subtree construction stages. This section

describes the new algorithm’s implementation in further detail and consists

of the following steps: first, each stage of the suffix tree construction

algorithm is explained in detail which includes three main parts - data

distribution, parallel subtree partitioning, and parallel subtree construction;

next, the modeled algorithm’s complexity is calculated; finally, the

experimental performance test results are provided.

29

3.1 New Algorithm Preparation Stage - Data Distribution

To partition and construct the subtree in the data parallel paradigm,

first, a new data distribution strategy was developed and is described in detail

in this section.

To start, in order to ensure balance among the computing nodes, the

input string is divided into even parts, and each partition is assigned to a

computing node. Because the partitions are processed in parallel, an

additional tail is assigned to each partition, that is, to each divided part

(except for the last partition - there is no tail there) to ensure that the parallel

S-prefix frequency counting for splitting the subtree as well as the parallel

matching of the S-prefix for constructing the subtree are both done correctly

[19].

For a better understanding, let us assume that the input string is

divided into k sections, with each section being equal. For 𝑖 ∈ [0, 𝑘 − 1) the

split tail |𝑖| is the range of initial split symbols |𝑖 + 1|. The additional tail that

is added to each partition serves the following purposes: firstly, it ensures

the correctness of the parallel frequency calculation for each S-prefix;

secondly, it helps guarantee that the S-prefix is correct during the parallel

subtree construction stage. The next two paragraphs elaborate more on both

of the mentioned points.

For instance, to illustrate how the tail ensures the correctness of the

parallel frequency calculation for each S-prefix, the following example is

provided. When partitioning the subtree, the S-prefix frequencies of a certain

30

length need to be calculated. In this example, it is assumed that the length

of the counting window w is equal to four. Suppose the additional tail (CGG)

of the first partition is not taken into account. In that case, S prefixes with a

length of four in the initial positions from eight to ten will not be found - this

will lead to incorrectly calculated frequency counts of GTGC, TGCG, and

GCGG. For this reason, the first partition must contain an additional tail, the

length of which is at least equal to three. Hence, the tail attached to each

input partition plays an important role in ensuring the correctness of the

parallel frequency calculation [19].

Figure 4: The additional tail that is assigned to each partition

Next, it is shown how the additional tail is also used to guarantee the

correctness of the parallel S-prefix when the subtree is being constructed.

When the subtree is being constructed, it is important to find all occurrences

of the S-prefix; note that the coincidence of the S-prefix occurring in each

partition is also processed in parallel. Assuming that the input S-prefix is

TGC, as shown in Figure 4: The additional tail that is assigned to each

partition above, without an additional tail, the S-prefix TGC at the starting

position 9 will not be found in the first cleavage. Thus, the tail attached to

each input partition plays an important role in ensuring the correctness of the

parallel matching of the S-prefix.

31

Still, the key problem when distributing data is correctly determining

how long the tail for each partition should be. The frequency threshold,

marked as FM, is determined using a similar approach as used in the ERa

algorithm [1]. This frequency threshold should not be exceeded by an S-

prefix frequency from the set [1]. Next, to guarantee that the parallel

frequency is calculated correctly and that the S-prefix is matched in the

parallel paradigm without error, it is evident that the tail length must be at

least the same length as the maximum length of the S-prefixes in the set

which will further be referred to as maxPrefixLen. On average, the

maxPrefixLen value can be calculated based on the fact that the initial string

is derived from a random symmetric Bernoulli distribution [1,17]. In this

scenario, the frequency threshold is equal to the following:

𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
 × 𝑚𝑎𝑥𝑃𝑟𝑒𝑓𝑖𝑥𝐿𝑒𝑛.

Using this equation, the maxPrefixLen can be represented by the following

formula: log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀

An important remark regarding the tail length is that each partition is

assigned an additional tail of the same length when constructing a suffix tree;

however, when a generalized suffix tree is created, the length of the

additional tail could differ across partitions. Such a difference occurs since,

by design, the generalized suffix tree can store more than one string - each

partition created during the data partitioning step can potentially have several

input strings. Taking the latter into account, the tail length for the input

partition can be calculated in the following way: min(𝑙𝑒𝑛(𝑅𝐶), 𝑇𝐴𝐼𝐿_𝐿𝐸𝑁),

32

where RC is the content of the remaining last string in the input partition in

the subsequent partitions and TAIL_LEN is the default tail length.

33

3.2 New Algorithm - Parallel Subtree Partitioning Stage

After the data preparation step that was described in the previous

section, where the input string was split into parts otherwise referred to as

partitions, the distributed suffix tree was created. The process of creating the

final suffix tree consists of the following two main stages: the subtree

partitioning stage and the subtree construction stage. This section goes over

the key aspects of the subtree partitioning stage.

Figure 5: Overview of the parallel subtree partitioning stage algorithm

34

The subtree partitioning stage is based on parallel frequency counting:

at the start, each computing node independently accesses the partition and

constructs a local frequency trie; next, the corresponding S-prefix p together

with its frequency fp is obtained for each leaf node of the local frequency trie,

and the next step shuffles all the gathered pairs of the S-prefix and the

corresponding frequency (𝑝, 𝑓𝑝): the pairs (𝑝, 𝑓𝑝) are shuffled so that the

same computing node receives the results of calculating the local frequency

of the same S-prefix; when the local frequency calculations of the same S-

prefix are sent to a computing node, they are independently aggregated and

passed to the driver node which gathers the results and decides if the

subtree partitioning process is complete and can therefore be stopped. The

described process running on Spark [8] is illustrated in Figure 5: Overview of

the parallel subtree partitioning stage algorithm above. The next paragraphs

provide further details on the following key techniques that were used for

partitioning the subtree in a parallel manner: parallel frequency counting, the

frequency trie [9], and the incremental count window approach [19].

Calculating the occurrence frequency for the S-prefix is the main step

in splitting the subtree: considering that the input string is split into partitions

(during the data partitioning stage), the frequencies can be calculated in each

partition in parallel. Moreover, the before-mentioned additional tail that is

assigned to each partition provides a guarantee that the parallel frequency

calculation has been performed correctly.

In addition, to efficiently calculate the frequencies of S-prefixes, a

frequency trie data structure [9] was implemented. The frequency trie is a

tree-like data structure that stores the S-prefix frequency calculated from a

35

given input string S and is further defined as follows: first, the edge of the

frequency trie and the node of the frequency tree shall be marked as e and

v respectfully; label(e) indicates the character that occurred in S; path(v)

indicates the concatenation of edge values on the path from the root to the

node v; and label(v) indicates the frequency with which path(v) occurs in

string S. Therefore, it can be seen that the S-prefix p in the frequency trie is

represented by path(v), and fp is actually the label(v) in the frequency trie.

By definition, label(v) can be viewed as the summed-up labels of all child

nodes if node v is an internal node; in the same way, using the path

information and the label of all leaf nodes, the frequency trie can be

reconstructed. The frequency trie data structure is illustrated in Figure 6: The

frequency trie data structure below:

Figure 6: The frequency trie data structure

Considering this frequency trie characteristic, it is possible to reduce the total

number of iterations (that is, Input/Output accesses) by calculating the

36

frequencies of different lengthed S-prefixes by simply scanning the input

string.

The last applied technique for partitioning the subtree is the

incremental window count illustrated in Figure 5: Overview of the parallel

subtree partitioning stage algorithm. The general process of subtree

partitioning in a parallel manner is organized in multiple iterations, during

which the count window increases by the defined step size. Let winit denote

the initial count window; consequently, during the first iteration, the

frequencies of all winit lengthed S-prefixes are counted. When the first

iteration completes, the S-prefixes are added to either set P or set R

depending on whether the frequency of the S-prefix fits in the FM threshold

or not. The driver node checks whether the R set contains S-prefixes with

frequencies greater than the FM threshold - if so, the R set is broadcasted to

each performer to be processed further; if R is empty, the whole process

completes, and the iteration is terminated. In case of the next iteration taking

place, the window size is increased by the defined step size, denoted by

wstepSize, and, in this case, let the increased count window be denoted by

wnext; consequently, the frequencies of all S-prefixes that have a length that

fits into the [winit, wnext] interval are calculated in this iteration. As mentioned

before, the iteration process stops when the R set does not contain any more

S-prefixes with frequencies exceeding the FM threshold [19].

At the final step, a frequency trie is constructed using the S-prefixes in

the resulting set P, and redundant nodes are removed by trimming all child

nodes of a node in the frequency trie that has a label that does not exceed

37

the FM threshold [19]. The code snippet below provides the implementation

of the tree node obtained after subtree partitioning:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

internal class TreeNode : ISerializable

{

 var parent;

 var edges = new HashMap();

 var info;

 var count = 0;

 var shouldStop = false;

 public TreeNode() : this(null, null) { }

 public TreeNode(Info info) : this(null, info) { }

 public TreeNode(TreeNode node) : this(node, null) { }

 public TreeNode(TreeNode node, Info info)

 {

 parent = node;

 this.info = info;

 }

 public AddIndex(Pair pair){

 if (info == null){

 info = new Info();

 }

 info.suffixIndexes.AddIndex(pair)

 }

 public AddTerminalIndex(Pair pair){

 if (info == null){

 info = new Info();

 }

 info.terminalSuffixIndices.AddIndex(pair)

 }

 public AddTerminalIndex(List list){

 if (info == null){

 info = new Info();

 }

38

33

34

35

 info.terminalSuffixIndices.AddIndex(list)

 }

}

39

3.3 New Algorithm - Parallel Subtree Construction Stage

After the subtree partitioning stage that was described in the previous

section, the subtree construction stage took place that consisted of the

following steps: task allocation for subtree construction, local suffix sorting,

LCP-Merge [9] sorting, and subtree construction. An overview of the parallel

subtree construction process is depicted below in Figure 7: Overview of the

parallel subtree construction stage algorithm:

Figure 7: Overview of the parallel subtree construction stage algorithm

At the start, for constructing the subtree in parallel, subtree construction

tasks were distributed among computing nodes; afterward, each subtree was

40

constructed using a new multifaceted algorithm based on LCP-Merge [9].

The following paragraphs in this section go over the key aspects of the

subtree construction steps in further detail. For a better understanding, the

key algorithms - the LCP-Range aware comparison algorithm [9] and the

LCP-Merge Sorting [9] implementation are provided below:

The LCP-Range aware comparison algorithm [9,19]:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Input : String s1 and s2 LCP-Range of s1 to reference sr : lr1,

LCP-Range of s2 to reference sr : lr2.

Output : (sm, lg, lr), lr is the LCP-Range of lg (larger) to sm

(smaller)

//Compare offsets:

if lr1.offset > lr2.offset then

 return (s1, s2, lr2)

if lr1.offset < lr2.offset then

 return (s2, s1, lr1)

//Compare ranges:

range1Len = len(lr1.range)

range2Len = len(lr2.range)

rangeMin = min(range1Len, range2Len)

for i = 0 to rangeMin do

 if lr1.range[i] > lr2.range[i] then

 lrnew = (lr2.range[i], lr1.range[i, range1Len − 1], lr2.offset + i)

 return (s2, s1, lrnew)

 if lr1.range[i] < lr2.range[i] then

 lrnew = (lr1.range[i], lr2.range[i,range2Len − 1], lr1.offset + i)

 return (s1, s2, lrnew)

// s1 and s2 cannot be compared based on LCP-Range:

updatedOffset = − (rangeMin + lr1.offset)

lrunkown = (0, {0}, updatedOffset)

return (s1, s2, lrunkown)

41

26

The LCP-Merge Sorting algorithm overview [9,19]:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Input : S-prefix p, Set of LCP-Range arrays L

Output : Partially ordered LCP array PO_LCP

// Partially ordered LCP array PO_LCP

PO_LCP = {}

// k-way LCP-Range array

k = length(L)

// The loser tree

loserTree = createLoserTree(k)

firstPlayer s = getAllFirstPlayers(L)

smallest = init(L, firstPlayers)

add (smallest.loc, (0 , 0 , 0)) to PO_LCP

nextWayIndex = smallest.wIndex

repeat

 player = getNextPlayer(L[nextWayIndex])

 if player is NULL then

 //This way has no elements

 k = k – 1

 player = makeEndPlayer(nextWayIndex)

 smallest = rebuild(loserTree, player)

 if smallest.loc is not NULL then

 smallest.lcp = transform(smallest.lcpRange)

 add (smallest.loc, smallest.lcp) to PO_LCP

 nextWayIndex = smallest.wIndex

until k = 0;

return PO_LCP

The following paragraphs explain the algorithms in further detail with

examples.

42

First, it is important to point out the main factors that impact the task

allocation step’s performance and how these factors were addressed in this

work to improve the overall performance of the resulting parallel subtree

construction stage. Mostly, the distribution of subtree construction tasks is

affected by two main factors: the cost of input/output calls and keeping the

worker nodes balanced. The first factor can be explained by the fact that

each task must access the entire input string when the subtree is being built

- if there are too many small subtrees to process, the reading costs will be

high. As for the second factor, the subtrees can differ in size - if certain

computational nodes get overloaded while other nodes remain idle, it would

affect the overall performance. Therefore, a strategy for distributing tasks

with a balanced workload should be developed.

To solve both of the mentioned above problems, this work proposes a

fairly new task distribution strategy for constructing the subtree, which

implies using two algorithms in combination: the Bin-Packing algorithm [20]

and the Number-Partitioning algorithm [21,22].

The first problem - reducing the cost of reading a subtree structure -

can be addressed by grouping as many subtrees as possible, similar to ERa

[1], which will reduce the total number of read operations. Considering that

each formed group of subtrees has a total sum of S-prefixes that is not

greater than the FM frequency threshold, all subtrees in a group can be

constructed in one computing task. Minimizing the number of subtree groups

can be viewed as a container packaging task, this is where the Bin-Packing

algorithm [20] can be applied, where Bin is an S-prefix group and the

43

capacity of Bin corresponds to the FM threshold - the Bin-Packing algorithm

[20] solves the problem of finding the minimum number of groups that can

be formed taking into account that the sum of the frequencies in each group

is not greater than the FM threshold.

At the same time, the Bin-Packing algorithm [20] cannot guarantee that

for each group the load will be balanced. The problem of load balance can

be considered as a number distribution task [21,22]. The number

corresponds to the frequency of the S-prefix. Thus, by applying the Number-

Partitioning algorithm [21,22]. (algorithm for dividing numbers) it can be

ensured that the sum of frequencies in each group is as equal as possible.

Still, the algorithm for dividing numbers must know the total number of groups

in advance [21,22]. Hence, the Bin-Packing algorithm [20] and the Number-

Partitioning algorithm [21,22]. were used in combination in the parallel

subtree construction stage’s final implementation.

Furthermore, before proceeding to the parallel subtree construction

implementation details, it is important to define the total number of subtree

construction rounds. In practice, the degree of parallelism p can be

considered as the number of performers on the Spark platform [8,19].

Considering that the input string had been divided into k partitions, the

number of groups of subtree construction tasks is equal to k multiplied by p.

Thus, it can be derived that the distribution of all tasks to build a subtree

consists of k rounds.

As calculated in the previous paragraph, the parallel subtree

construction stage takes k rounds in total to complete. In each round, all

44

Spark Executors [8] process p groups of subtree construction tasks in

parallel. At the start of each round, all involved S-prefixes are broadcasted

to each Spark Executor [8] - worker nodes' processes. Next, in order to

generate a local LCP-Range array [9] for each S-prefix, the suffixes are

locally sorted on each executor in the following manner: each Spark Executor

[8] is given an input partition (a part of the split input string); using the input

partition, each executor starts by matching all S-prefixes in the

corresponding input partition; for instance, for an S-prefix p, all suffixes that

start with p in each input partition are sorted. Based on the sorted suffixes,

the local LCP-Range array [9,19] is then constructed. The LCP-Range array

[9] construction implementation is provided in the code snippet below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

public LCPRangeElement[] GenerateLCPRange(SegmentprefInfo prefInfo)

{

 var suffArray = new SharedBufferSuffixArray(

 prefInfo.Loc.ToArray,

 true

);

 var res = new LCPRangeElement[](suffArray.Number);

 res[0] = new LCPRangeElement(

 new Location(suffArray[0].Location, prefInfo.Length),

 0,

 suffArray[0].GetSegment(_bitsPerItem, prefInfo.Length)

);

 res[0].Content = suffArray[0].ToArrayAndTake(

 prefInfo.Length,

 _firstBuf

);

 res[0].Lcp = (0, new byte[], 0);

 res[0].ExistRemainItem = if(suffArray[0].Length -

prefInfo.Length <= Math.Max(_segmentLength, _firstBuf)) false else

true;

45

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

 var i = 1;

 var lcpMax = 0;

 while (i < res.Size) {

 var segment = suffArray[i].GetSegment(

 _bitsPerItem,

 prefInfo.Length

);

 var lcp = suffArray.LcpForBuild(

 i,

 _range,

 prefInfo.Length

);

 lcpMax = Math.Max(lcpMax, lcp.Location3);

 var loc = new Location(

 suffArray[i].Location,

 prefInfo.Length

);

 var remain = false;

 if (lcp == null) remain = false;

 else {

 var LcpExtraLength 0 ;

 if (lcp.Location2.Length != 0) LcpExtraLength =

lcp.Location2.Length - 1

 if (LcpExtraLength + lcp.Location3 >= suffArray[i].Length

- prefInfo.Length) remain = false

 else if (suffArray[i].Length - prefInfo.Length <=

_segmentLength) remain = false

 else remain = true

 }

 res[i] = MakeLCPRangeElement(loc, 0, segment, lcp, remain);

 i += 1;

 }

 return res;}

46

After the local suffix sorting step and LCP-Range array [9] construction,

the LCP-Range arrays [9] of the same S-prefix are grouped together. At the

same time, S-prefixes that are part of the same subtree construction task

group are located in the same partition, hence, all subtrees in the same group

can be built during a single computing task. During the LCP-Merge [9] sorting

step, all local LCP-Range arrays [9] of the same S-prefix are combined by

utilizing the LCP-Range aware comparison method [9] - as a result, a globally

ordered LCP array [9] is created. The next paragraph provides further details

on the LCP-Merge [9] sorting step and the LCP array [9] generation since

the aforementioned LCP-Range aware comparison method [9] is essential

for constructing the LCP array [9,10,11,12,13].

The parallel LCP-Range array [9] used for the final subtree creation

was constructed using the LCP-Range [9] data structure and the LCP-Range

aware comparison method [9]; the overall construction process consisted of

the following main stages: local suffix sorting, LCP-Merge [9,10,11,12,13]

sorting, and sorting at disordered intervals. An LCP-Range [9] data structure

was created for each suffix in the sorted suffix array.

The LCP-Range data structure is illustrated below in Figure 8: The

LCP-Range data structure. As shown, the LCP-Range data structure stores

information for comparing two strings and is represented by an element

consisting of three parts: the first character of the smaller string where both

strings start to differ, a sequence of characters of the larger string ranging

from the index where both strings start to differ until the specified range

length, and the offset number - the index where both strings start to differ -

47

hence, the defined triplet will be denoted in the following way: lcp_range(s1,

s2) = (c, range, offset).

Figure 8: The LCP-Range data structure

For a better understanding, consider the following example illustrated

below in Figure 9: The LCP-Range data structure for string S1=abcdeef and

string S2=abcdffj. Suppose there are two strings s1 and s2 each consisting

of the following character sequences: s1 = abcdeef and s2 = abcdffj. Among

the two strings, s1 is smaller than s2. Next, let us determine the longest

common prefix (LCP) of s1 and s2, which is LCP = abcd. This means that

the offset where the two compared strings (s1 and s2) start to differ will be

the index of the first character after the LCP, which is actually the length of

LCP: length of LCP = length of abcd = 4 (characters). Therefore, the offset

equals to 4 in the given example. The character at the offset index 4 in the

smaller string s1 is “e”. Finally, the range length is a constant defined

beforehand. In this example, let the range length be equal to 2; then the

48

character sequence in the larger string s2 starting at the offset index 4 and

ranging 2 characters in length is: “ff”. Therefore, the LCP-Range data

structure for s1 and s2 is calculated as the following triplet: lcp_range(s1, s2)

= (e, ff, 4). Here, the smaller string of the two is also referred to as the

reference string. Therefore, in the given example, the reference string is s1

since s1 is smaller than s2.

Figure 9: The LCP-Range data structure for string S1=abcdeef and string S2=abcdffj

Consequently, the LCP-Range array is an array that stores the LCP-

Range data structures - more specifically, the LCP-Range information of

suffix pairs that are following each other continuously in a lexicographically

sorted suffix array. For instance, for the following suffix sequence - suffix1,

suffix2, suffix3, suffix4, suffix5 - the LCP-Range information will be calculated

for each of the following pairs - <suffix1, suffix2>, <suffix2, suffix3>, <suffix3,

49

suffix4>, <suffix4, suffix5> - so, the resulting LCP-Range array will consist of

the following LCP-Range data structures: lcp_range(suffix1, suffix2),

lcp_range(suffix2, suffix3), lcp_range(suffix3, suffix4), lcp_range(suffix4,

suffix5) [9,19].

Considering that the most diminutive suffix (the smallest suffix) does

not have a reference string, the first element of the LCP-Range

[9,10,11,12,13,18,19] array was replaced with the initial character range of

the most diminutive suffix. Next, the LCP [9,19] between successive suffixes

was calculated. As previously mentioned, all LCP arrays [9] with the same

S-prefix that were generated after the local suffix sorting step were merged

together resulting in a globally ordered LCP array [9]. The merging process

was implemented based on LCP-Merge [9,19], using a multi-sort sorting tree

- the loser tree [9] which is a type of tournament tree [9]. The figure below

Figure 10: An example of a 4-way loser tree provides an example of the loser

tournament tree:

Figure 10: An example of a 4-way loser tree

50

It is important to note that the loser tree [9] has a remarkable property

- for each player from the same path, there is a fixed direct path moving in

the direction of the root node [9]. In particular, suppose that the final winner

of the tournament is path w, then the next player p from where w enters gets

to the top three losers. The player p is first compared with the LCP range

information stored in its parent node. The two LCP ranges have the same

reference string, which is the final winner of the last tournament. After

comparing the LCP ranges, the winner moves to the next parent node. The

winner information and the LCP range stored in the next parent node still

have the same reference string, so the LCP-Range comparisons may be

continued further on until the final winner is determined, so the rest of the

process is similar: every two LCP ranges that are compared contain the

same reference string [9,10,11,12,13,18,19]. Finally, the suffix subtree is

built.

51

3.4 New Algorithm Complexity Calculation

 Having implemented a new distributed optimized version of the ERa

generalized suffix tree construction algorithm [1], next the new algorithm’s

complexity was calculated and the corresponding calculations are provided

in the following paragraphs. Considering that the modeled algorithm consists

of two main stages - the parallel subtree partitioning stage and the parallel

subtree construction stage (parallel LCP array construction), the complexity

of each stage was calculated and is provided below.

The complexity of the parallel subtree partitioning stage can be

calculated based on the maximum length of the S-prefixes with frequencies

below the FM frequency threshold, the complexity of building the frequency

trie for each input partition, and the total number of iterations that took place

before there were no more S-prefixes with frequencies exceeding the FM

frequency threshold. Let maxPrefixLen denote the maximum length of the S-

prefixes with frequencies below the FM frequency threshold. On average,

maxPrefixLen takes up: 𝑂(log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀
) and, in the

worst case scenario, the maxPrefixLen takes up at most:

𝑂(𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔) Next, considering that the input string S is

divided into p partitions, the complexity of building the frequency trie for each

input partition can be calculated as: 𝑂(
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑝
× 𝑤), where p

denotes the number of split partitions; and w denotes the count window for

each iteration during the subtree partitioning step. In addition, the last factor,

the total number of iterations, can be calculated as: 𝑂(
𝑚𝑎𝑥𝑃𝑟𝑒𝑓𝑖𝑥𝐿𝑒𝑛

𝑤𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒
), where

wstepSize denotes the count window’s step size. Therefore, combining each

52

factor’s calculation together, the overall complexity of the parallel subtree

partitioning stage turns out to be: 𝑂(
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑝
×

log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀
) × 𝑝) However, since in practice

maxPrefixLen is very small, it is not significant and can be disregarded,

therefore, the overall complexity actually add up to 𝑂(𝑛).

The complexity of the parallel subtree construction stage can be

presented in two parts: the local sorting step’s complexity and the multi-way

LCP-Merge sorting step’s complexity. The local sorting step’s complexity

depends on the total number of suffixes that share the same starting S-prefix.

This total number in the worst case would be 𝑂(𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔),

nevertheless, since subtrees are partitioned beforehand, the total number is

reduced and can be at most equal to the FM frequency threshold. The local

sorting step’s complexity for an S-prefix can be calculated as:

𝑂(
𝐹𝑀

𝑝
× log2

𝐹𝑀

𝑝
× 𝑝), where p denotes the number of split partitions. Finally,

the multi-way LCP-Merge sorting step’s complexity can be calculated as:

𝑂(𝐹𝑀 × log2 𝑘)[9], where k is the total number of rounds in the parallel

subtree construction step.

53

3.5 Analyzing Performance Test Results

This section provides performance evaluation test results of the

modeled and implemented algorithm for constructing generalized suffix trees

on distributed platforms. In this work's implementation, Apache Hadoop [7]

was used as the virtual distributed file system, an overview of the Hadoop

distributed filesystem [7] is provided in Figure 11: The overview of the

Hadoop Distributed File System (HDFS) below. At the time of writing, we

conducted experiments on a local machine setup running on the Ubuntu

20.04 operating system, the Apache Spark [8] version that was used is 1.6.3,

and Apache Hadoop [7] 2.6.5 was used. In the future, the plan is to further

set up a physical cluster and run tests on larger data volumes to determine

the areas that should be further optimized as the load increases.

Figure 11: The overview of the Hadoop Distributed File System (HDFS)

To compare the performance gain of the implemented algorithm as

opposed to the original state-of-the-art ERa [1] algorithm, the ERa [1]

54

algorithm was also executed on the same machine setup in the same

environment to ensure that both implementations were compared in a fair

and correct manner. Furthermore, both the optimized algorithm and the

original ERa [1] implementation were given the same data set as the input.

In this work, open public data sets were used taken from the Kaggle [23]

platform, placed in the Hadoop distributed file system [7], and provided to

both of the compared algorithm implementations.

 During the whole process, execution statistics were output to the

console and saved to output files to be analyzed further, such as the time

that a certain process took during the three main stages of the suffix tree

construction algorithm: the data preparation stage, the subtree partitioning

stage, and the subtree construction stage. The code snippet below provides

an example of such statistics:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

[Stage 1] =====================> time:

Merge to File, time:423ms

repartition, time:280ms

Iter 1 start, currentLength = 2

counting: 23ms

File ends

[Stage 2] =====================> time:

collect: 6051ms

Terminal Num for length 2:2

prefix Num for length 2:70748

filter: 5ms

divide, time:6427ms

roots num:50 sum :70750

groupingMap, time:6ms

Grouping Num: 86 size:50

iters:1

55

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

iter 0: mean: 736 sigma:1305.0919507835454

======================================

[Stage 3] Building group 1 start

======================================

broadcast, time:4ms

LcpGen, time:16ms

groupByKey, time:10ms

subTreeMaterial, time:4ms

trieGraph, time:33ms

single Node LcpGen, time:9ms

…

firstMerge complete, time:2ms

ersort iteration complete, time:250ms

build suffix tree for root:C, num: 1235

…

Building group 1vcomplete. time: 17135ms

======================================

my, time: 24359ms

======================================

In the provided log fragment, on line #1 it can be seen that the first stage

takes place - the data preparation step where the input string is partitioned

and distributed among the processes, see section 3.1 New Algorithm

Preparation Stage - Data Distribution where this stage was described in

detail. Next, on line #7 it is shown how the second stage is performed - the

subtree partitioning stage, the implementation of which was described in

detail in section 3.2 New Algorithm - Parallel Subtree Partitioning Stage of

this work. Finally, on line #19 the final subtree construction stage statistics

are logged to the output, see section 3.3 New Algorithm - Parallel Subtree

Construction Stage for a detailed description of the subtree construction

stage’s implementation.

56

 The Figure below Figure 12: Graph comparison of the optimized and

original ERa algorithm provides a graph representation comparison of both

the optimized and original algorithm. From the compared execution time

statistics it can be concluded that the new approach for distributing

generalized suffix tree construction is efficient and did indeed provide a

performance gain of roughly 2-2.5 times faster than the aforementioned ERa

[1] algorithm.

Figure 12: Graph comparison of the optimized and original ERa algorithm

 Therefore, it can be stated that the optimization techniques applied in

the algorithm that was modeled in this work for the suffix tree construction

process on distributed platforms did improve the overall performance. As

mentioned in section 2.2 The Elastic Range (ERa) Algorithm For Suffix Tree

Construction, one of the performance gain causes is that the frequency

counting algorithm used in ERa [1] for subtree partitioning is sequential.

Furthermore, the count window is only extended by one, resulting in many

57

iterations and high I/O costs. On the other hand, in this work, the proposed

algorithm uses a parallel frequency counting method to accelerate the

subtree partitioning stage. Furthermore, the step size of the count window is

increased by a larger number, so the number of iterations is reduced. As a

result, the proposed algorithm outperforms ERa [1] at the subtree partitioning

stage and provides better results in the overall performance measurements.

In future work, the plan is to improve the proposed algorithm even further

and achieve a greater performance gain by using in-memory distributed

storage.

58

CONCLUSION

This work was inspired by the desire to enhance suffix tree

construction when working with large alphabets and very long strings that

exceed the available memory capacity. As a result, a highly scalable

algorithm for large-scale generalized suffix tree construction on distributed

parallel platforms was modeled. The entire process was presented in three

main steps: the data preparation step, where the input string was partitioned,

and the partitions were distributed among computing nodes; the subtree

partitioning step; and, finally, the subtree construction step.

To partition the subtree and construct the subtree in the data parallel

paradigm, a data-sharing strategy was applied. Then an efficient algorithm

for subtree partitioning based on parallel frequency counting was proposed.

Next, we looked at an effective strategy for allocating subtree construction

tasks that can reduce reading costs and achieve load balance on individual

nodes. Finally, during the subtree construction phase, we used the LCP-

Range [9,10,11,12,13] data structure and the multi-faceted LCP-Merge

[9,10,11,12,13] sorting algorithm to build the LCP array [9,10,11,12,13] in a

parallel manner.

Experimental results on Apache Spark [8] revealed that the modeled

algorithm significantly outperforms the state-of-the-art ERa [1] algorithm by

about 2-2.5 times acceleration difference; therefore, the resulting algorithm

for distributed generalized suffix tree construction is quite appropriate for

applications that wish to improve large text data operations and that are

59

based on a distributed system. In addition, the modeled algorithm can

efficiently construct a generalized suffix tree for a set of strings.

60

REFERENCES

1. Essam Mansour, Amin Allam, Spiros Skiadopoulos, ERA: Efficient

Serial and Parallel Suffix Tree Construction for Very Long Strings,

Proceedings of the VLDB Endowment (PVLDB), Vol. 5, No. 1, pp. 49-

60 (2011)

2. Martin Kleppmann Designing Data-Intensive Applications. O'Reilly

Media, Inc., March 2017. ISBN: 9781449373320

3. M. Comin, M. Farreras, Efficient parallel construction of suffix trees

for genomes larger than main memory, in: Proceedings of the 20th

European MPI Users’ Group Meeting (EuroMPI), ACM, 2013, pp.

211–216

4. Tshepo Kitso Gobonamang, Dimane Mpoeleng,Counter based suffix

tree for DNA pattern repeats,Theoretical Computer Science,Volume

814,2020,Pages 1-12,ISSN, 0304-

3975,https://doi.org/10.1016/j.tcs.2019.12.014

(https://www.sciencedirect.com/science/article/pii/S03043975193078

93)

5. Ghoting A., Makarychev K. (2011) Suffix Trees. In: Padua D. (eds)

Encyclopedia of Parallel Computing. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-09766-4_464

6. Computing and Combinatorics: 8th Annual International Conference,

COCOON 2002, Singapore, August 15-17, 2002 Proceedings, Ibarra,

O.H. Zhang L.,

https://books.google.com.ua/books?id=3XRrCQAAQBAJ

7. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

8. https://spark.apache.org/

https://doi.org/10.1016/j.tcs.2019.12.014
https://www.sciencedirect.com/science/article/pii/S0304397519307893
https://www.sciencedirect.com/science/article/pii/S0304397519307893
https://doi.org/10.1007/978-0-387-09766-4_464
https://books.google.com.ua/books?id=3XRrCQAAQBAJ
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org/

61

9. Parallel Multiway LCP-Mergesort, A Eberle, Andreas, 2014, english,

Eberle2014_1000042457, 10.5445/IR/1000042457,

http://dx.doi.org/10.5445/IR/1000042457

10. https://www.cs.helsinki.fi/u/tpkarkka/opetus/11s/spa/lecture10.p

df

11. Ng, Waihong & Kakehi, Katsuhiko. (2008). Merging String

Sequences by Longest Common Prefixes. Ipsj Digital Courier. 4. 69-

78. 10.2197/ipsjdc.4.69.

12. Bingmann, T., Eberle, A., and Sanders, P., “Engineering

Parallel String Sorting”, 2014.

13. Barsky, Marina & Stege, Ulrike & Thomo, Alex. (2010). A

survey of practical algorithms for suffix tree construction in external

memory. Software: Practice and Experience. 40. 965 - 988.

10.1002/spe.960.

14. E. Ukkonen, On-line construction of suffix trees, Algorithmica

14 (3) (1995) 249–260

15. Zaki, Mohammed J. and Benjarath Phoophakdee. “Trellis:

genome-scale disk-based suffix tree indexing algorithm.” (2007).

16. Matteo Comin and Montse Farreras. 2013. Efficient parallel

construction of suffix trees for genomes larger than main memory. In

Proceedings of the 20th European MPI Users' Group Meeting

(EuroMPI '13). Association for Computing Machinery, New York, NY,

USA, 211–216. https://doi.org/10.1145/2488551.2488579

17. https://www.sciencedirect.com/topics/agricultural-and-

biological-sciences/bernoulli-distribution

18. P. Flick, S. Aluru, Parallel construction of suffix trees and the

all-nearestsmaller-values problem, in: Proceedings of the 31st IEEE

http://dx.doi.org/10.5445/IR/1000042457
https://www.cs.helsinki.fi/u/tpkarkka/opetus/11s/spa/lecture10.pdf
https://www.cs.helsinki.fi/u/tpkarkka/opetus/11s/spa/lecture10.pdf
https://doi.org/10.1145/2488551.2488579
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bernoulli-distribution
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bernoulli-distribution

62

International Parallel and Distributed Processing Symposium

(IPDPS), IEEE, 2017, pp.12–21, doi: 10.1109/IPDPS.2017.62

19. Guanghui Zhu, Chen Guo, Le Lu, Zhi Huang, Chunfeng Yuan,

Rong Gu,Yihua Huang, DGST: Efficient and scalable suffix tree

construction on distributed data-parallel platforms, Parallel Computing

20. https://developers.google.com/optimization/bin/bin_packing

21. Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt.

2018. Optimal Multi-Way Number Partitioning. J. ACM 65, 4, Article

24 (August 2018), 61 pages. https://doi.org/10.1145/3184400

22. Richard E. Korf, A complete anytime algorithm for number

partitioning, Artificial Intelligence, Volume 106, Issue 2,1998, Pages

181-203, ISSN 0004-3702, https://doi.org/10.1016/S0004-

3702(98)00086-1.

(https://www.sciencedirect.com/science/article/pii/S00043702980008

61)

23. https://www.kaggle.com/datasets

https://developers.google.com/optimization/bin/bin_packing
https://doi.org/10.1145/3184400
https://doi.org/10.1016/S0004-3702(98)00086-1
https://doi.org/10.1016/S0004-3702(98)00086-1
https://www.sciencedirect.com/science/article/pii/S0004370298000861
https://www.sciencedirect.com/science/article/pii/S0004370298000861
https://www.kaggle.com/datasets

