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Abstract 
This material presents the solution to generate talking face images with the use 

of deep learning. We conduct the research of existing literature to compose more 

efficient network design. The final version has additional pre-trained discriminator 

network to reach superior lip synchronization performance with adversarial training 

to improve the visual quality of images. 

We provide comparative analysis and ablation studies which show insights on 

how different components of the solution affect the result. This approach achieves 

comparable consistency in lip movements to other solutions in the field, but has 

higher visual quality. 

Keywords: deep learning, face animation, lip synchronization, generative 

adversarial networks.  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Introduction 
There is a large amount of audio-visual content in the Internet with more than 

500 hours of videos uploaded each minute [1]. And this naturally raises a problem of 

availability of this content to multilingual community. At the moment of writing this, 

nearly 60% of all the information is published in English[2] which creates an 

imbalance of information accessibility, especially for educational purposes.  

That is why translation of all that content may make it available to millions of 

people across the world. The problem of audio-visual translation consists of two 

challenges: translation and lip sync. The former one is pretty straightforward and 

needs an editor or a machine to translate a piece of text to other language. Moreover, 

this problem became much easier with the current state of machine translation and 

services like Google Translate. 

However, recent studies [3, 4] have stated that subtitles decrease the feeling of 

spatial presence and make content less sensible for non-native speakers, specifically 

beginner readers.  By correcting face video to match the desired target speech one can 

make the video more understandable and perceptually feasible. Accomplishing this 

result is a hard task and it has received respectable amount of attention in the research 

community [5, 6, 7, 8, 9, 10, 11, 12].  

Most of the solutions are using deep learning and are constrained to limited 

amount of speakers and words. For instance, prior works in the field [12, 13] are 

using several hours of Obama videos and learning the mappings between audio and 

lip landmarks. Next works are also constrained to the speakers they are trained on, 

but provide better quality results [7]. The solutions discussed upon have limitation to 

the speakers they are trained on and also an overhead to collect several hours of clean 

speech. 

That is why next generation of research was aimed on providing the solution to 

work with unconstrained speakers with minimal amount of audio provided for each 

of them. First solutions have resulted in speaker-independent lip sync [8, 9] with 

good visual quality. Still, they had a drawback working only on static images. 

However, to be used in real world with unconstrained amount of videos taken from 
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different perspectives and with different qualities one should have a model working 

not only on static images but videos. 

The recent work in the field accomplishes just that with high-quality 

performance in-the-wild [5]. Their major contribution is in showing that the essential 

part of the task can be solved with the use of a strong discriminator – binary classifier 

which predicts if the lips movements on video are synced with the target speech. 

Their classifier reaches 91% accuracy at finding out-of-sync sequences using their 

evaluation dataset which is significantly higher that those from previous works. 

In our work we are building upon this latter approach to construct the lip-sync 

system which will be working on arbitrary identities and voices. This is a challenging 

task due to versatile environment with many different poses and voices to support. 

Moreover, we have a little room for error given that humans are capable of detecting 

an out-of-sync video fragment ~0.05 – 0.1 seconds[12] in duration. 

In our  approach we will use the findings from the prior research with an 

emphasis on learning from a strong discriminator. We construct disentangled 

architecture for entities separation with concentration on more efficient training and 

more consistent performance on video. 

The work consists of four sections. 

The first one discusses previous approaches for speaker-independent lip-sync 

task. Our key findings are that prior works perform good at lip-syncing static photo 

with an arbitrary speech, however the quality drops when used on unconstrained 

videos. We hypothesize that the main reason for that is mainly because of using 

reconstruction losses and learning from weak discriminators which are not accurate 

enough to penalize for out-of-sync videos. 

Next, in section two, we go into relevant concepts that are highly coupled with 

our work, specifically for the next more technical section.  

Third part presents our method in details with different discussions on the 

specifics of the problem and training. 

The fourth section shows experimental results and compares the presented 

solution with the related ones. Moreover, the ablation studies with analysis on the 

results are also provided. 
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Overall, the main tasks are: 

1. Analyze the existing solutions. 

2. Construct the speaker-independent solution for lip synchronization task 

using deep learning. 

3. Analyze the results and compare with similar solutions in the field.  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Main part 
Section 1. Problem analysis and solutions overview 

In this section, we are going to provide brief overview of the problem we are 

solving and describe the prior research in the field. 
With the rise of consumption of audio-visual information the questions of its 

accessibility rises more often. And while the videos are mostly translated to different 

languages and the subtitles are made afterwards, the information may not be clear 

enough for the beginner readers. That is why making a lip-sync model to transform 

the face on the video to match the target speech is very helpful, especially for 

educational purposes. 

Lip-sync is about correcting one’s lips movements on video to match the audio 

of target speech. Figure 1.1 illustrates the task in a more explicit way, so having an 

image and arbitrary speech audio we can generate multiple new images that 

reproduce the lips movements from the audio. 

This is a challenging task because the model should work with different 

speakers, be applicable to multiple languages and work in high-dimensional image 

space while generating generating consistent result on videos. The task becomes 

more complicated because model also should work with in-the-wild captured videos 

(i.e. videos with unconstrained speaker poses, different quality of images, noisy 

speech etc). 

The vast majority of early works were concentrated on solving lip-sync in 

constrained environment, mostly on single speaker or with the use of limit-sized 

vocabulary. For instance, one of the approaches [13] is using Obama videos to 

generate high-quality talking face videos. However, they are only working on Obama 

identity and do not generalize to unseen videos and voices. Moreover, this approach 

has an overhead in generating several hours of data for single speaker. Which is not a 

hard task for celebrity but may be quite expensive for other individuals. Next line of 

research aimed to reduce the data consumption for training. One of the recent works 

[14] is using a hybrid approach by training two models – one is speaker-independent 

and is trained on in-the-wild videos, while the other one is trained for each speaker in  
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particular, but it demands significantly less data than previous approaches. 

Technically, the first stage is used for pre-training the model to learn and extract 

useful generic features, while the other one is fine-tuned to get better results for each 

speaker. Still, they have an overhead with collecting the additional data for each 

speaker and also the model was trained on small dataset which constrains the 

performance of the model.  

Additionally, there is a limitation that comes from existing datasets which may 

be not big enough for the model to successfully generalize. For instance, LRW [15] 

and TIMIT [16] have only 1000 words vocabulary which may be limiting in the real 

world scenario. 

That is why we aim to construct the speaker-independent solution which will 

learn from phoneme-rich dataset and generalize well to unseen speech and videos. 

The solutions described above have one problem in common — they do not 

generalize to unseen data being limited to single speaker. So the next works aim to 

solve this more challenging problem.  

One of the early works at this frontier [17] constructed a pipeline with separate 

encoder for image and audio inputs with decoder taking extracted features to generate 

the final image. That is a good architecture choice however the results are blurry and 

do not perform well on hard mimic cases. They even trained deblurring network on 

top to get sharper results. Now, adversarial training is a standard for getting better 

image quality and we will use this in our work as well. One more thing to mention 

about this approach is that they did not use any external supervision by learning only 

from pixel wise losses which are not strong enough to penalize for out-of-sync in 

hard cases and tend to result in blurry results as well.  

�10
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The next solution [18] got another way around by firstly learn the intermediate 

task of audio-visual speech recognition to learn the mapping between audio and 

visual representations. Then, they use learned representations to disentangle subject 

and speech related information inside. This approach lacks practicality as soon as one 

should collect separate dataset to train on each new language. 

Next work [8] is actually the continuation of the first one we mentioned [17]. 

The approach stays the same, their main contributions were in data (700K training 

samples), speeding up architecture design and working on quality by adding multi-

stream CNN for blending generated faces back in the frame. Still, they have a 

problem with the lip-sync quality, but the results are visually more appealing. 

One of the recent works[9] goes along with encoder-decoder architecture, 

however with several key differences, they separate images into identity and 

reference where the former have their mouth region masked while the references are 

used to extract the visual features of the identity. Generated image then is compared 

with the identity one. This allows to extract relevant features about identity from 

reference image while the identity one is mostly used for pose identification. In our 

experiments such an approach helps to overcome the information leak and improve 

convergence speed. Another more important contribution is the introduction of lip-

sync expert — binary classifier which outputs the probability of the audio-visual 

sequence being in-sync or not. This allows to get more sophisticated lip-sync results 

and we incorporate it in our approach. The drawback is that they train discriminator 

end-to-end which may give faulty gradient by overfitting on some visual artifacts 

present during training, thus such discriminator is a weak supervisor. 

With all that in mind, one of the recent works[5] was published. They 

continued with the architectures from [8, 9] and concentrated mostly on training more 

accurate discriminator network with ~1.5 times improvement in accuracy compared 

to previous works. They reached 91% accuracy at detecting out-of-sync samples. 

They stated in their work that such expert is all you need to get a quality lip-sync. We 

got the same results in our experiments and can verify that accurate expert network 

makes huge different in terms of how natural the result is. 
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In our work we proceed with these findings and aim to get more efficient 

architecture with disentangled representations for identity and reference images, also 

working on skip-connections between encoder and decoder networks. We also change 

the way reference images are sampled and make research on information leak during 

training. 

Section 2. Related work 

 2.1. Convolutional neural networks 

In this work we extensively use convolutional neural networks and it should be 

useful to go into details and describe how they work together with explanation of 

common architectures and optimization techniques that will be used next.  

The main component is a classic discrete convolution from computer graphics 

which is illustrated in Figure 2.1. Each layer of the networks consists of such kernels 

which are applied to the input as a sliding window. 
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an output. Kernel is applied in sliding window style. Picture from [46].



Deep convolutional networks are the essential component of AI revolution we 

now have, they are widely used for different task, specifically from computer vision 

task. This type of networks exists for a long time however their full potential has 

been fulfilled only recently in the 2012 work [47].  

From there on, the extensive amount of research has been conducted and new 

network types were constructed. 

Residual connections. Training very deep neural network from scratch is a 

hard task and it was very challenging at the early years of deep learning development.  

The main problem is vanishing gradients due to chain rule used during backward 

pass. Very important work[30] introduced ResNet architecture which employed 

residual connections as the building block. The main idea was very simple but yet 

elegant, they added the output of layer on step Z  with the output of the previous layer 

Z . This solved the problem of vanishing gradients and allowed to train 1000 layer 

deep networks without any additional problems. For comparison, the deepest working 

architecture for those times was VGG-16[32] with 16 layers. Residual connections 

has been improved with newer versions proposed[48], you can refer to Figure 2.2 for 

comparison. However, the main idea keeps untouched and in our work we are using 

i

i − 1
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connections from (a).



the originally proposed version. In our experiments, adding residual shortcuts 

improves quality and speedups convergence. 

UNet [29]. Skip connections concept and UNet architecture are important for 

understanding the next sections. UNet proposed fully convolutional architecture for 

segmentation. It has a structure of encoder-decoder architecture so the output 

dimensions match the input. Encoder reduces dimensions of the input while the 

decoder is increasing the resolution. Main idea behind the UNet was to add the skip-

connections between the corresponding layers of encoder and decoder. Those 

intermediate features are concatenated to the input of each layer of the decoder. This 

effectively helps the decoder to use the information from different levels and 

receptive fields when generating the final image. For more details refer to Figure 2.4. 

In our experiments we use the same ideas with multiple encoders for image 

and audio data which skip-connect their features to the corresponding layer of the 

�14
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transfers the output from encoder to decoder input[29].



decoder. This provides good context awareness. For downsampling strided 

convolutions are used while bilinear upsampling + convolutional layer is used for 

upsampling. 

Section 3. Method 
Our lip-sync architecture is inspired by the early Lip-GAN[9] network design 

with changes made to improve visual and lip-sync quality. We also incorporate highly 

accurate discriminator network to learn from during training. 

 3.1. Data preparation 
We overviewed different datasets to use during training, see Table 3.1 for more 

details. There has been a considerable rise in the number of large and quality datasets 

recently. For instance, AVSpeech[26] dataset from Google collected 4700 hours of 

audio-visual data from YouTube with good quality. However, maintaining dataset this 

large is troublesome and considering our work as a research-oriented we switched to 

smaller but versatile LRS datasets[19, 22, 25]. Specifically, LRS2 dataset with ~30 

hours audio-visual content and ~18k vocabulary size is chosen. The whole dataset is 

constructed of utterances 2-3 seconds long. 

After collecting the dataset we proceed with preparing it to training. We use 

face detection network[27] with available public implementation to crop the frames 

in the videos to the size of 96x96. We also extract landmarks from each face crop 
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Dataset Year # hours
GRID[20] 2006 43
LDC[21] 2009 8.3
LRW[22] 2016 167

LRS-2[19] 2016 180

LRS-3[25] 2018 176
VoxCeleb[23] 2017 352

VoxCeleb2[24] 2018 2442
AVSpeech[26] 2020 4700

Table 3.1. Lip-sync datasets overview



with the use of TDDFA[28] network which is state-of-the-art solution at the moment 

of writing. 

 3.2. Problem formulation 

Let a sequence of face image crops be Z  with aligned to it 

waveform Z . The task of lip-sync is to train a model Z  to get the 

sequence of in-sync frames: 

Z   (1) 

The result should have the lip movements consistent with those from Z  while 

the visual information should pass untouched relatively to Z  (i.e. light, pose, skin 

tone, identity attributes etc).  

However, we cannot train Z  in a completely supervised manner because we 

only have synchronized samples. That is why our model could be called the 

reconstruction one, because instead of getting a negative sequence we mask out the 

mouth region of Z . For that we use a constant rectangular mask Z  which is large 

enough to cover the mouth/chin region together with background information, the 

urge for this will be explained in the next section. We will assume Z  to be masked 

with Z  later in the paper. 

But we lose very important identity information about the speaker by applying 

mask. Information about the lip color/shape, teeth etc is removed. To overcome this 

issue we use the set of additional frames from the same video of this speaker. We call 

them reference frames: Z . For Z  it is important to get a sequence of 

frames while references should be the most representative frames from the video. We 

go into details about picking those in the later sections. So, our function Z  now 

transforms into: 

Z   (2) 

During inference we got Z  that can be arbitrary and out-of-sync. As a 

reference frame we can take the original one Z  given that we do not use the model 

with the original audio. 

X = {X1, . . . , XT}

A = {A1, . . . , AT} g

X̂ = g(X, A)

A

X

g

X M

X

M

R = {R1, . . . , RN} X

g

X̂ = g(X, A, R)

(Xtest, Atest)

Xtest
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 3.3 Lip-sync expert 
Before moving on to discussing the model architecture and training techniques, 

the word on lip-sync expert is worth to mention. This is a key feature to reach state-

of-the-art results for this task. 

Previous works[8,9,17] use pixel wise losses which are not efficient for 

penalizing out-of-sync results. This is because they compare whole images and the 

mouth occupies the negligible amount of area. The network needs to reconstruct 

background and skin texture well enough, so that significant amount of signal starts 

go backwards from mouth region. 

That is why for quality lip-sync we need more specific losses and one of the 

recent works[9] added discriminator to their pipeline to penalize sequences for not 

being synchronized. Still, this network was overfitting on visual artifacts of generator 

because it was trained in adversarial setup: by learning discriminator and generator 

networks at once. 

The follow-up work[5] argued that for good lip-sync, discriminator network 

must be pre-trained without additional fine-tuning during training. This creates 

complementary overhead because one needs to train expert for each new dataset. 

However, this additional complexity is worth it. 

We rely on the research from [5] and add pre-trained discriminator network 

into the pipeline. Next we will describe in more details the training scheme that was 

used for training. 

The network receives the sequence of frames Z  of shape Z  

concatenated by channel axis (only lower parts). Together with the corresponding 

audio sequence Z  for those Z  frames. To train the network one can sample 

different audio segments from other parts of the same audio for modeling out-of-sync 

fragment. The architecture is comprised of face and audio encoders both of which 

output the embeddings which are compared with cosine similarity binary cross-

entropy loss. The intuition is that we can receive non-negative embeddings by 

applying ReLU activation function upon it. Then we can compute dot product 

between normalized versions of those vectors to get cosine similarity in the range  

Xs (B,3 * Tv, H /2,W/2)

As Tv = 5
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Z  which we can use to compute binary cross-entropy loss which is 

predominantly used for classification. Given Z  as video and audio embeddings 

correspondingly the distance(or probability in this case) between them is computed 

as: 

Z   (3) 

And the target objective is: 

Z   (4) 

where Z  is in-sync or out-sync audio fragment. 

The network is trained on train portion of LRS2[19] dataset (appr. 30 hours) 

and reach 91% accuracy at detecting correctly synchronized sequences. 

[0,1]

v, a

d =
av

ma x( | |a | |2 | |v | |2 , ϵ)

Lexpert = −
1
N ∑ yilog(di) + (1 − yi)log(1 − di)

yi
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Figure 3.1. Lip-sync expert architecture overview[9]. Separate encoders for audio and 
images. Audio is encoded using MFCC features.



 3.4. Model architecture 
We construct encoder-decoder lip-sync architecture, see Figure 3.2 for more 

details. The essential architecture is U-Net[29] with residual connections which takes 

as input audio signal, masked identity and reference images. We have separate 

encoders for each input type, each of which outputs a feature embedding of shape 

512. These are concatenated and passed to the decoder network, which mimics the 

structure of image encoders with bilinear upsampling + 2d convolution for 

upsampling the features. Multiple skip-connections are used to concatenate the 

intermediate features from reference and identity encoders to corresponding ones in 

decoder. In our experiments we noticed that skip-connections are important 

components for the network performance. Thus, we also add skip-connections of  

concatenated embeddings from each encoder, for this we use auxiliary blocks which 

transforms the dimensions of vectors to match those of intermediate features. Also, 

residual connections[30] are used for each layer in encoder and decoder which 

improve quality.  

We will discuss in more details each component next. 

Identity encoder. Stack of 2d convolutions with 10 ResNet Conv-BN-ReLU 

blocks and the downsampling implemented with strided convolutions. The network 

encodes input of shape 96x96 and outputs the embedding of size 1x512 with 

intermediate features cached for skip-connection to decoder. 

Reference encoder. It has the same architecture as identity encoder. For each 

identity frame we have multiple references to encode the facial attributes of the 

speaker. Each of those frames is encoded independently by the encoder and we got 

the set of embeddings Z . We aggregate these embeddings into one using the 

attention with audio embedding as the key. Main idea is to choose only those 

reference features which are relevant for current frame given audio which should 

encode the lips shape and chin position. The intermediate features are aggregated as 

well to pass to decoder network. Let Z  be a set of reference 

embeddings and Z  — audio embedding, then aggregated embedding Z  is computed as: 

(N,512)

r = {r1, . . . , rN}

a ̂r
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Z   (5). 

Audio Encoder. We use mel-spectrogram with 80 filter banks to represent 

audio signal. Network is composed from stack of 2D convolutions for audio encoder 

with 7 ResNet Conv-BN-ReLU blocks and the downsampling implemented with 

strided convolutions. We also concatenate the input with two channels of Cartesian 

coordinates for better spatial adaptivity for convolution network. 

Image Decoder. The network mimics the image encoder architectures with 

bilinear upsampling + 2d convolutions used for upsampling. Decoder concatenates its 

features with intermediate ones from each encoder. Also, the additional blocks are 

used to transform mel embedding to the size of the current feature map. We do not 

use skip-connections for final layers because model learns to copy reference features 

which degrades the convergence. Network has two heads where one outputs the result 

for masked sequence while the other predicts mouth region mask that is used for 

blending the result into. 

 3.5. More details on inputs and outputs 
Identity images and audio input. Given the pair of matched video and audio 

we sample random fragment of 5 frames from video. Audio has sample rate of 16kHz  

so we transform it to mel-spectrogram with 80 filter banks and the corresponding 

sequence is taken. Our models are working with single images so we further cut the 

spectrogram to be centered for each video frame. In the result, each video frame has 

16 frames of spectrogram of shape (1, 80, 16) . We use only the upper half of each 

image to mask out the mouth region. 

wk =
exp(−σ(ark))

∑i exp(−σ(ari))
, ̂r = ∑

i

wiri .
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Figure 3.2. Lip synchronization architecture overview. Using U-Net structure with 
residual connections. We employ separate encoders for each input modality: audio, 
reference and identity frames. Each encoder outputs embedding which are 
concatenated. Attention is used to aggregate reference frames with audio embedding. 
Decoder network receives multiple skip-connections from encoders and mel 
embedding. Model outputs the result and mask for blending. We use pre-trained lip-
sync expert, as well as pixel wise losses. Adversarial training is also used for 
improving quality.



Reference frames. LipGAN[9] and Wav2Lip[5] use single reference frame 

randomly sampled from the whole video. In our experiments we noticed that 

reference frames may distract training by choosing frames which are significantly 

different from the identity frame. So we experimented with different sampling 

methods, such as: sampling random K frames, sampling from the neighborhood of 

the identity sequence etc. This step is important because right choice of reference 

frames will give better visual quality by better encoding the speaker appearance and 

different lightning condition present in the video. Thus, choosing diverse input from 

the video is a point.  

We decided to use the flexibility of having the separate encoder for reference 

images to encode multiple reference frames and to use the audio embedding to 

reweigh the importance of each sample in every occasion. We want the selection 

algorithm to produce different poses present in the video and to not incorporate any 

information leak. Hence, we extracted the landmarks for each frame and applied 

clustering method KMeans to separate the frames into K clusters. This ensures the 

diversity of selected frames. We used lips and chin landmarks for clustering , because 

these parts are the most relevant for the task. In the end, number of clusters K=10 was 

chosen with good diversity in poses and mouth openness. During training we use the 

same K frames for each identity frame. 

However, given short videos in the train set we do not always get frames from 

each cluster, that is why to reduce redundancy of the data only those frames with 

present clusters are taken. To fill the free space we randomly augment chosen frames 

with affine transformations. 

Binary masks for mouth region. Our model predicts binary masks for mouth 

region to blend the generated results into. We generate masks using extracted 

landmarks from bottom chin part and the nose tip. The convex hull algorithm from 

OpenCV is used and mask is further processed with dilation with kernel size 11. This 

ensures that masks cover the face all the time.   
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 3.6 Information leak and generalization  
After first iterations of research we noticed that model can severely overfit due 

to the training scheme explained in section 3.2. Model can learn some features which 

are present during training but absent during inference. 

For example, we used the mask Z  to locate a chin position because for some 

videos we encountered a problem that mask does not cover up the whole mouth 

region. During training phase everything worked normal but on inference we got bad 

result with no lip-sync at all. We also had an experiment where we used mouth mask 

computed from landmarks instead of constant one, but this had the same drawback. 

After making mask larger and fixating it, the result became much more better. The 

problem with this approach is that model just learns how to open the mouth 

depending on the mouth mask region, i.e. if the mouth mask is translated to the 

bottom then the mouth should be opened and otherwise. 

Interestingly, we discovered a few more problems like this which distract 

training, independent of other training techniques used. These are main ones: 

1. Learning correlations between mask position and lip shape. 

2. Relying too much on reference frames or copying the reference if it is the 

same as target or very similar. 

The solutions for these: 

1. Make mask large enough, it should cover the mouth/chin region as well as 

background and not to be dependent on landmarks. In our experiments we use the 

whole bottom half of the image. 

2. Do not use as reference frames those from target ones in Z . Use Gaussian 

blur of reference images and remove skip-connections at final layer. This 

stimulates the network to generate features and not to copy. Get only mouth region 

as reference frames, this helps with generalization and also improves convergence 

as capacity of the network is not used for the image parts that are left untacked 

during inference. 

These steps were important for our lip-sync to work better and they were 

inferior to all architectural insights discussed earlier. 

M

X
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 3.7 Model training 
We train our model using separate sets of different losses: reconstruction, lip 

synchronization quality and visual quality losses. Reconstruction losses are computed 

as comparison of the output with ground truth frames. These are used to penalize the 

generator network for wrong result. Lip synchronization loss is used to penalize the 

out-of-sync lip movements, as we already mentioned, the pre-trained discriminator 

network is used for this. This network is frozen during training of the generator 

network. Also, we have visual quality losses which are computed using adversarial 

training with additional discriminator which takes as input sequence of frames and 

outputs the probability that this sequence comes from true data distribution. In our 

experiments, the discriminator which uses a sequence of frames tend to get better 

results as it also can penalize for visually inconsistent lip movements. 

Next, we will go into more details of each component but for now it is worth  

noting how those losses are computed. The generator network has additional head 

which predicts the mask of the mouth region of identity images. This is used, then, to 

blend the resulting image back into the original one. In our experiments, it improved 

the convergence and visual quality because the capacity of generator is not consumed 

on reconstructing the invariant features such as: background information, neck, hair 

etc. To train such network we are estimating the ground-truth mask from extracted 

face landmarks and learn the network to reconstruct this mask. We intentionally do 

not use the ground-truth mask instead but predict our own to avoid the additional 

overhead of computing the landmarks for each new frame. Also, using an 

independent mask for blending may also be not accurate, because it does not reflect 

the result of the generator network. While the generated mask is conditioned on audio 

itself and is aligned with the generated image. 

In next subsections we are going to discuss each training loss in more details. 

For quick overview of the whole architecture and losses, refer to Figure 3.2. 

L1 loss. For generated image Z  , original frame Z  and 

predicted blending mask Z  we can formulate the reconstruction loss as L1 

norm of the masked differences between those frames: 

X̂ ∈ R3×H×W X ∈ R3×H×W

M ∈ R1×H×W

�24



Z   (6). 

This loss was predominantly used in previous works[8, 17] on its own to both 

penalize for visual quality and lip synchronization consistency. In our experiments we 

noticed that large weight on this loss is useful at the start of training but it slows 

down the training progress in the end because it tends to produce blurry results. 

Perceptual or VGG loss. Another reconstruction loss which is predominantly 

used for the task of style transfer, super resolution and related image generation 

tasks[31]. This loss computes the perceptual difference between images by 

comparing the extracted high-level features from the images. We use network Z  

which is a 16-layer VGG network[32] trained on ImageNet[33]. 

Instead of using the pixel wise difference between the images we compute the 

distance between feature representations of those images by comparing the feature 

maps of VGG network. So, let Z  be the activation from i-th layer of the network Z . 

Then we can use the function Z  to get the feature representation of the input Z . 

This has shape of Z . So the final loss is formulated as: 

Z   (7). 

This loss can be classified both as the reconstruction or visual quality 

depending on the number of layer used to extract feature representation. If one uses 

the low level features then this loss is very similar to the L1 loss described above, 

given that low-level features have small receptive field. In our experiments, we use 

features from the mid-to-high level which do not guarantee that content of images are 

identical but rather motivates the network to generate images which are identical 

perceptually. This has a good effect on quality of the images and we can get quality 

results using only perceptual loss. But still it does not strongly penalize generator for 

blurry results. 

LL1 =
1

∑ M ∑ M | X̂ − X |

ϕ

ϕi ϕ

ϕ(x)i x

(Ci × Hi × Wi)

Li
perceptual(X, X̂ ) =

1
CiHiWi

| |ϕ(X )i − ϕ(X̂ )i | |2
2
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Lip synchronization. We use a pre-trained highly accurate network to penalize 

for inconsistent lip movements. This is the only strong penalizer for out-of-sync lip 

movements, so it is especially relevant for our pipeline and the generation quality. 

 As we already described in section 3.3 the expert network is trained using 

sequences of frames Z . Given that our generator network is trained with single 

images, the data pipeline is organized in a way that it provides the sequences of 

frames which are concatenated in batch dimension. The sequences are of length 

Z . That is why the shape of the input to generator network is now: 

Z  which will be reshaped to get the input to expert network 

Z  . Expert network also needs a mel spectrogram which is aligned 

with those Z  frames. Given our training data we computed that the corresponding 

length of mel-spectrogram features is Z . Thus, mel input is Z  

where 80 is a number of mel filter banks. 

And the expert loss which is used for training can be formulated using the 

computed similarity between video and audio representations Z  from (3). Thus the 

final loss is: 

Z   (8) 

Note that Z  is further clipped to the range of Z  due to the extremely low 

values that may come from expert network which tends to destabilize the training due 

to explosion in the loss function because of  the logarithm.  

This network is frozen during training and used only for inference. We 

scheduled the training in the way that for the first iterations expert loss is not 

evaluated. Network needs to firstly converge to visually adequate results and then lip 

sync loss is used. This technique improves the speed of convergence. We used the 

values of reconstruction losses on validation set for this, in our experiments  we use

Z  as reference values to enable the discriminator loss. 

X

Tv = 5

(B * Tv × 3 × H × W )

Xseq ∈ R(B,3*Tv,H,W )

Tv

Ta = 16 Aseq ∈ R(B,1,80,Ta)

d

Lexpert =
1
B

B

∑
i=1

− log(di)

d [1e−3,1]

LL1 = 1.1,Lperceptual = 27
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Mask loss. For predicting the mask for mouth region we are using the separate 

head in generator network, specifically convolutional block with sigmoid activation 

to obtain the correct range of values. Mask is a 1-channel image in range Z  

Z . This task is not demanding and the network successfully converges 

with the use binary cross-entropy loss between the ground-truth mask Z  obtained 

from landmarks and the generated one. We experimented with additional losses on 

entropy of the mask but did not obtain better results. 

The loss for mask can be formulated as: 

Z   (9). 

Then we are using this mask to blend the generated result Z  back into the 

original frame Z . We can formulate this operation as: 

Z   (10). 

where Z  is a stop-gradient operation which removes the variable from the 

computation graph and Z  is a Gaussian blur with Z  parameters. We 

use stop-gradient so that network do not use the blending operation to update its 

parameters, which may result into mask being trained in the way that it starts to 

create the additional holes to optimize other losses, for instance it can skip the lip 

region to obtain the ideal results for lip sync loss. We also use stop-gradient for 

computation of other losses which demand masking. Z  is used to get smoother 

edges of the mask on the blended image. 

Adversarial training. All previous losses should provide the acceptable result 

with good lip synchronization quality, especially it is possible with perceptual loss 

training. However, the results are still blurry and there is a room for improvement.  

That is why we experimented with adding a quality discriminator network to 

gain visual quality by approximating the images from our video data distribution.  

These type of networks are called Generative Adversarial Networks (GAN)

[37] and they reach state-of-the-art results in generating high-quality images 

indistinguishable from real data[34, 35, 36]. In our settings we have a generator  

[0,1]

M ∈ R(B×1×H×W )

Mtrue

Lmask = −
1
B ∑ Mtruelog(M ) + (1 − Mtrue)log(1 − M )

X̂

X

X̂ = blur(sg(M )) * X̂ + (1 − blur(sg(M )) * X

sg()

blur() k = 5,σ = 3

blur()
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network which generates the lip movements, thus we add the additional 

discriminator network which is trained to output the probability of the image being 

real. The overview of the framework can be seen at Figure 3.3. 

The original objective function looks like this: 

Z   (11). 

Z   (12). 

In our experiments we tried different settings by training the discriminator on 

single frames and the sequences. The performance of those are quite similar, but 

multi-frame discriminator tends to produce more consistent result on video because it 

can penalize the lip sync movements that are not «natural» enough. 

Furthermore, we invested time in finding the right GAN training setting. 

Training of those networks is erroneous and can be quite tricky due to stability issues 

which received considerable amount of attention from research community[37, 38, 

39]. For that reason, we changed the original losses (11) and (12) to non-saturating 

losses with R1 regularization[40] which were successfully applied for StyleGAN2 

architecture[34]. Thus the losses are transformed to: 

Z   (13) 

LG = Ex∼X̂[1 − logD(x)]

LD = Ex∼X[logD(x)] + LG

LG = Ex∼X̂[log(1 + e−x)]
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Figure 3.3. Overview of multi-frame discriminator which is obtained to get more 
fine-grained quality. We employed several stabilization techniques as: R1 
regularization, non-saturating loss and DiffAug[39]. Each sample is transformed with 
random augmentation T which consists of affine and erosion augmentations.



Z   (14) 

In our experiments, R1 regularization successfully penalized the discriminator 

for overfitting, so training could last longer. We used Z  in all our experiments. 

On the other hand, we used convolutional discriminator architecture with 

strided convolutions for downsampling the input and LeakyReLU as activation 

function. The input is a sequence of images with masked upper region of the image, 

so that discriminator does not spend its capacity for invariant image regions. We 

enabled spectral normalization for each layer which is a standard for regularizing 

discriminator[38]. 

Still, we suffered from overfitting due to discriminator simply remembering 

most of the samples. To tackle this we used the recent technique with differentiable 

augmentations for adversarial training — DiffAug[39]. The main idea is to randomly 

augment all samples which come to discriminator with differentiable operations. This 

enables training the discriminator without overfitting even on the dataset with couple 

of hundreds of images. We used random affine and erosion augmentations. This 

technique successfully helped with the problem of overfitting and we reached stable 

training on our dataset. 

Overall loss. To sum up we combine all the losses together and describe 

training and optimization techniques. The final loss is: 

Z  

where coefficients change depending on the epoch of training. It is best to 

separate the training into two stages. First for training lip synchronization and the 

second one with fine-tuning the visual quality of the result. 

For the first stage, we are using this set of hyper parameters: 

Z , where Z  unti l the 

validation losses would indicate mild visual quality of the generated images. 

LD = Ex∼X[log(1 + e−x)] + Ex∼X̂[log(1 + ex)] +
γ
2

Ex∼X̂[ | |∇D(x) | |2
2 ]

γ = 10

L = αL1 * LL1 + αperceptual * Lperceptual + αexpert * Lexpert + αmask * Lmask + αadv * (LG + LD), (15)

αL1 = 1,αperceptual = 0.5,αexpert = 0.01,αmask = 1 αexpert = 0

�29



For the second stage, it is better to change the balance of the losses to: 

Z . Getting more for 

expert loss is because adversarial loss contradicts the expert in some way. 

We are using Adam to optimize the networks using learning rate of Z  for 

generator and discriminator networks. All the code is written using PyTorch[41] 

framework and trained on single Nvidia 2080 RTX GPU with batch size of 4. It takes 

approximately 3 days to converge for stage 1 and 18-24 hours for stage 2. We employ 

linear learning rate annealing at the end of the training for both first and second 

stages. 

 Section 4. Analysis 

We provide the quantitative comparison of our result comparing it to the other 

solutions in the field and running the ablation studies to understand the effect of each 

component in our pipeline. 

 4.1. Quantitative evaluation 

We are using test set from LRS2 dataset which consists of 1285 videos. For 

inference the same settings of sampling the identity and reference frames are used so 

that true frame does not leak to the reference. 

The examination of the solution consists of visual quality investigation and the 

quality of lip synchronization. For quality comparison we selected three different 

metrics: perceptual metric, peak signal to noise ratio (PSNR) and the Laplacian 

variance (vL). While for lip synchronization quality examination we used the expert 

network that was used for training the whole pipeline. 

We will go into details of each metric to gain better understanding of what each 

of them checks. 

Perceptual metric. This is the important visual quality metric which compares 

two images feature representations extracted using VGG16[32] trained on 

ImageNet[33]. One of the important characteristics of it is its correspondence with 

humans’ judgment and perception[42]. Different variations of perceptual metric are 

widely used to verify the results of generative models as: GANs[37], VAEs[43] etc. 

αL1 = 1,αperceptual = 0.5,αexpert = 0.1,αmask = 1,αadv = 0.01

2e−4
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This metric should provide insights on high-level image similarities and the 

value of it should be minimized. More details on this metrics is provided in section 

3.7, formula (7). We use this metric upon the classic structural similarity index 

(SSIM) which is also strongly bonded with human perception because it used hand-

constructed features which are less versatile than the ones extracted with high-

capacity neural network, though it would also be acceptable to use. 

PSNR. Peak signal to noise ratio is a classic metric to compute the similarity 

between the ground-truth image and the reconstructed version of it. It is widely used 

to evaluate the quality of compression of images and audios. The main advantage of 

using this metric is that it is relative — being dependent on how much signal is inside 

the image. It is advised to compute the metric over the converted luminance channel 

or by converting the color image to grayscale given that human eyes are 4 times less 

susceptible to changes in chrominance rather than in luminance. However, in our 

implementation we compared each channel in RGB space and average the final 

value.  

In our experiments we used the masked version of this metric given that 

generated part of the image is blended into the results and most of the image is 

untouched. 

Z   (15) 

Z   (16) 

where Z  is a clean image, Z  — reconstructed image, Z  is a maximum value 

of our true distribution of images. It equals to 255 in most occasions. This metric 

should be maximized for better reconstructed images. 

Laplacian variance (vL). We use this metric to evaluate how sharp the 

generated images are. The blurriness of generated images was an issue for past 

research[8, 17] that is why image discriminators for adversarial training are widely 

PSNR( f, g) = 20log10(
MAXf

MSE( f, g)
)

MSE( f, g) =
1

∑i, j M(i, j ) ∑
i

∑
j

M(i, j ) | | f (i, j ) − g(i, j ) | |2

f g MAXf
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employed to get more fine-grained results. Thus, we decided that it would be relevant 

to compute such metric and to compare it with other works in the field. 

This function is computed using the Laplacian of an image which is a second 

order derivative calculated by applying Sobel filter twice. Then, variance of the result 

is computed. We also use the masked version of this metric by computing the 

variance only for the values inside the mask. 

There are several preliminary steps to preprocess the images before getting a 

Laplacian. First, they should be gray scaled and processed with Gaussian filter to 

suppress the noise. However, we do not use the Gaussian Filter because our images 

are already quite blurry and the additional transformation would harm the true 

estimates. 

This metric should be maximized which would indicate that image is sharper. 

Lip synchronization quality. We use trained lip-sync expert to evaluate the 

consistency of lips movements on generated results. The lip-sync expert is trained to 

high accuracy of 91% of finding the out-of-sync sequences. That is why we decided 

that it would be relevant to use, especially given that it was trained on LRS2 dataset. 

We experimented with different losses obtained from the networks final layers, 

but most accurate and interpretable for us was the binary cross entropy function (8) 

which is also used for training. Using the cosine similarity between audio and face 

embeddings directly is misleading given that the values of this metrics are not 

uniform and are distributed near its bounds. 

To compute the loss we sample video and audio frames with step 5 and 

compute the expert loss on those sequences. The final value is obtained by averaging. 

Comparison with others. To compare the performance of our solution with 

existing in the field we selected Wav2Lip[5] solution given its similarity to previous 

solutions and its superiority upon them. You can refer to Table 4.1 for more details.  

During qualitative comparison we spotted that Wav2Lip solution has more 

natural lips movements while our has more acceptable visual quality with higher 

sharpness (vL) and perceptual VGG metric. We also provide visual comparison 

between generated samples by sampling a sequence of 5 frames, see Figure 4.1. 
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 4.2 Ablation studies 
During our experiments we evaluated different hypothesis including reference 

sampling, architectural components and different losses. For those different stages of 

research we recorded the target metrics to show the effect of each one. Please refer to 

table 4.1 for more information. 

Different techniques are relevant for visual quality and lip synchronization. We 

experimented with several architectural designs and spotted that residual connections 

are important for the visual quality and convergence. As can be seen from the table, 

ResNet provided gain in visual quality as well as in lip sync consistency. We also 

added the attention which together with ResNet gave considerable improvement in 

lip sync quality. 

On the other hand, we also evaluated the effect of skip-connections and giving 

the decoder information about lip movements and shape, which is encoded in audio 
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Refs. Architecture Losses Metrics
Sampling 
method

ResNet Attn. Audio 
skips

Mask GAN Expert Perc. PSNR vL

Random 1 No No No No No 0.833 35.5 13.7 66.2

Random 1 in 
neigh. of 30

No No No No No 0.820 35.1 13.5 66.8

KMeans No No No No No 0.818 34.4 13.8 66.4

KMeans + Aug No No No No No 0.789 33.6 13.6 69.1

KMeans + Aug Yes Yes No No No 0.753 30.4 14.6 78.3

KMeans + Aug Yes Yes Yes No No 0.724 29.7 14.2 79.5

KMeans + Aug Yes Yes Yes Yes No 0.693 28.1 15.2 86.1

KMeans + Aug Yes Yes Yes Yes Yes 0.716 24.28 15.44 103.2

Real 0.651 - - 198.3

Wav2Lip[5] 0.679 26.89 15.75 73.42

Table 4.1. Ablation studies and comparison with other solutions in the field. Real indicates 
the metrics on real images from the dataset. Attn. is attention for reference frames, ResNet 
stands for adding the residual connections, audio skips — skip-connections of audio 
embedding to decoder, mask stands for predicting the mask and blending. Expert loss is lip-
sync quality metric. Bold values indicates best results.



embedding. This also resulted in considerable gain in lip sync quality, though it was 

not significant for visual quality. 

We also researched the value of different sampling methods for reference 

frames. As a baseline we trained the random frame generation sampling technique 

when reference frame is taken in random from the whole video, excluding the 

identity frame. This technique was volatile and we spotted the significant ambiguity 

between poses and lighting conditions between identity and reference frames during 

training. This difference may be more erroneous if trained on other dataset with 

longer training videos. Our heuristic decision was to choose the frames from the 

neighborhood around the target frame assuming that frames are less different in this 

setting. This worked better, but we continued and experimented with more advanced 

technique by sampling multiple frames using KMeans to cluster all frames and get 

complete representations of an identity. By combining this technique with random 

augmentations of those frames, we got more robust solution with better convergence 

and all metrics. Please note that when KMeans was used without attention we just 

averaged the embeddings and intermediate feature representations. 

After we added mask predictions with blending into original frame afterwards 

the visual quality improved, partly because there were less errors in background 

images. This also helped with training convergence. 

Finally, visual quality has been significantly improved after adding adversarial 

training with nearly 25% gain in sharpness and 15% in perceptual. However, adding 

adversarial training resulted in increasing the expert loss which is quite surprising 

given that multi-frame discriminator should help with making lips movements more 

natural. However, from qualitative point of view, there were not any significant 

changes and such difference could be due to the expert network artifacts. We did not 

research this further. 

4.3. Future work 
There are several ideas which might help with making our decision better and 

which we have not covered in this work. 
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Fist proposal is data-centric, given our training dataset LRS2 is collected from 

different British TV shows of 2010-2017 there is large variance in quality of these 

samples. And we could not get good quality even after training with adversarial 

training. That is why using newer and bigger dataset may make a significant 

difference, we believe our solution can scale to the new datasets quite well. 

Secondly, we did not evaluate our algorithm in multilingual setup using 

English-only dataset, though it is quite extensive. This problem can be solved with 

collection more data or taking the existing dataset. For instance, AVSpeech[26] may 

be a good fit to continue the research with.  

Thirdly, the information leak problem was not solved completely. Though our 

training techniques helped to solve the most of the problems the face detection 
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Figure 4.1. Overview of the results. Comparison between Wav2Lip[5] model and ours given 
random sequences of generated videos. Source indicates true images from the dataset. Our 
results are sharper than those produced with Wav2Lip while the lip sync quality is 
comparable.



network we used leaks the information about the chin position mildly, that is why our 

solution is not as natural as it could be. 

Finally, we have hypothesis that the model design may be redundant and the 

whole task could be reformulated in predicting the deformation field to warp the 

reference image rather than generating the whole image. This approach is quite 

promising with recent works in image animation[44, 45] going for it. We have 

worked out the possible architecture with encoder-decoder design where the 

bottleneck would gradually predict the deformation field to warp reference image. All 

information will be incorporated and shared during the generation rather that using 

independent encoders for each. We believe that such architectural design may apply 

its capacity in a more efficient way. Also, this design will give lighter and faster 

network. However, this may create the additional difficulties for training with 

additional restraints on deformation field.  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Conclusions 
In this work we constructed a new algorithm for lip synchronization task with 

the use of deep learning. We analyzed previous works to construct the efficient neural 

network architecture and provided the insights on training such system. Our solution 

produces the comparable results with those existing in the field with improved visual 

quality. The ablation studies show that learning from additional expert network has 

significant effect on lip movements consistency. We also showed that skip-

connections and residual blocks are superior for the performance and together with 

adversarial training one can reach visually appealing talking face results. 

In future work we want to research the applicability of our solution to more 

versatile, multilingual datasets which should improve the quality. Furthermore, we 

believe that our architecture can be improved and propose more efficient design.  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