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ABSTRACT 

Generalized suffix trees [1,2] are applied in a vast majority of 

applications for accelerating string-based operations and processing text 

data more efficiently. With the increase in volumes of data that need to be 

processed, several approaches have been proposed to parallelize 

generalized suffix tree construction in order to speed up the building process. 

Still, when processing large alphabets where the input string exceeds the 

available memory capacity, constructing the corresponding generalized 

suffix tree becomes a challenge. 

 

The aim of this work is to distribute generalized suffix tree construction, 

so the process is efficient in terms of time complexity and memory 

consumption. A distributed approach to constructing the suffix tree will allow 

working with large alphabets and very long strings that exceed the available 

memory capacity. In this work, an efficient and highly scalable algorithm for 

constructing generalized suffix trees on distributed parallel platforms was 

modeled. The experimental results proved that the modeled algorithm’s 

efficiency is no less than the before known Elastic Range algorithm (ERa) [1] 

while out-performing ERa [1] on specific data. 
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INTRODUCTION 

The suffix tree [1,2] is a fundamental data structure for processing 

string data and is used for numerous tasks, such as text processing and 

information retrieval. The suffix tree data structure stores a string by indexing 

all possible suffixes of that string and is applied in a variety of systems to 

provide swift operations on strings. For example, a widely used string 

operation is finding a substring in a string. A suffix tree can find the substring 

in 𝑂(|𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔|). In contrast, the same operation without it would take 

significantly longer, that is, 𝑂(|𝑠𝑡𝑟𝑖𝑛𝑔| + |𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔|), considering that the 

searched string is in practice much longer than the requested substring. 

Therefore, suffix trees are utilized to accelerate string operations and work 

with strings more efficiently. 

 

Considering the intense increase in volumes of data that need to be 

processed, constructing the corresponding suffix tree takes up a significant 

amount of time [3,4,5,6]. To solve the problem and optimize the suffix tree 

construction process, several parallel suffix tree construction algorithms 

have been proposed based on MPI [3]; however, they are limited in terms of 

scalability and fault tolerance when large data volumes are introduced. At 

the same time, the demand for effective algorithms for constructing suffix 

trees on distributed parallel platforms such as Hadoop [7] and Apache Spark 

[8] is constantly increasing.  

 

This work introduces an efficient and highly scalable algorithm for 

constructing generalized suffix trees on distributed parallel platforms. The 



8 

modeled algorithm consists of two main stages: parallel subtree partitioning 

and parallel subtree construction. 

 

During the first stage, a new data distributing strategy is implemented. 

Next, an efficient subtree division algorithm is proposed, which constructs 

the LCP-array [9,10,11,12,13] in a parallel manner, that is, parallel 

calculation of how many times a substring occurs. In order to improve load 

balancing and reduce data reading costs, an effective strategy for distributing 

tasks among the parallel processes is provided.  

 

During the second stage, the parallel subtree construction uses the 

LCP-Range data structure and multilateral LCP-Merge sorting algorithm 

[9,10,11,12,13] for parallel construction of the LCP-array [9,10,11,12,13] 

Also, for comparison, a well-known algorithm for constructing suffix trees 

Elastic Range (ERa) [1] is taken into account and further modified to improve 

its capabilities to process strings with lengths that exceed the available 

memory and adapted to run on the Apache Spark platform [8]. The purpose 

of this work is to model an algorithm for constructing a distributed generalized 

suffix tree that is no worse in terms of efficiency than the previously known 

Elastic Range algorithm [1] and that outperforms it on specific data.  

 

The rest of this work is organized in the following three sections: the 

first section Section 1: Background On Suffix Trees And Their Application 

provides background information on suffix trees and generalized suffix trees, 

their characteristics, and application; the next section Section 2: Suffix Tree 

Construction Algorithms provides a comparison of existing suffix tree 

construction algorithms along with their pros and cons as well as provides 
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an overview of the ERa [1] generalized suffix tree construction algorithm; 

finally, the third section Section 3: Modeling A New Distributed Generalized 

Suffix Tree Construction Algorithm By Optimizing ERa proposes an 

improved algorithm for constructing distributed generalized suffix trees and 

provides details on the applied techniques for outperforming the 

aforementioned ERa [1] algorithm - as a result, the modeled algorithm’s 

complexity was calculated and the experimental performance comparison 

results were provided. 
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Section 1: Background On Suffix Trees And Their Application 

 1.1 Introducing Suffix Trees 

 

 
Figure 1: Example of the suffix tree data structure 

 

The suffix tree [1], shown in Figure 1: Example of the suffix tree data 

structure, is a tree that indexes all suffixes in a string; the suffix tree is a 

fundamental data structure designed to swiftly process operations on strings, 

for example, phrase matching, finding the longest repeated substring in a 

character sequence, or revealing the maximum repeated phrase in a long 

sequence of characters [1,2]. A generalized suffix tree [1] is considered to 

be an extended version of a suffix tree, except this data structure stores not 

just one string but several - it indexes a set of suffixes of each string; 

therefore, the generalized suffix tree provides more flexibility for speeding up 
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various text-based operations. Being performance efficient when it comes to 

string processing, the generalized suffix tree data structure is widely 

incorporated in many applications to accelerate different text processing 

tasks, such as data compression, clustering of documents, etc. 

 

For example, common text-based tasks that come across in the data 

analysis field, especially big data, are searching for a phrase or filtering, for 

instance, quickly performing the begin and not begin operation on a specific 

part of the text data. In such cases, if the complete data set (the string data 

collection) is indexed in a suffix tree, all lines in the data set that start with 

the searched phrase can be returned under 𝑂(|𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑𝑃ℎ𝑟𝑎𝑠𝑒| time, which 

is much faster than if a suffix tree wasn’t used which would have been 

𝑂(|𝑒𝑛𝑡𝑖𝑟𝑒𝑆𝑡𝑟𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛| + |𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑𝑃ℎ𝑟𝑎𝑠𝑒|) time. Similarly, a 

significant acceleration would be gained for other string operations such as 

phrase matching, finding the longest substring that is present in both strings, 

as well as finding all common substrings in a string data collection 

[1,2,14,15,16,17,18]. 

 

With the advent of big data, there is a growing demand for efficient 

algorithms for building a suffix tree for large alphabets [4,5]. However, 

building a suffix tree is a complex process that imposes the usage of 

intermediate data that takes up a significant portion of the available memory 

[6]. In addition, the process of building a suffix tree for massive data sets is 

a very time-consuming task [4,5,6]. 

 

To speed up the process of constructing the suffix tree and make it 

possible for data beyond the machine’s available memory, a few parallel 



12 

algorithms were purposed that are designed to execute on several 

machines. Examples of such algorithms are WaveFront [1,4,5,18], PCF 

[1,16,18], and ERa [1], the latter is described in further detail in section 2.2 

The Elastic Range (ERa) Algorithm For Suffix Tree Construction of this work. 

However, it is important to consider that Both WaveFront [4,5,18] and ERa 

[1] duplicate the entire string data collection for each of the computing nodes, 

with each node processing the assigned subtree construction tasks [1,19], 

which obviously creates a scalability problem when massive data volumes 

are introduced. 

 

Fast creation of suffix trees for an input string data collection is an 

extremely important task since, for instance, modern DNA sequencers can 

process multiple samples per hour, while financial programs generate 

continuous data streams that must be indexed. If the suffix tree can be stored 

in memory, there are already many quick and elegant solutions to build the 

suffix tree itself that will cope with the task in 𝑂(|𝑆|), such as the Ukkonen's 

algorithm [14], which maintains great performance, until the data goes 

beyond the memory available on the machine - in such case, its efficiency 

begins to drop. What is more, the built tree is in fact many times larger than 

the initial string data collection; the constructed suffix tree can increase the 

memory usage by more than 30 times [6]. 

 

At the same time, distributed parallel computing infrastructures such 

as Hadoop [7] and Spark [8] have become standards for large-scale data 

processing. They incorporate essential characteristics such as high 

scalability, ease of use, and sufficient fault tolerance. Unfortunately, most 

existing MPI-based parallel suffix tree algorithms [3] are unlikely to integrate 
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with the mentioned platforms. Attempts have been made to create a 

distributed suffix tree on these platforms, still, they impose the same limit in 

terms of scalability since the string data collection is duplicated for each 

computing node (as in WaveFront [1,4,5,18] and ERa [1]). Moreover, these 

approaches are not very effective for processing very long rows. Therefore, 

in this work, a new algorithm based on ERa [1] for constructing a generalized 

suffix tree on distributed parallel data platforms was created, which remains 

efficient while at the same time providing great scalability. The modeled 

algorithm supports indexing suffixes for a variety of long strings, ranging from 

one long string to several long strings of different lengths. 

 

In this work, to perform distributed processing, all rows of the string 

data collection were merged into a single very long row - further referred to 

as the input string - and then the input string was partitioned into sections. 

Each partition (in other words, section) was assigned to a computing node 

and further processed. The rest of the algorithm consists of two main 

processing stages: parallel subtree partitioning and parallel subtree 

construction. The entire algorithm was modeled according to the following 

plan outline: 1. first, a new data-sharing strategy for subtree separation and 

subtree construction in the data parallelism paradigm was developed; 2. 

then, an efficient subtree distribution algorithm based on the parallel method 

of calculating the frequency of occurrence of the substring was introduced; 

3. to improve load balance and reduce reading costs, an effective strategy 

for allocating subtree construction tasks was proposed; 4. at the subtree 

construction stage, a new LCP-Range [9] data structure and a versatile LCP-

Merge [9] sorting algorithm for parallel LCP array [9] construction was 

provided; 5. the modeled prototype was tested on the Spark platform [5] and 
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the performance was experimentally evaluated and compared to the original 

ERa [1] algorithm implementation. 

 

The next paragraph provides more background on generalized suffix trees 

and their characteristics. 
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1.2 Introducing Generalized Suffix Trees 

For illustration purposes, consider the following string S equal to 

BANANA and consisting of the following suffixes: A, NA, ANA, NANA, 

ANANA, BANANA. To represent and save these suffixes in a suffix tree, we 

can construct a tree for string S, where $ denotes the terminal symbol. In 

addition, concatenating node values on the way from the root to a particular 

leaf results in one of the before-mentioned suffixes in string S; each leaf 

contains a value that indicates the starting position of the corresponding 

suffix in string S [1,2,3,4,5,6]. See Figure 2: The suffix tree data structure for 

string S=BANANA below. 

 

 

Figure 2: The suffix tree data structure for string S=BANANA 
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Next, for a general definition, let’s denote a set of characters that will 

act as the alphabet: let S = s0,s1...sn−1 $, where si ∈ ∑, i ∈ [0, n−1] and $ ∉ 

∑. Then, the suffix S, which is denoted by Si, is a sequence of si...sn−1 $, i 

∈ [0, n−1]; similarly, the prefix of the suffix Si is a sequence of si...sj, j ∈ [i, 

n−1]. In the rest of this work, the prefix of the suffix Si shall be referred to as 

the S-prefix. An important remark is that the terminal symbol $ is unique and 

guarantees that no suffix is a prefix of another suffix. Consequently, the suffix 

tree T is a tree that indexes all suffixes of string S. The properties and 

characteristics of a suffix tree are listed below as follows: 

 

● Each internal node, except for the root node, has at least two child nodes, 

and each edge is denoted by a non-empty substring S. 

● No two edges of a node can contain a value starting with the same initial 

symbol. 

● There are exactly n leaves marked from 0 to n−1. For each leaf vi, with i 

ranging respectfully from 0 to n-1, concatenation of boundary values from 

the root to the leaf vi corresponds to the suffix Si [1,2,3,4,5,6].  

 

Similar to a suffix tree, a generalized suffix tree is a tree that indexes 

all suffixes for a set of strings; the suffixes of each string are presented in the 

generalized suffix tree. A typical approach for constructing a generalized 

suffix tree for a set of strings is to add a unique terminal symbol (UTS) to 

each string and then merge all strings together and build a suffix tree for the 

merged string; in this case, the introduced terminal helper symbol that is 

supplemented in each string D is used to make sure that no suffix is a 

substring of another suffix. In this paper, all strings are merged directly 

without adding a terminal symbol to each string: instead, in this 
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implementation, information about the location of each string in the merged 

string, more specifically, the start and end position of each string in the 

merged string, can be used to distinguish between different strings in the 

merged string [1,2,3,4,5,6]. 

 

 

Figure 3: Example of the generalized suffix tree data structure 

 

An example of a generalized suffix tree for a set of strings D = {ABAB, 

BABA} is provided above in Figure 3: Example of the generalized suffix tree 

data structure. Note that the leaves of the tree contain a value consisting of 
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two parts: the string ID and the suffix starting position. Considering that a 

suffix tree is a special case of the generalized suffix tree where the size of 

the set of strings D is equal to one (meaning a single string is being stored), 

it can be concluded that the algorithm for constructing a suffix tree also 

applies to the generalized version making it possible to focus on constructing 

a suffix tree for one long string [1,2,3,4,5,6]. 
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Section 2: Suffix Tree Construction Algorithms 

2.1 Existing Algorithms Analysis And Comparison 

Suffix tree construction algorithms are divided into three main 

categories: in-memory (those that store data entirely in RAM), disk-based 

(those that store data on one machine), and, finally, those that are 

distributed. The following paragraphs go over each category, analyzing and 

comparing the corresponding algorithms against the following criteria: 

complexity, memory usage, string access, and the ability to be parallelized. 

 

Category In-memory Disk-based Distributed 

Algorithm Ukkonen TRELLIS WaveFront 

Complexity O(n) O(n^2) O(n^2) 

Memory usage Poor Good Good 

String access Random Random  Sequential 

Can be parallelized No No Yes 

Table 1: Existing suffix tree construction algorithms comparison 
 

Approaches that store everything in memory perform well and fast, for 

example, the Ukkonen suffix tree construction algorithm [14]; as shown in 

Table 1: Existing suffix tree construction algorithms comparison above, they 

have linear complexity as long as the input string can be stored in memory. 

However, as soon as it is required to save an intermediate result on the disk, 

the performance drops and such algorithms become inefficient.  
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The problem of limited memory is solved by algorithms that allow you 

to dump intermediate results to the disk, by dividing the tree into subtrees 

that are stored separately - the disk-based suffix tree construction 

algorithms, such as TRELLIS [15]. If necessary, the required part can later 

be retrieved by easily lifting it in memory. When the correct suffix is found, 

the corresponding subtrees are combined into the appropriate full suffix tree. 

The process of building subtrees can be easily parallelized, but the final step 

that requires merging the subtrees into a complete tree requires good 

coordination and is already quite difficult to parallel.  

 

The last category includes algorithms that work on different machines, 

in other words, that are distributed. For instance, an example of a well-known 

distributed algorithm is WaveFront [1,4,5,18]. WaveFront [1,4,5,18] works 

with the entire row on independent parts of the resulting suffix tree. The suffix 

tree is partitioned using variable-length S-prefixes, making sure that each 

subtree is currently in memory. Because the string S may not be in memory, 

the algorithm may need to read the input string S several times. To minimize 

the cost of the read operation, WaveFront [1,4,5,18] addresses the string S 

strictly in sequential order. In addition, each subtree is processed 

independently without the merge phase, so the algorithm is easily 

parallelized [1,4,5,18]. 
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2.2 The Elastic Range (ERa) Algorithm For Suffix Tree 

Construction 

Let us consider the ERa algorithm [1] that is noted for being able to 

process very long strings and work with large alphabets; aside from 

performing just as fast as the existing algorithms that are designed for a 

limited amount of memory, ERa [1] is also very easy to parallelize.  

 

The algorithm considers the machine’s memory capacity and divides 

the task of constructing the suffix tree vertically by partitioning the given suffix 

tree into independent subtrees, ensuring that the given tree can be stored in 

memory and does not exceed the available memory [1].  

 

The resulting subtrees are then divided horizontally into parts, in such 

a way that the resulting parts can further be processed in memory in one 

operation. At the same time, at each step, the horizontal division changes 

and adjusts to the shape of the tree to maximize memory usage. The ERa 

algorithm [1] goes even further and combines the subtrees in order to divide 

the read operation cost when the input string S is read from the disk storage 

[1].  

 

In addition, horizontal partitioning is applied independently to each 

subtree from top to bottom; the ERa algorithm [1] dynamically adjusts the 

width of each horizontal partition based on how many paths in the subtree 

are still undergoing processing which enables ERa [1] to allocate only a small 

amount of memory for each buffer, making the algorithm cache-friendly and 

at the same time minimizing overhead cost. Moreover, each group 
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represents an independent unit - groups can be processed sequentially or in 

parallel. The resulting subtrees are then collected to represent the final suffix 

tree that is extremely lightweight and consists of S-prefixes, which are used 

for vertical partitioning [1]. 
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2.2.1 Vertical Partitioning 

To describe the vertical partitioning step, the following terms are 

introduced. Let p be the S-prefix, Tp - the subtree corresponding to the S-

prefix p, and Fp - the number of suffixes corresponding to the S-prefix p. 

Considering that each suffix corresponds to a node leaf in the subtree Tp, it 

can be derived that the number of internal nodes corresponds to the number 

of leaves which takes up the following number of bytes in size: 𝑇𝑝 −

2 × 𝐹𝑝 × 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒) bytes [1].  

 

Next, let M denote the amount of memory reserved for the subtree, 

meaning that the subtree Tp can fit in memory only when the number of 

suffixes Fp (that correspond to the S-prefix p) is less than or equal to FM: 

𝐹𝑝 <= 𝐹𝑀, with FM being calculated as: 
𝑀

2×𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑟𝑒𝑒𝑁𝑜𝑑𝑒)
, where M denotes 

the amount of reserved memory for the subtree [1]. 

 

In order to split the tree T into subtrees that can be placed in the 

reserved memory M, the idea of S-prefixes of variable length is utilized. The 

algorithm begins by creating a workgroup that contains only one S-prefix for 

each character of the alphabet. Then the entire input string S is scanned to 

calculate the frequency of occurrences of each S-prefix for each character 

of the alphabet. At the end of this step, each prefix that occurs with a 

frequency that is at least equal to FM is removed from the workgroup. Each 

remaining prefix is increased by one, and the process is then repeated until 

the workgroup becomes empty [1].  
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However, this approach has a drawback since the resulting trees 

become unbalanced. When parallelized, we are faced with a significant 

disadvantage: certain nodes that contain small subtrees could remain idle at 

the same time while other nodes are overloaded calculating large parts of 

subtrees obtained after partitioning. In order to solve this problem, at the end 

small trees should be grouped into a single group - this will optimize the work 

of nodes during parallelization and further reduce the cost of disk read 

operations that are known to be computationally intensive. The resulting 

algorithm for vertical partitioning is provided in the code snippet below [1]: 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Input: string S, alphabet А, frequency threshold FM 

Output: tree set VirtualTrees 

VirtualTrees := nul 

P := nul // final S-prefix list 

P’:= (for each symbol s ∈ A do generate S-prefix pi = s) 

repeat 

   scan the input string S 

   fp := calculate occurrence frequency of each S-prefix pi in P` 

   for each pi in P` do 

      if ( 0 < fpi<= FM ) then add pi to P 

      else (for each character s ∈ A do add pis into P’ ) 

      remove pi from P’ 

until P` = nul 

sort Р in reverse fpi order 

repeat 

    G := nul //S-prefix group in tree 

    add Р.head into G and remove it from Р 

    next := next element in Р 

    while not end of Р 

      if fits into the available threshold for construction then 

         add next into G and remove the corresponding element from Р 

     next := next element in Р 



25 

23 

24 

25 

26 

   add G into VirtualTrees 

until P = nul 

return VirtualTrees 
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2.2.2 Horizontal Partitioning 

During the horizontal partitioning step, the ERa algorithm [1] constructs 

a suffix subtree Tp for the S-prefix p, where Tp fits into the available memory. 

This process utilizes properties of the suffix tree that were not used in 

previous approaches: first of all, access to the tree on the disk is optimized; 

next, the tree is modified to save even more memory [1].  

 

The preparation stage is performed using the SubTreePrepare 

algorithm [1], which extends the optimized version of BranchEdge [1] that is 

required to scan the input string and construct a subtree and uses a new 

intermediate data structure instead of using a subtree for the subtree 

construction process [1]. 

 

The construction stage is performed using the BuildSubTree algorithm 

[1], which uses the data structure created during the preparation phase to 

create the suffix subtree. By separating the subtree construction stage from 

the preparation stage, we localize memory access and, therefore, avoid 

costly traversals of the partial subtree for each new node [1].  

 

The essence of the proposed method is the intermediate data 

structure, consisting of the following two arrays: array L for storing the tree 

leaves, and array B for storing information about the tree branches. More 

precisely, the array L retains the position of the input S-prefix p in S, that is, 

the leaves of the subtree [1].  
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Next, we will focus on developing an algorithm for constructing outside 

the main suffix tree on distributed parallel data platforms, which are in turn 

standards for big data processing due to their high scalability, ease of use, 

and sufficient fault tolerance. 
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Section 3: Modeling A New Distributed Generalized Suffix Tree 

Construction Algorithm By Optimizing ERa 

Existing two-step suffix tree construction algorithms, such as 

WaveFront [1,4,5,18] and ERa [1], do not provide sufficient scalability when 

very long strings are introduced: first, at the subtree partition stage, the 

frequency count for S-prefixes must be calculated from the input string 

several times in succession; then, during the subtree construction phase, 

both WaveFront [1,4,5,18] and ERa [1] duplicate the input string in each 

computing node [1,4,5,18]. Therefore, it can be foretold that as the size of 

the input string increases, these algorithms will become ineffective. To solve 

the problem of scalability, this work introduces a new algorithm based on 

ERa [1] by optimizing the approaches used in ERa [1] to achieve better 

performance. The optimized new version of the generalized suffix tree 

construction algorithm proposes efficient distributed parallel algorithms for 

both the subtree partitioning and subtree construction stages. This section 

describes the new algorithm’s implementation in further detail and consists 

of the following steps: first, each stage of the suffix tree construction 

algorithm is explained in detail which includes three main parts - data 

distribution, parallel subtree partitioning, and parallel subtree construction; 

next, the modeled algorithm’s complexity is calculated; finally, the 

experimental performance test results are provided.  
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3.1 New Algorithm Preparation Stage - Data Distribution 

To partition and construct the subtree in the data parallel paradigm, 

first, a new data distribution strategy was developed and is described in detail 

in this section.  

 

To start, in order to ensure balance among the computing nodes, the 

input string is divided into even parts, and each partition is assigned to a 

computing node. Because the partitions are processed in parallel, an 

additional tail is assigned to each partition, that is, to each divided part 

(except for the last partition - there is no tail there) to ensure that the parallel 

S-prefix frequency counting for splitting the subtree as well as the parallel 

matching of the S-prefix for constructing the subtree are both done correctly 

[19].  

 

For a better understanding, let us assume that the input string is 

divided into k sections, with each section being equal. For 𝑖 ∈ [0, 𝑘 − 1) the 

split tail |𝑖| is the range of initial split symbols |𝑖 + 1|. The additional tail that 

is added to each partition serves the following purposes: firstly, it ensures 

the correctness of the parallel frequency calculation for each S-prefix; 

secondly, it helps guarantee that the S-prefix is correct during the parallel 

subtree construction stage. The next two paragraphs elaborate more on both 

of the mentioned points. 

 

For instance, to illustrate how the tail ensures the correctness of the 

parallel frequency calculation for each S-prefix, the following example is 

provided. When partitioning the subtree, the S-prefix frequencies of a certain 
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length need to be calculated. In this example, it is assumed that the length 

of the counting window w is equal to four. Suppose the additional tail (CGG) 

of the first partition is not taken into account. In that case, S prefixes with a 

length of four in the initial positions from eight to ten will not be found - this 

will lead to incorrectly calculated frequency counts of GTGC, TGCG, and 

GCGG. For this reason, the first partition must contain an additional tail, the 

length of which is at least equal to three. Hence, the tail attached to each 

input partition plays an important role in ensuring the correctness of the 

parallel frequency calculation [19].  

 

 

Figure 4: The additional tail that is assigned to each partition 

 

Next, it is shown how the additional tail is also used to guarantee the 

correctness of the parallel S-prefix when the subtree is being constructed. 

When the subtree is being constructed, it is important to find all occurrences 

of the S-prefix; note that the coincidence of the S-prefix occurring in each 

partition is also processed in parallel. Assuming that the input S-prefix is 

TGC, as shown in Figure 4: The additional tail that is assigned to each 

partition above, without an additional tail, the S-prefix TGC at the starting 

position 9 will not be found in the first cleavage. Thus, the tail attached to 

each input partition plays an important role in ensuring the correctness of the 

parallel matching of the S-prefix.  
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Still, the key problem when distributing data is correctly determining 

how long the tail for each partition should be. The frequency threshold, 

marked as FM, is determined using a similar approach as used in the ERa 

algorithm [1]. This frequency threshold should not be exceeded by an S-

prefix frequency from the set [1]. Next, to guarantee that the parallel 

frequency is calculated correctly and that the S-prefix is matched in the 

parallel paradigm without error, it is evident that the tail length must be at 

least the same length as the maximum length of the S-prefixes in the set 

which will further be referred to as maxPrefixLen. On average, the 

maxPrefixLen value can be calculated based on the fact that the initial string 

is derived from a random symmetric Bernoulli distribution [1,17]. In this 

scenario, the frequency threshold is equal to the following: 

𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
 × 𝑚𝑎𝑥𝑃𝑟𝑒𝑓𝑖𝑥𝐿𝑒𝑛.  

Using this equation, the maxPrefixLen can be represented by the following 

formula: log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀
 

 

An important remark regarding the tail length is that each partition is 

assigned an additional tail of the same length when constructing a suffix tree; 

however, when a generalized suffix tree is created, the length of the 

additional tail could differ across partitions. Such a difference occurs since, 

by design, the generalized suffix tree can store more than one string - each 

partition created during the data partitioning step can potentially have several 

input strings. Taking the latter into account, the tail length for the input 

partition can be calculated in the following way: min(𝑙𝑒𝑛(𝑅𝐶), 𝑇𝐴𝐼𝐿_𝐿𝐸𝑁), 
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where RC is the content of the remaining last string in the input partition in 

the subsequent partitions and TAIL_LEN is the default tail length. 
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3.2 New Algorithm - Parallel Subtree Partitioning Stage 

After the data preparation step that was described in the previous 

section, where the input string was split into parts otherwise referred to as 

partitions, the distributed suffix tree was created. The process of creating the 

final suffix tree consists of the following two main stages: the subtree 

partitioning stage and the subtree construction stage. This section goes over 

the key aspects of the subtree partitioning stage. 

 

 

Figure 5: Overview of the parallel subtree partitioning stage algorithm 
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The subtree partitioning stage is based on parallel frequency counting: 

at the start, each computing node independently accesses the partition and 

constructs a local frequency trie; next, the corresponding S-prefix p together 

with its frequency fp is obtained for each leaf node of the local frequency trie, 

and the next step shuffles all the gathered pairs of the S-prefix and the 

corresponding frequency (𝑝, 𝑓𝑝): the pairs (𝑝, 𝑓𝑝) are shuffled so that the 

same computing node receives the results of calculating the local frequency 

of the same S-prefix; when the local frequency calculations of the same S-

prefix are sent to a computing node, they are independently aggregated and 

passed to the driver node which gathers the results and decides if the 

subtree partitioning process is complete and can therefore be stopped. The 

described process running on Spark [8] is illustrated in Figure 5: Overview of 

the parallel subtree partitioning stage algorithm above. The next paragraphs 

provide further details on the following key techniques that were used for 

partitioning the subtree in a parallel manner: parallel frequency counting, the 

frequency trie [9], and the incremental count window approach [19].  

 

Calculating the occurrence frequency for the S-prefix is the main step 

in splitting the subtree: considering that the input string is split into partitions 

(during the data partitioning stage), the frequencies can be calculated in each 

partition in parallel. Moreover, the before-mentioned additional tail that is 

assigned to each partition provides a guarantee that the parallel frequency 

calculation has been performed correctly. 

 

In addition, to efficiently calculate the frequencies of S-prefixes, a 

frequency trie data structure [9] was implemented. The frequency trie is a 

tree-like data structure that stores the S-prefix frequency calculated from a 
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given input string S and is further defined as follows: first, the edge of the 

frequency trie and the node of the frequency tree shall be marked as e and 

v respectfully; label(e) indicates the character that occurred in S; path(v) 

indicates the concatenation of edge values on the path from the root to the 

node v; and label(v) indicates the frequency with which path(v) occurs in 

string S. Therefore, it can be seen that the S-prefix p in the frequency trie is 

represented by path(v), and fp is actually the label(v) in the frequency trie. 

By definition, label(v) can be viewed as the summed-up labels of all child 

nodes if node v is an internal node; in the same way, using the path 

information and the label of all leaf nodes, the frequency trie can be 

reconstructed. The frequency trie data structure is illustrated in Figure 6: The 

frequency trie data structure below: 

 

 

Figure 6: The frequency trie data structure 

 

Considering this frequency trie characteristic, it is possible to reduce the total 

number of iterations (that is, Input/Output accesses) by calculating the 



36 

frequencies of different lengthed S-prefixes by simply scanning the input 

string. 

 

The last applied technique for partitioning the subtree is the 

incremental window count illustrated in Figure 5: Overview of the parallel 

subtree partitioning stage algorithm. The general process of subtree 

partitioning in a parallel manner is organized in multiple iterations, during 

which the count window increases by the defined step size. Let winit denote 

the initial count window; consequently, during the first iteration, the 

frequencies of all winit lengthed S-prefixes are counted. When the first 

iteration completes, the S-prefixes are added to either set P or set R 

depending on whether the frequency of the S-prefix fits in the FM threshold 

or not. The driver node checks whether the R set contains S-prefixes with 

frequencies greater than the FM threshold - if so, the R set is broadcasted to 

each performer to be processed further; if R is empty, the whole process 

completes, and the iteration is terminated. In case of the next iteration taking 

place, the window size is increased by the defined step size, denoted by 

wstepSize, and, in this case, let the increased count window be denoted by 

wnext; consequently, the frequencies of all S-prefixes that have a length that 

fits into the [winit, wnext] interval are calculated in this iteration. As mentioned 

before, the iteration process stops when the R set does not contain any more 

S-prefixes with frequencies exceeding the FM threshold [19].  

 

At the final step, a frequency trie is constructed using the S-prefixes in 

the resulting set P, and redundant nodes are removed by trimming all child 

nodes of a node in the frequency trie that has a label that does not exceed 
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the FM threshold [19]. The code snippet below provides the implementation 

of the tree node obtained after subtree partitioning: 
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internal class TreeNode : ISerializable  

{  

    var parent; 

    var edges = new HashMap(); 

    var info; 

    var count = 0; 

    var shouldStop = false; 

     

    public TreeNode() : this(null, null) { } 

    public TreeNode(Info info) : this(null, info) { } 

    public TreeNode(TreeNode node) : this(node, null) { } 

    public TreeNode(TreeNode node, Info info) 

    {  

       parent = node; 

       this.info = info;  

    } 

    public AddIndex(Pair pair){  

     if (info == null){  

       info = new Info();  

     } 

     info.suffixIndexes.AddIndex(pair) 

    } 

    public AddTerminalIndex(Pair pair){  

       if (info == null){ 

          info = new Info(); 

       } 

       info.terminalSuffixIndices.AddIndex(pair) 

    } 

    public AddTerminalIndex(List list){ 

       if (info == null){ 

          info = new Info(); 

       } 
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       info.terminalSuffixIndices.AddIndex(list) 

    } 

} 
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3.3 New Algorithm - Parallel Subtree Construction Stage 

After the subtree partitioning stage that was described in the previous 

section, the subtree construction stage took place that consisted of the 

following steps: task allocation for subtree construction, local suffix sorting, 

LCP-Merge [9] sorting, and subtree construction. An overview of the parallel 

subtree construction process is depicted below in Figure 7: Overview of the 

parallel subtree construction stage algorithm: 

 

 

Figure 7: Overview of the parallel subtree construction stage algorithm 

 

At the start, for constructing the subtree in parallel, subtree construction 

tasks were distributed among computing nodes; afterward, each subtree was 
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constructed using a new multifaceted algorithm based on LCP-Merge [9]. 

The following paragraphs in this section go over the key aspects of the 

subtree construction steps in further detail. For a better understanding, the 

key algorithms - the LCP-Range aware comparison algorithm [9] and the 

LCP-Merge Sorting [9] implementation are provided below: 

 

The LCP-Range aware comparison algorithm [9,19]: 
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Input : String s1 and s2 LCP-Range of s1 to reference sr : lr1, 

LCP-Range of s2 to reference sr : lr2. 

Output : ( sm, lg, lr ), lr is the LCP-Range of lg (larger) to sm 

(smaller) 

//Compare offsets: 

if lr1.offset > lr2.offset then 

    return ( s1, s2, lr2 ) 

if lr1.offset < lr2.offset then 

    return ( s2, s1, lr1 ) 

//Compare ranges: 

range1Len = len( lr1.range ) 

range2Len = len( lr2.range ) 

rangeMin = min( range1Len, range2Len ) 

for i = 0 to rangeMin do 

    if lr1.range[i] > lr2.range[i] then 

       lrnew = ( lr2.range[i], lr1.range[i, range1Len − 1], lr2.offset + i ) 

       return ( s2, s1, lrnew ) 

    if lr1.range[i] < lr2.range[i] then 

            lrnew = ( lr1.range[i], lr2.range[i,range2Len − 1], lr1.offset + i ) 

       return ( s1, s2, lrnew ) 

// s1 and s2 cannot be compared based on LCP-Range: 

updatedOffset = − ( rangeMin + lr1.offset ) 

lrunkown = ( 0, {0}, updatedOffset ) 

return ( s1, s2, lrunkown ) 
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The LCP-Merge Sorting algorithm overview [9,19]: 
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Input : S-prefix p, Set of LCP-Range arrays L 

Output : Partially ordered LCP array PO_LCP 

// Partially ordered LCP array PO_LCP 

PO_LCP = {} 

// k-way LCP-Range array 

k = length( L ) 

// The loser tree 

loserTree = createLoserTree( k ) 

 

firstPlayer s = getAllFirstPlayers( L ) 

smallest = init( L, firstPlayers ) 

add ( smallest.loc, ( 0 , 0 , 0 )) to PO_LCP 

nextWayIndex = smallest.wIndex 

repeat 

   player = getNextPlayer( L[nextWayIndex] ) 

   if player is NULL then 

      //This way has no elements 

          k = k – 1 

      player = makeEndPlayer( nextWayIndex ) 

      smallest = rebuild( loserTree, player ) 

   if smallest.loc is not NULL then 

      smallest.lcp = transform( smallest.lcpRange ) 

      add ( smallest.loc, smallest.lcp ) to PO_LCP 

      nextWayIndex = smallest.wIndex 

until k = 0; 

return PO_LCP 

 

The following paragraphs explain the algorithms in further detail with 

examples. 
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First, it is important to point out the main factors that impact the task 

allocation step’s performance and how these factors were addressed in this 

work to improve the overall performance of the resulting parallel subtree 

construction stage. Mostly, the distribution of subtree construction tasks is 

affected by two main factors: the cost of input/output calls and keeping the 

worker nodes balanced. The first factor can be explained by the fact that 

each task must access the entire input string when the subtree is being built 

- if there are too many small subtrees to process, the reading costs will be 

high. As for the second factor, the subtrees can differ in size - if certain 

computational nodes get overloaded while other nodes remain idle, it would 

affect the overall performance. Therefore, a strategy for distributing tasks 

with a balanced workload should be developed.  

 

To solve both of the mentioned above problems, this work proposes a 

fairly new task distribution strategy for constructing the subtree, which 

implies using two algorithms in combination: the Bin-Packing algorithm [20] 

and the Number-Partitioning algorithm [21,22].  

 

The first problem - reducing the cost of reading a subtree structure - 

can be addressed by grouping as many subtrees as possible, similar to ERa 

[1], which will reduce the total number of read operations. Considering that 

each formed group of subtrees has a total sum of S-prefixes that is not 

greater than the FM frequency threshold, all subtrees in a group can be 

constructed in one computing task. Minimizing the number of subtree groups 

can be viewed as a container packaging task, this is where the Bin-Packing 

algorithm [20] can be applied, where Bin is an S-prefix group and the 
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capacity of Bin corresponds to the FM threshold - the Bin-Packing algorithm 

[20] solves the problem of finding the minimum number of groups that can 

be formed taking into account that the sum of the frequencies in each group 

is not greater than the FM threshold.  

 

At the same time, the Bin-Packing algorithm [20] cannot guarantee that  

for each group the load will be balanced. The problem of load balance can 

be considered as a number distribution task [21,22]. The number 

corresponds to the frequency of the S-prefix. Thus, by applying the Number-

Partitioning algorithm [21,22]. (algorithm for dividing numbers) it can be 

ensured that the sum of frequencies in each group is as equal as possible. 

Still, the algorithm for dividing numbers must know the total number of groups 

in advance [21,22]. Hence, the Bin-Packing algorithm [20] and the Number-

Partitioning algorithm [21,22]. were used in combination in the parallel 

subtree construction stage’s final implementation.  

 

Furthermore, before proceeding to the parallel subtree construction 

implementation details, it is important to define the total number of subtree 

construction rounds. In practice, the degree of parallelism p can be 

considered as the number of performers on the Spark platform [8,19]. 

Considering that the input string had been divided into k partitions, the 

number of groups of subtree construction tasks is equal to k multiplied by p. 

Thus, it can be derived that the distribution of all tasks to build a subtree 

consists of k rounds.  

 

As calculated in the previous paragraph, the parallel subtree 

construction stage takes k rounds in total to complete. In each round, all 
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Spark Executors [8] process p groups of subtree construction tasks in 

parallel. At the start of each round, all involved S-prefixes are broadcasted 

to each Spark Executor [8] - worker nodes' processes. Next, in order to 

generate a local LCP-Range array [9] for each S-prefix, the suffixes are 

locally sorted on each executor in the following manner: each Spark Executor 

[8] is given an input partition (a part of the split input string); using the input 

partition, each executor starts by matching all S-prefixes in the 

corresponding input partition; for instance, for an S-prefix p, all suffixes that 

start with p in each input partition are sorted. Based on the sorted suffixes, 

the local LCP-Range array [9,19] is then constructed. The LCP-Range array 

[9] construction implementation is provided in the code snippet below: 
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public LCPRangeElement[] GenerateLCPRange(SegmentprefInfo prefInfo) 

{ 

    var suffArray = new SharedBufferSuffixArray( 

        prefInfo.Loc.ToArray, 

        true 

    ); 

    var res = new LCPRangeElement[](suffArray.Number); 

    res[0] = new LCPRangeElement( 

        new Location(suffArray[0].Location, prefInfo.Length), 

        0, 

        suffArray[0].GetSegment(_bitsPerItem, prefInfo.Length) 

    ); 

    res[0].Content = suffArray[0].ToArrayAndTake( 

        prefInfo.Length, 

        _firstBuf 

    ); 

    res[0].Lcp = (0, new byte[], 0); 

    res[0].ExistRemainItem = if(suffArray[0].Length - 

prefInfo.Length <= Math.Max(_segmentLength, _firstBuf)) false else 

true; 
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    var i = 1; 

    var lcpMax = 0; 

    while (i < res.Size) { 

       var segment = suffArray[i].GetSegment( 

           _bitsPerItem, 

           prefInfo.Length 

       ); 

       var lcp = suffArray.LcpForBuild( 

           i, 

           _range, 

           prefInfo.Length 

       ); 

       lcpMax = Math.Max(lcpMax, lcp.Location3); 

       var loc = new Location( 

           suffArray[i].Location, 

           prefInfo.Length 

       ); 

       var remain = false; 

       if (lcp == null) remain = false; 

       else { 

          var LcpExtraLength 0 ; 

          if (lcp.Location2.Length != 0) LcpExtraLength = 

lcp.Location2.Length - 1 

          if (LcpExtraLength + lcp.Location3 >= suffArray[i].Length 

- prefInfo.Length) remain = false 

          else if (suffArray[i].Length - prefInfo.Length <= 

_segmentLength) remain = false 

          else remain = true 

      } 

      res[i] = MakeLCPRangeElement(loc, 0, segment, lcp, remain); 

      i += 1; 

   } 

   return res;} 
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After the local suffix sorting step and LCP-Range array [9] construction, 

the LCP-Range arrays [9] of the same S-prefix are grouped together. At the 

same time, S-prefixes that are part of the same subtree construction task 

group are located in the same partition, hence, all subtrees in the same group 

can be built during a single computing task. During the LCP-Merge [9] sorting 

step, all local LCP-Range arrays [9] of the same S-prefix are combined by 

utilizing the LCP-Range aware comparison method [9] - as a result, a globally 

ordered LCP array [9] is created. The next paragraph provides further details 

on the LCP-Merge [9] sorting step and the LCP array [9] generation since 

the aforementioned LCP-Range aware comparison method [9] is essential 

for constructing the LCP array [9,10,11,12,13].  

 

The parallel LCP-Range array [9] used for the final subtree creation 

was constructed using the LCP-Range [9] data structure and the LCP-Range 

aware comparison method [9]; the overall construction process consisted of 

the following main stages: local suffix sorting, LCP-Merge [9,10,11,12,13] 

sorting, and sorting at disordered intervals. An LCP-Range [9] data structure 

was created for each suffix in the sorted suffix array.  

 

The LCP-Range data structure is illustrated below in Figure 8: The 

LCP-Range data structure. As shown, the LCP-Range data structure stores 

information for comparing two strings and is represented by an element 

consisting of three parts: the first character of the smaller string where both 

strings start to differ, a sequence of characters of the larger string ranging 

from the index where both strings start to differ until the specified range 

length, and the offset number - the index where both strings start to differ - 
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hence, the defined triplet will be denoted in the following way: lcp_range(s1, 

s2) = (c, range, offset). 

 

 

Figure 8: The LCP-Range data structure 

 

For a better understanding, consider the following example illustrated 

below in Figure 9: The LCP-Range data structure for string S1=abcdeef and 

string S2=abcdffj. Suppose there are two strings s1 and s2 each consisting 

of the following character sequences: s1 = abcdeef and s2 = abcdffj. Among 

the two strings, s1 is smaller than s2. Next, let us determine the longest 

common prefix (LCP) of s1 and s2, which is LCP = abcd. This means that 

the offset where the two compared strings (s1 and s2) start to differ will be 

the index of the first character after the LCP, which is actually the length of 

LCP: length of LCP = length of abcd = 4 (characters). Therefore, the offset 

equals to 4 in the given example. The character at the offset index 4 in the 

smaller string s1 is “e”. Finally, the range length is a constant defined 

beforehand. In this example, let the range length be equal to 2; then the 
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character sequence in the larger string s2 starting at the offset index 4 and 

ranging 2 characters in length is: “ff”. Therefore, the LCP-Range data 

structure for s1 and s2 is calculated as the following triplet: lcp_range(s1, s2) 

= (e, ff, 4). Here, the smaller string of the two is also referred to as the 

reference string. Therefore, in the given example, the reference string is s1 

since s1 is smaller than s2. 

 

 

Figure 9: The LCP-Range data structure for string S1=abcdeef and string S2=abcdffj 

 

Consequently, the LCP-Range array is an array that stores the LCP-

Range data structures - more specifically, the LCP-Range information of 

suffix pairs that are following each other continuously in a lexicographically 

sorted suffix array. For instance, for the following suffix sequence - suffix1, 

suffix2, suffix3, suffix4, suffix5 - the LCP-Range information will be calculated 

for each of the following pairs - <suffix1, suffix2>, <suffix2, suffix3>, <suffix3, 
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suffix4>, <suffix4, suffix5> - so, the resulting LCP-Range array will consist of 

the following LCP-Range data structures: lcp_range(suffix1, suffix2), 

lcp_range(suffix2, suffix3), lcp_range(suffix3, suffix4), lcp_range(suffix4,  

suffix5) [9,19]. 

 

Considering that the most diminutive suffix (the smallest suffix) does 

not have a reference string, the first element of the LCP-Range 

[9,10,11,12,13,18,19] array was replaced with the initial character range of 

the most diminutive suffix. Next, the LCP [9,19] between successive suffixes 

was calculated. As previously mentioned, all LCP arrays [9] with the same 

S-prefix that were generated after the local suffix sorting step were merged 

together resulting in a globally ordered LCP array [9]. The merging process 

was implemented based on LCP-Merge [9,19], using a multi-sort sorting tree 

- the loser tree [9] which is a type of tournament tree [9]. The figure below 

Figure 10: An example of a 4-way loser tree provides an example of the loser 

tournament tree: 

 

 

Figure 10: An example of a 4-way loser tree 
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It is important to note that the loser tree [9] has a remarkable property 

- for each player from the same path, there is a fixed direct path moving in 

the direction of the root node [9]. In particular, suppose that the final winner 

of the tournament is path w, then the next player p from where w enters gets 

to the top three losers. The player p is first compared with the LCP range 

information stored in its parent node. The two LCP ranges have the same 

reference string, which is the final winner of the last tournament. After 

comparing the LCP ranges, the winner moves to the next parent node. The 

winner information and the LCP range stored in the next parent node still 

have the same reference string, so the LCP-Range comparisons may be 

continued further on until the final winner is determined, so the rest of the 

process is similar: every two LCP ranges that are compared contain the 

same reference string [9,10,11,12,13,18,19]. Finally, the suffix subtree is 

built. 
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3.4 New Algorithm Complexity Calculation 

 Having implemented a new distributed optimized version of the ERa 

generalized suffix tree construction algorithm [1], next the new algorithm’s 

complexity was calculated and the corresponding calculations are provided 

in the following paragraphs. Considering that the modeled algorithm consists 

of two main stages - the parallel subtree partitioning stage and the parallel 

subtree construction stage (parallel LCP array construction), the complexity 

of each stage was calculated and is provided below. 

 

The complexity of the parallel subtree partitioning stage can be 

calculated based on the maximum length of the S-prefixes with frequencies 

below the FM frequency threshold, the complexity of building the frequency 

trie for each input partition, and the total number of iterations that took place 

before there were no more S-prefixes with frequencies exceeding the FM 

frequency threshold. Let maxPrefixLen denote the maximum length of the S-

prefixes with frequencies below the FM frequency threshold. On average, 

maxPrefixLen takes up: 𝑂(log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀
) and, in the 

worst case scenario, the maxPrefixLen takes up at most: 

𝑂(𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔) Next, considering that the input string S is 

divided into p partitions, the complexity of building the frequency trie for each 

input partition can be calculated as: 𝑂(
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑝
× 𝑤), where p 

denotes the number of split partitions; and w denotes the count window for 

each iteration during the subtree partitioning step. In addition, the last factor, 

the total number of iterations, can be calculated as: 𝑂(
𝑚𝑎𝑥𝑃𝑟𝑒𝑓𝑖𝑥𝐿𝑒𝑛

𝑤𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒
), where 

wstepSize denotes the count window’s step size. Therefore, combining each 
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factor’s calculation together, the overall complexity of the parallel subtree 

partitioning stage turns out to be: 𝑂(
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝑝
×

log𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡𝑆𝑖𝑧𝑒
𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔

𝐹𝑀
) × 𝑝) However, since in practice 

maxPrefixLen is very small, it is not significant and can be disregarded, 

therefore, the overall complexity actually add up to 𝑂(𝑛). 

 

The complexity of the parallel subtree construction stage can be 

presented in two parts: the local sorting step’s complexity and the multi-way 

LCP-Merge sorting step’s complexity. The local sorting step’s complexity 

depends on the total number of suffixes that share the same starting S-prefix. 

This total number in the worst case would be 𝑂(𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒𝑂𝑓𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑟𝑖𝑛𝑔), 

nevertheless, since subtrees are partitioned beforehand, the total number is 

reduced and can be at most equal to the FM frequency threshold. The local 

sorting step’s complexity for an S-prefix can be calculated as:  

𝑂(
𝐹𝑀

𝑝
× log2

𝐹𝑀

𝑝
× 𝑝), where p denotes the number of split partitions. Finally, 

the multi-way LCP-Merge sorting step’s complexity can be calculated as: 

𝑂(𝐹𝑀 × log2 𝑘)[9], where k is the total number of rounds in the parallel 

subtree construction step. 
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3.5 Analyzing Performance Test Results 

This section provides performance evaluation test results of the 

modeled and implemented algorithm for constructing generalized suffix trees 

on distributed platforms. In this work's implementation, Apache Hadoop [7] 

was used as the virtual distributed file system, an overview of the Hadoop 

distributed filesystem [7] is provided in Figure 11: The overview of the 

Hadoop Distributed File System (HDFS) below. At the time of writing, we 

conducted experiments on a local machine setup running on the Ubuntu 

20.04 operating system, the Apache Spark [8] version that was used is 1.6.3, 

and Apache Hadoop [7] 2.6.5 was used. In the future, the plan is to further 

set up a physical cluster and run tests on larger data volumes to determine 

the areas that should be further optimized as the load increases. 

 

 

Figure 11: The overview of the Hadoop Distributed File System (HDFS) 

 

To compare the performance gain of the implemented algorithm as 

opposed to the original state-of-the-art ERa [1] algorithm, the ERa [1] 
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algorithm was also executed on the same machine setup in the same 

environment to ensure that both implementations were compared in a fair 

and correct manner. Furthermore, both the optimized algorithm and the 

original ERa [1] implementation were given the same data set as the input. 

In this work, open public data sets were used taken from the Kaggle [23] 

platform, placed in the Hadoop distributed file system [7], and provided to 

both of the compared algorithm implementations.  

 

 During the whole process, execution statistics were output to the 

console and saved to output files to be analyzed further, such as the time 

that a certain process took during the three main stages of the suffix tree 

construction algorithm: the data preparation stage, the subtree partitioning 

stage, and the subtree construction stage. The code snippet below provides 

an example of such statistics: 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

[Stage 1] =====================> time: 

Merge to File, time:423ms 

repartition, time:280ms 

Iter 1 start, currentLength = 2 

counting: 23ms 

File ends 

[Stage 2] =====================> time: 

collect: 6051ms 

Terminal Num for length 2:2 

prefix Num for length 2:70748 

filter: 5ms 

divide, time:6427ms 

roots num:50 sum :70750 

groupingMap, time:6ms 

Grouping Num: 86 size:50 

iters:1 
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17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

iter 0: mean: 736  sigma:1305.0919507835454 

====================================== 

[Stage 3] Building group 1 start 

====================================== 

broadcast, time:4ms 

LcpGen, time:16ms 

groupByKey, time:10ms 

subTreeMaterial, time:4ms 

trieGraph, time:33ms 

single Node LcpGen, time:9ms 

… 

firstMerge complete, time:2ms 

ersort iteration complete, time:250ms 

build suffix tree for root:C, num: 1235 

… 

Building group 1vcomplete. time: 17135ms 

====================================== 

my, time: 24359ms 

====================================== 

 

In the provided log fragment, on line #1 it can be seen that the first stage 

takes place - the data preparation step where the input string is partitioned 

and distributed among the processes, see section 3.1 New Algorithm 

Preparation Stage - Data Distribution where this stage was described in 

detail. Next, on line #7 it is shown how the second stage is performed - the 

subtree partitioning stage, the implementation of which was described in 

detail in section 3.2 New Algorithm - Parallel Subtree Partitioning Stage of 

this work. Finally, on line #19 the final subtree construction stage statistics 

are logged to the output, see section 3.3 New Algorithm - Parallel Subtree 

Construction Stage for a detailed description of the subtree construction 

stage’s implementation. 
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 The Figure below Figure 12: Graph comparison of the optimized and 

original ERa algorithm provides a graph representation comparison of both 

the optimized and original algorithm. From the compared execution time 

statistics it can be concluded that the new approach for distributing 

generalized suffix tree construction is efficient and did indeed provide a 

performance gain of roughly 2-2.5 times faster than the aforementioned ERa 

[1] algorithm.  

 

 

Figure 12: Graph comparison of the optimized and original ERa algorithm 

 

 Therefore, it can be stated that the optimization techniques applied in 

the algorithm that was modeled in this work for the suffix tree construction 

process on distributed platforms did improve the overall performance. As 

mentioned in section 2.2 The Elastic Range (ERa) Algorithm For Suffix Tree 

Construction, one of the performance gain causes is that the frequency 

counting algorithm used in ERa [1] for subtree partitioning is sequential. 

Furthermore, the count window is only extended by one, resulting in many 
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iterations and high I/O costs. On the other hand, in this work, the proposed 

algorithm uses a parallel frequency counting method to accelerate the 

subtree partitioning stage. Furthermore, the step size of the count window is 

increased by a larger number, so the number of iterations is reduced. As a 

result, the proposed algorithm outperforms ERa [1] at the subtree partitioning 

stage and provides better results in the overall performance measurements. 

In future work, the plan is to improve the proposed algorithm even further 

and achieve a greater performance gain by using in-memory distributed 

storage.  
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CONCLUSION 

This work was inspired by the desire to enhance suffix tree 

construction when working with large alphabets and very long strings that 

exceed the available memory capacity. As a result, a highly scalable 

algorithm for large-scale generalized suffix tree construction on distributed 

parallel platforms was modeled. The entire process was presented in three 

main steps: the data preparation step, where the input string was partitioned, 

and the partitions were distributed among computing nodes; the subtree 

partitioning step; and, finally, the subtree construction step. 

 

To partition the subtree and construct the subtree in the data parallel 

paradigm, a data-sharing strategy was applied. Then an efficient algorithm 

for subtree partitioning based on parallel frequency counting was proposed. 

Next, we looked at an effective strategy for allocating subtree construction 

tasks that can reduce reading costs and achieve load balance on individual 

nodes. Finally, during the subtree construction phase, we used the LCP-

Range [9,10,11,12,13] data structure and the multi-faceted LCP-Merge 

[9,10,11,12,13] sorting algorithm to build the LCP array [9,10,11,12,13] in a 

parallel manner.  

 

Experimental results on Apache Spark [8] revealed that the modeled 

algorithm significantly outperforms the state-of-the-art ERa [1] algorithm by  

about 2-2.5 times acceleration difference; therefore, the resulting algorithm 

for distributed generalized suffix tree construction is quite appropriate for 

applications that wish to improve large text data operations and that are 
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based on a distributed system. In addition, the modeled algorithm can 

efficiently construct a generalized suffix tree for a set of strings. 
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