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Abstract

This material presents the solution to generate talking face images with the use
of deep learning. We conduct the research of existing literature to compose more
efficient network design. The final version has additional pre-trained discriminator
network to reach superior lip synchronization performance with adversarial training
to improve the visual quality of images.

We provide comparative analysis and ablation studies which show insights on
how different components of the solution affect the result. This approach achieves
comparable consistency in lip movements to other solutions in the field, but has
higher visual quality.

Keywords: deep learning, face animation, lip synchronization, generative

adversarial networks.



Introduction

There is a large amount of audio-visual content in the Internet with more than
500 hours of videos uploaded each minute [1]. And this naturally raises a problem of
availability of this content to multilingual community. At the moment of writing this,
nearly 60% of all the information is published in English[2] which creates an
imbalance of information accessibility, especially for educational purposes.

That is why translation of all that content may make it available to millions of
people across the world. The problem of audio-visual translation consists of two
challenges: translation and lip sync. The former one is pretty straightforward and
needs an editor or a machine to translate a piece of text to other language. Moreover,
this problem became much easier with the current state of machine translation and
services like Google Translate.

However, recent studies [3, 4] have stated that subtitles decrease the feeling of
spatial presence and make content less sensible for non-native speakers, specifically
beginner readers. By correcting face video to match the desired target speech one can
make the video more understandable and perceptually feasible. Accomplishing this
result is a hard task and it has received respectable amount of attention in the research
community [5, 6,7, 8,9, 10, 11, 12].

Most of the solutions are using deep learning and are constrained to limited
amount of speakers and words. For instance, prior works in the field [12, 13] are
using several hours of Obama videos and learning the mappings between audio and
lip landmarks. Next works are also constrained to the speakers they are trained on,
but provide better quality results [7]. The solutions discussed upon have limitation to
the speakers they are trained on and also an overhead to collect several hours of clean
speech.

That is why next generation of research was aimed on providing the solution to
work with unconstrained speakers with minimal amount of audio provided for each
of them. First solutions have resulted in speaker-independent lip sync [8, 9] with
good visual quality. Still, they had a drawback working only on static images.

However, to be used in real world with unconstrained amount of videos taken from



different perspectives and with different qualities one should have a model working
not only on static images but videos.

The recent work in the field accomplishes just that with high-quality
performance in-the-wild [5]. Their major contribution is in showing that the essential
part of the task can be solved with the use of a strong discriminator — binary classifier
which predicts if the lips movements on video are synced with the target speech.
Their classifier reaches 91% accuracy at finding out-of-sync sequences using their
evaluation dataset which is significantly higher that those from previous works.

In our work we are building upon this latter approach to construct the lip-sync
system which will be working on arbitrary identities and voices. This is a challenging
task due to versatile environment with many different poses and voices to support.
Moreover, we have a little room for error given that humans are capable of detecting
an out-of-sync video fragment ~0.05 — 0.1 seconds[12] in duration.

In our approach we will use the findings from the prior research with an
emphasis on learning from a strong discriminator. We construct disentangled
architecture for entities separation with concentration on more efficient training and
more consistent performance on video.

The work consists of four sections.

The first one discusses previous approaches for speaker-independent lip-sync
task. Our key findings are that prior works perform good at lip-syncing static photo
with an arbitrary speech, however the quality drops when used on unconstrained
videos. We hypothesize that the main reason for that is mainly because of using
reconstruction losses and learning from weak discriminators which are not accurate
enough to penalize for out-of-sync videos.

Next, in section two, we go into relevant concepts that are highly coupled with
our work, specifically for the next more technical section.

Third part presents our method in details with different discussions on the
specifics of the problem and training.

The fourth section shows experimental results and compares the presented
solution with the related ones. Moreover, the ablation studies with analysis on the

results are also provided.



Overall, the main tasks are:

1. Analyze the existing solutions.

2. Construct the speaker-independent solution for lip synchronization task
using deep learning.

3. Analyze the results and compare with similar solutions in the field.



Main part

Section 1. Problem analysis and solutions overview

In this section, we are going to provide brief overview of the problem we are
solving and describe the prior research in the field.

With the rise of consumption of audio-visual information the questions of its
accessibility rises more often. And while the videos are mostly translated to different
languages and the subtitles are made afterwards, the information may not be clear
enough for the beginner readers. That is why making a lip-sync model to transform
the face on the video to match the target speech is very helpful, especially for
educational purposes.

Lip-sync is about correcting one’s lips movements on video to match the audio
of target speech. Figure 1.1 illustrates the task in a more explicit way, so having an
image and arbitrary speech audio we can generate multiple new images that
reproduce the lips movements from the audio.

This is a challenging task because the model should work with different
speakers, be applicable to multiple languages and work in high-dimensional image
space while generating generating consistent result on videos. The task becomes
more complicated because model also should work with in-the-wild captured videos
(i.e. videos with unconstrained speaker poses, different quality of images, noisy
speech etc).

The vast majority of early works were concentrated on solving lip-sync in
constrained environment, mostly on single speaker or with the use of limit-sized
vocabulary. For instance, one of the approaches [13] is using Obama videos to
generate high-quality talking face videos. However, they are only working on Obama
identity and do not generalize to unseen videos and voices. Moreover, this approach
has an overhead in generating several hours of data for single speaker. Which is not a
hard task for celebrity but may be quite expensive for other individuals. Next line of
research aimed to reduce the data consumption for training. One of the recent works
[14] is using a hybrid approach by training two models — one is speaker-independent

and is trained on in-the-wild videos, while the other one is trained for each speaker in
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Figure 1.1 Lip sync task illustration from [17]

particular, but it demands significantly less data than previous approaches.
Technically, the first stage is used for pre-training the model to learn and extract
useful generic features, while the other one is fine-tuned to get better results for each
speaker. Still, they have an overhead with collecting the additional data for each
speaker and also the model was trained on small dataset which constrains the
performance of the model.

Additionally, there is a limitation that comes from existing datasets which may
be not big enough for the model to successfully generalize. For instance, LRW [15]
and TIMIT [16] have only 1000 words vocabulary which may be limiting in the real
world scenario.

That is why we aim to construct the speaker-independent solution which will
learn from phoneme-rich dataset and generalize well to unseen speech and videos.

The solutions described above have one problem in common — they do not
generalize to unseen data being limited to single speaker. So the next works aim to
solve this more challenging problem.

One of the early works at this frontier [17] constructed a pipeline with separate
encoder for image and audio inputs with decoder taking extracted features to generate
the final image. That is a good architecture choice however the results are blurry and
do not perform well on hard mimic cases. They even trained deblurring network on
top to get sharper results. Now, adversarial training is a standard for getting better
image quality and we will use this in our work as well. One more thing to mention
about this approach is that they did not use any external supervision by learning only
from pixel wise losses which are not strong enough to penalize for out-of-sync in

hard cases and tend to result in blurry results as well.
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The next solution [18] got another way around by firstly learn the intermediate
task of audio-visual speech recognition to learn the mapping between audio and
visual representations. Then, they use learned representations to disentangle subject
and speech related information inside. This approach lacks practicality as soon as one
should collect separate dataset to train on each new language.

Next work [8] is actually the continuation of the first one we mentioned [17].
The approach stays the same, their main contributions were in data (700K training
samples), speeding up architecture design and working on quality by adding multi-
stream CNN for blending generated faces back in the frame. Still, they have a
problem with the lip-sync quality, but the results are visually more appealing.

One of the recent works[9] goes along with encoder-decoder architecture,
however with several key differences, they separate images into identity and
reference where the former have their mouth region masked while the references are
used to extract the visual features of the identity. Generated image then is compared
with the identity one. This allows to extract relevant features about identity from
reference image while the identity one is mostly used for pose identification. In our
experiments such an approach helps to overcome the information leak and improve
convergence speed. Another more important contribution is the introduction of lip-
sync expert — binary classifier which outputs the probability of the audio-visual
sequence being in-sync or not. This allows to get more sophisticated lip-sync results
and we incorporate it in our approach. The drawback is that they train discriminator
end-to-end which may give faulty gradient by overfitting on some visual artifacts
present during training, thus such discriminator is a weak supervisor.

With all that in mind, one of the recent works[5] was published. They
continued with the architectures from [8, 9] and concentrated mostly on training more
accurate discriminator network with ~1.5 times improvement in accuracy compared
to previous works. They reached 91% accuracy at detecting out-of-sync samples.
They stated in their work that such expert is all you need to get a quality lip-sync. We
got the same results in our experiments and can verify that accurate expert network

makes huge different in terms of how natural the result is.
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In our work we proceed with these findings and aim to get more efficient

architecture with disentangled representations for identity and reference images, also

working on skip-connections between encoder and decoder networks. We also change
the way reference images are sampled and make research on information leak during

training.

Section 2. Related work

2.1. Convolutional neural networks

In this work we extensively use convolutional neural networks and it should be
useful to go into details and describe how they work together with explanation of
common architectures and optimization techniques that will be used next.

The main component is a classic discrete convolution from computer graphics
which is illustrated in Figure 2.1. Each layer of the networks consists of such kernels

which are applied to the input as a sliding window.

Figure 2.1. The discrete convolution overview. Blue matrix is an input, green matrix is
an output. Kernel is applied in sliding window style. Picture from [46].
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Deep convolutional networks are the essential component of Al revolution we
now have, they are widely used for different task, specifically from computer vision
task. This type of networks exists for a long time however their full potential has
been fulfilled only recently in the 2012 work [47].

From there on, the extensive amount of research has been conducted and new
network types were constructed.

Residual connections. Training very deep neural network from scratch is a
hard task and it was very challenging at the early years of deep learning development.
The main problem is vanishing gradients due to chain rule used during backward
pass. Very important work[30] introduced ResNet architecture which employed
residual connections as the building block. The main idea was very simple but yet
elegant, they added the output of layer on step i with the output of the previous layer
i — 1. This solved the problem of vanishing gradients and allowed to train 1000 layer
deep networks without any additional problems. For comparison, the deepest working
architecture for those times was VGG-16[32] with 16 layers. Residual connections
has been improved with newer versions proposed[48], you can refer to Figure 2.2 for

comparison. However, the main idea keeps untouched and in our work we are using
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Figure 2.3. ResNets overview from [48]. These are different variation of origin residual
connections from (a).
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the originally proposed version. In our experiments, adding residual shortcuts
improves quality and speedups convergence.

UNet [29]. Skip connections concept and UNet architecture are important for
understanding the next sections. UNet proposed fully convolutional architecture for
segmentation. It has a structure of encoder-decoder architecture so the output
dimensions match the input. Encoder reduces dimensions of the input while the
decoder is increasing the resolution. Main 1dea behind the UNet was to add the skip-
connections between the corresponding layers of encoder and decoder. Those
intermediate features are concatenated to the input of each layer of the decoder. This
effectively helps the decoder to use the information from different levels and
receptive fields when generating the final image. For more details refer to Figure 2.4.

In our experiments we use the same ideas with multiple encoders for image

and audio data which skip-connect their features to the corresponding layer of the

input

i output
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Figure 2.4. UNet architecture overview. Skip-connections are gray arrows which
transfers the output from encoder to decoder input[29].
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decoder. This provides good context awareness. For downsampling strided
convolutions are used while bilinear upsampling + convolutional layer is used for

upsampling.

Section 3. Method
Our lip-sync architecture 1s inspired by the early Lip-GAN[9] network design

with changes made to improve visual and lip-sync quality. We also incorporate highly

accurate discriminator network to learn from during training.

3.1. Data preparation

We overviewed different datasets to use during training, see Table 3.1 for more
details. There has been a considerable rise in the number of large and quality datasets
recently. For instance, AVSpeech[26] dataset from Google collected 4700 hours of
audio-visual data from YouTube with good quality. However, maintaining dataset this
large is troublesome and considering our work as a research-oriented we switched to
smaller but versatile LRS datasets[19, 22, 25]. Specifically, LRS2 dataset with ~30
hours audio-visual content and ~18k vocabulary size is chosen. The whole dataset is
constructed of utterances 2-3 seconds long.

After collecting the dataset we proceed with preparing it to training. We use
face detection network[27] with available public implementation to crop the frames

in the videos to the size of 96x96. We also extract landmarks from each face crop

Dataset Year # hours
GRIDJ[20] 2006 43
LDCJ[21] 2009 8.3
LRW[22] 2016 167
LRS-2[19] 2016 180
LRS-3[25] 2018 176
VoxCeleb[23] 2017 352
VoxCeleb2[24] 2018 2442
AVSpeech|[26] 2020 4700

Table 3.1. Lip-sync datasets overview
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with the use of TDDFA[28] network which is state-of-the-art solution at the moment

of writing.

3.2. Problem formulation
Let a sequence of face image crops be X = {X,,..., X} with aligned to it
waveform A = {A,,..., A;}. The task of lip-sync is to train a model g to get the

sequence of in-sync frames:
X=g(X,4) (1)

The result should have the lip movements consistent with those from A while
the visual information should pass untouched relatively to X (i.e. light, pose, skin
tone, identity attributes etc).

However, we cannot train g in a completely supervised manner because we
only have synchronized samples. That is why our model could be called the
reconstruction one, because instead of getting a negative sequence we mask out the
mouth region of X. For that we use a constant rectangular mask M which is large
enough to cover the mouth/chin region together with background information, the
urge for this will be explained in the next section. We will assume X to be masked
with M later in the paper.

But we lose very important identity information about the speaker by applying
mask. Information about the lip color/shape, teeth etc is removed. To overcome this
issue we use the set of additional frames from the same video of this speaker. We call
them reference frames: R = {Ry,..., Ry}. For X it is important to get a sequence of
frames while references should be the most representative frames from the video. We
go into details about picking those in the later sections. So, our function g now

transforms into:
X=gX,A,R) (2)

During inference we got (X,,,, A,.,) that can be arbitrary and out-of-sync. As a

est?
reference frame we can take the original one X, ,, given that we do not use the model

with the original audio.
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3.3 Lip-sync expert

Before moving on to discussing the model architecture and training techniques,
the word on lip-sync expert is worth to mention. This is a key feature to reach state-
of-the-art results for this task.

Previous works[8,9,17] use pixel wise losses which are not efficient for
penalizing out-of-sync results. This 1s because they compare whole images and the
mouth occupies the negligible amount of area. The network needs to reconstruct
background and skin texture well enough, so that significant amount of signal starts
go backwards from mouth region.

That is why for quality lip-sync we need more specific losses and one of the
recent works[9] added discriminator to their pipeline to penalize sequences for not
being synchronized. Still, this network was overfitting on visual artifacts of generator
because it was trained in adversarial setup: by learning discriminator and generator
networks at once.

The follow-up work[5] argued that for good lip-sync, discriminator network
must be pre-trained without additional fine-tuning during training. This creates
complementary overhead because one needs to train expert for each new dataset.
However, this additional complexity is worth it.

We rely on the research from [5] and add pre-trained discriminator network
into the pipeline. Next we will describe in more details the training scheme that was
used for training.

The network receives the sequence of frames X of shape (B,3* T,, H/2,W/2)
concatenated by channel axis (only lower parts). Together with the corresponding

audio sequence A, for those 7, =5 frames. To train the network one can sample

different audio segments from other parts of the same audio for modeling out-of-sync
fragment. The architecture is comprised of face and audio encoders both of which
output the embeddings which are compared with cosine similarity binary cross-
entropy loss. The intuition is that we can receive non-negative embeddings by
applying ReLU activation function upon it. Then we can compute dot product

between normalized versions of those vectors to get cosine similarity in the range
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Figure 3.1. Lip-sync expert architecture overview[9]. Separate encoders for audio and
images. Audio is encoded using MFCC features.

[0,1] which we can use to compute binary cross-entropy loss which is
predominantly used for classification. Given v,a as video and audio embeddings
correspondingly the distance(or probability in this case) between them is computed

as:

ay

d= 3)

max({lall,[[V]],.)

And the target objective is:
Lexpert Zyzlog(d)+(1 _yz)log(l _d) (4)

where y; 1s in-sync or out-sync audio fragment.
The network is trained on train portion of LRS2[19] dataset (appr. 30 hours)

and reach 91% accuracy at detecting correctly synchronized sequences.
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3.4. Model architecture

We construct encoder-decoder lip-sync architecture, see Figure 3.2 for more
details. The essential architecture is U-Net[29] with residual connections which takes
as input audio signal, masked identity and reference images. We have separate
encoders for each input type, each of which outputs a feature embedding of shape
512. These are concatenated and passed to the decoder network, which mimics the
structure of image encoders with bilinear upsampling + 2d convolution for
upsampling the features. Multiple skip-connections are used to concatenate the
intermediate features from reference and identity encoders to corresponding ones in
decoder. In our experiments we noticed that skip-connections are important
components for the network performance. Thus, we also add skip-connections of
concatenated embeddings from each encoder, for this we use auxiliary blocks which
transforms the dimensions of vectors to match those of intermediate features. Also,
residual connections[30] are used for each layer in encoder and decoder which
improve quality.

We will discuss in more details each component next.

Identity encoder. Stack of 2d convolutions with 10 ResNet Conv-BN-ReLU
blocks and the downsampling implemented with strided convolutions. The network
encodes input of shape 96x96 and outputs the embedding of size 1x512 with
intermediate features cached for skip-connection to decoder.

Reference encoder. It has the same architecture as identity encoder. For each
identity frame we have multiple references to encode the facial attributes of the
speaker. Each of those frames is encoded independently by the encoder and we got
the set of embeddings (N,512). We aggregate these embeddings into one using the
attention with audio embedding as the key. Main idea is to choose only those
reference features which are relevant for current frame given audio which should
encode the lips shape and chin position. The intermediate features are aggregated as

well to pass to decoder network. Let r = {ry,...,ry} be a set of reference

embeddings and a — audio embedding, then aggregated embedding 7 is computed as:
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Figure 3.2. Lip synchronization architecture overview. Using U-Net structure with
residual connections. We employ separate encoders for each input modality: audio,
reference and identity frames. Each encoder outputs embedding which are
concatenated. Attention is used to aggregate reference frames with audio embedding.
Decoder network receives multiple skip-connections from encoders and mel
embedding. Model outputs the result and mask for blending. We use pre-trained lip-
sync expert, as well as pixel wise losses. Adversarial training is also used for
improving quality.
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Audio Encoder. We use mel-spectrogram with 80 filter banks to represent
audio signal. Network is composed from stack of 2D convolutions for audio encoder
with 7 ResNet Conv-BN-ReLU blocks and the downsampling implemented with
strided convolutions. We also concatenate the input with two channels of Cartesian
coordinates for better spatial adaptivity for convolution network.

Image Decoder. The network mimics the image encoder architectures with
bilinear upsampling + 2d convolutions used for upsampling. Decoder concatenates its
features with intermediate ones from each encoder. Also, the additional blocks are
used to transform mel embedding to the size of the current feature map. We do not
use skip-connections for final layers because model learns to copy reference features
which degrades the convergence. Network has two heads where one outputs the result
for masked sequence while the other predicts mouth region mask that is used for

blending the result into.

3.5. More details on inputs and outputs

Identity images and audio input. Given the pair of matched video and audio
we sample random fragment of 5 frames from video. Audio has sample rate of 16kHz
so we transform it to mel-spectrogram with 80 filter banks and the corresponding
sequence is taken. Our models are working with single images so we further cut the
spectrogram to be centered for each video frame. In the result, each video frame has
16 frames of spectrogram of shape (1, 80, 16) . We use only the upper half of each

image to mask out the mouth region.

21



Reference frames. LipGAN[9] and Wav2Lip[5] use single reference frame
randomly sampled from the whole video. In our experiments we noticed that
reference frames may distract training by choosing frames which are significantly
different from the identity frame. So we experimented with different sampling
methods, such as: sampling random K frames, sampling from the neighborhood of
the identity sequence etc. This step is important because right choice of reference
frames will give better visual quality by better encoding the speaker appearance and
different lightning condition present in the video. Thus, choosing diverse input from
the video is a point.

We decided to use the flexibility of having the separate encoder for reference
images to encode multiple reference frames and to use the audio embedding to
reweigh the importance of each sample in every occasion. We want the selection
algorithm to produce different poses present in the video and to not incorporate any
information leak. Hence, we extracted the landmarks for each frame and applied
clustering method KMeans to separate the frames into K clusters. This ensures the
diversity of selected frames. We used lips and chin landmarks for clustering , because
these parts are the most relevant for the task. In the end, number of clusters K=10 was
chosen with good diversity in poses and mouth openness. During training we use the
same K frames for each identity frame.

However, given short videos in the train set we do not always get frames from
each cluster, that is why to reduce redundancy of the data only those frames with
present clusters are taken. To fill the free space we randomly augment chosen frames
with affine transformations.

Binary masks for mouth region. Our model predicts binary masks for mouth
region to blend the generated results into. We generate masks using extracted
landmarks from bottom chin part and the nose tip. The convex hull algorithm from
OpenCV is used and mask is further processed with dilation with kernel size 11. This

ensures that masks cover the face all the time.
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3.6 Information leak and generalization

After first iterations of research we noticed that model can severely overfit due
to the training scheme explained in section 3.2. Model can learn some features which
are present during training but absent during inference.

For example, we used the mask M to locate a chin position because for some
videos we encountered a problem that mask does not cover up the whole mouth
region. During training phase everything worked normal but on inference we got bad
result with no lip-sync at all. We also had an experiment where we used mouth mask
computed from landmarks instead of constant one, but this had the same drawback.
After making mask larger and fixating it, the result became much more better. The
problem with this approach is that model just learns how to open the mouth
depending on the mouth mask region, i.e. if the mouth mask is translated to the
bottom then the mouth should be opened and otherwise.

Interestingly, we discovered a few more problems like this which distract
training, independent of other training techniques used. These are main ones:

1. Learning correlations between mask position and lip shape.

2. Relying too much on reference frames or copying the reference if it is the

same as target or very similar.

The solutions for these:

1. Make mask large enough, it should cover the mouth/chin region as well as
background and not to be dependent on landmarks. In our experiments we use the
whole bottom half of the image.

2. Do not use as reference frames those from target ones in X. Use Gaussian
blur of reference images and remove skip-connections at final layer. This
stimulates the network to generate features and not to copy. Get only mouth region
as reference frames, this helps with generalization and also improves convergence
as capacity of the network is not used for the image parts that are left untacked
during inference.

These steps were important for our lip-sync to work better and they were

inferior to all architectural insights discussed earlier.
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3.7 Model training

We train our model using separate sets of different losses: reconstruction, lip
synchronization quality and visual quality losses. Reconstruction losses are computed
as comparison of the output with ground truth frames. These are used to penalize the
generator network for wrong result. Lip synchronization loss is used to penalize the
out-of-sync lip movements, as we already mentioned, the pre-trained discriminator
network 1s used for this. This network is frozen during training of the generator
network. Also, we have visual quality losses which are computed using adversarial
training with additional discriminator which takes as input sequence of frames and
outputs the probability that this sequence comes from true data distribution. In our
experiments, the discriminator which uses a sequence of frames tend to get better
results as it also can penalize for visually inconsistent lip movements.

Next, we will go into more details of each component but for now it is worth
noting how those losses are computed. The generator network has additional head
which predicts the mask of the mouth region of identity images. This is used, then, to
blend the resulting image back into the original one. In our experiments, it improved
the convergence and visual quality because the capacity of generator is not consumed
on reconstructing the invariant features such as: background information, neck, hair
etc. To train such network we are estimating the ground-truth mask from extracted
face landmarks and learn the network to reconstruct this mask. We intentionally do
not use the ground-truth mask instead but predict our own to avoid the additional
overhead of computing the landmarks for each new frame. Also, using an
independent mask for blending may also be not accurate, because it does not reflect
the result of the generator network. While the generated mask is conditioned on audio
itself and is aligned with the generated image.

In next subsections we are going to discuss each training loss in more details.
For quick overview of the whole architecture and losses, refer to Figure 3.2.

L1 loss. For generated image X € R¥>*™W | original frame X € R¥>*#W and
predicted blending mask M € R">XW we can formulate the reconstruction loss as L1

norm of the masked differences between those frames:
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1 R
LL1=WZM|X—X| (6).

This loss was predominantly used in previous works[8, 17] on its own to both
penalize for visual quality and lip synchronization consistency. In our experiments we
noticed that large weight on this loss is useful at the start of training but it slows
down the training progress in the end because it tends to produce blurry results.

Perceptual or VGG loss. Another reconstruction loss which is predominantly
used for the task of style transfer, super resolution and related image generation
tasks[31]. This loss computes the perceptual difference between images by
comparing the extracted high-level features from the images. We use network ¢
which is a 16-layer VGG network[32] trained on ImageNet[33].

Instead of using the pixel wise difference between the images we compute the
distance between feature representations of those images by comparing the feature

maps of VGG network. So, let ¢; be the activation from i-th layer of the network ¢.
Then we can use the function ¢(x); to get the feature representation of the input x.

This has shape of (C; X H; X W;). So the final loss 1s formulated as:

L X, X) =

\’ 2
‘perceptual CszVVz | |¢(X)l - d)(X)zl |2 (7).

This loss can be classified both as the reconstruction or visual quality
depending on the number of layer used to extract feature representation. If one uses
the low level features then this loss is very similar to the L1 loss described above,
given that low-level features have small receptive field. In our experiments, we use
features from the mid-to-high level which do not guarantee that content of images are
identical but rather motivates the network to generate images which are identical
perceptually. This has a good effect on quality of the images and we can get quality
results using only perceptual loss. But still it does not strongly penalize generator for

blurry results.
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Lip synchronization. We use a pre-trained highly accurate network to penalize
for inconsistent lip movements. This is the only strong penalizer for out-of-sync lip
movements, so it is especially relevant for our pipeline and the generation quality.

As we already described in section 3.3 the expert network is trained using
sequences of frames X. Given that our generator network is trained with single
images, the data pipeline is organized in a way that it provides the sequences of
frames which are concatenated in batch dimension. The sequences are of length
T,=5. That is why the shape of the input to generator network is now:

(B*T,x3x HXW) which will be reshaped to get the input to expert network

Xieq € RB3TWHW) Expert network also needs a mel spectrogram which is aligned

with those 7, frames. Given our training data we computed that the corresponding

length of mel-spectrogram features is T, = 16. Thus, mel input is A,,, € R®!501)

where 80 is a number of mel filter banks.
And the expert loss which is used for training can be formulated using the
computed similarity between video and audio representations d from (3). Thus the

final loss is:

B

1
Lexpert = E Z - log(dz) (8)

i=1

Note that d is further clipped to the range of [1e~>,1] due to the extremely low
values that may come from expert network which tends to destabilize the training due
to explosion in the loss function because of the logarithm.

This network is frozen during training and used only for inference. We
scheduled the training in the way that for the first iterations expert loss is not
evaluated. Network needs to firstly converge to visually adequate results and then lip
sync loss is used. This technique improves the speed of convergence. We used the
values of reconstruction losses on validation set for this, in our experiments we use

L, =11L, = 27 as reference values to enable the discriminator loss.

erceptual
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Mask loss. For predicting the mask for mouth region we are using the separate
head in generator network, specifically convolutional block with sigmoid activation
to obtain the correct range of values. Mask is a I-channel image in range [0,1]
M € RBXIXHXW) Thjs task is not demanding and the network successfully converges

with the use binary cross-entropy loss between the ground-truth mask M, . , obtained

true
from landmarks and the generated one. We experimented with additional losses on

entropy of the mask but did not obtain better results.

The loss for mask can be formulated as:
1
Lask == 7 D M, Jog(M)+ (1 =M, )log(1—M) (9).

Then we are using this mask to blend the generated result X back into the

original frame X. We can formulate this operation as:
X = blur(sgM))* X + (1 — blur(sg(M))*X (10).

where sg() 1s a stop-gradient operation which removes the variable from the
computation graph and blur() is a Gaussian blur with k = 5,0 = 3 parameters. We
use stop-gradient so that network do not use the blending operation to update its
parameters, which may result into mask being trained in the way that it starts to
create the additional holes to optimize other losses, for instance it can skip the lip
region to obtain the ideal results for lip sync loss. We also use stop-gradient for
computation of other losses which demand masking. blur() is used to get smoother
edges of the mask on the blended image.

Adversarial training. All previous losses should provide the acceptable result
with good lip synchronization quality, especially it is possible with perceptual loss
training. However, the results are still blurry and there is a room for improvement.

That is why we experimented with adding a quality discriminator network to
gain visual quality by approximating the images from our video data distribution.

These type of networks are called Generative Adversarial Networks (GAN)
[37] and they reach state-of-the-art results in generating high-quality images

indistinguishable from real data[34, 35, 36]. In our settings we have a generator
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Figure 3.3. Overview of multi-frame discriminator which is obtained to get more
fine-grained quality. We employed several stabilization techniques as: RI1
regularization, non-saturating loss and DiffAug[39]. Each sample is transformed with
random augmentation T which consists of affine and erosion augmentations.

network which generates the lip movements, thus we add the additional
discriminator network which is trained to output the probability of the image being
real. The overview of the framework can be seen at Figure 3.3.

The original objective function looks like this:
L;=E_ z[1—logD(x)] (11).
Lp = E, xllogD()] + Lg (12).

In our experiments we tried different settings by training the discriminator on
single frames and the sequences. The performance of those are quite similar, but
multi-frame discriminator tends to produce more consistent result on video because it
can penalize the lip sync movements that are not «natural» enough.

Furthermore, we invested time in finding the right GAN training setting.
Training of those networks is erroneous and can be quite tricky due to stability issues
which received considerable amount of attention from research community[37, 38,
39]. For that reason, we changed the original losses (11) and (12) to non-saturating
losses with R1 regularization[40] which were successfully applied for StyleGAN2

architecture[34]. Thus the losses are transformed to:

L;=E zllog(l+e™)] (13)
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Lp=E_ xllog(1+e™]+E, gllog(1+e)]+ gEMg[ [IVD@)[15] (14)

In our experiments, R1 regularization successfully penalized the discriminator
for overfitting, so training could last longer. We used y = 10 in all our experiments.

On the other hand, we used convolutional discriminator architecture with
strided convolutions for downsampling the input and LeakyReLU as activation
function. The input is a sequence of images with masked upper region of the image,
so that discriminator does not spend its capacity for invariant image regions. We
enabled spectral normalization for each layer which is a standard for regularizing
discriminator[38].

Still, we suffered from overfitting due to discriminator simply remembering
most of the samples. To tackle this we used the recent technique with differentiable
augmentations for adversarial training — DiffAug[39]. The main idea is to randomly
augment all samples which come to discriminator with differentiable operations. This
enables training the discriminator without overfitting even on the dataset with couple
of hundreds of images. We used random affine and erosion augmentations. This
technique successfully helped with the problem of overfitting and we reached stable
training on our dataset.

Overall loss. To sum up we combine all the losses together and describe

training and optimization techniques. The final loss is:

*L

‘expert

a, + Xnask * Lmask + Xaay * (LG + LD)’ (15)

— *
L= ar LL] + ap xpert

*k
erceptual Lperceptual+

where coefficients change depending on the epoch of training. It is best to
separate the training into two stages. First for training lip synchronization and the
second one with fine-tuning the visual quality of the result.

For the first stage, we are using this set of hyper parameters:

ap, = 1,ap =0.5,a =0.01,a =0 until the

erceptual — expert — mask = 1, where a

expert

validation losses would indicate mild visual quality of the generated images.
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For the second stage, it is better to change the balance of the losses to:

o = 1’aperceptual = O'S’Gexpert

=0.l,a,,4 = l,a,5,=0.01. Getting more for
expert loss 1s because adversarial loss contradicts the expert in some way.

We are using Adam to optimize the networks using learning rate of 2¢~* for
generator and discriminator networks. All the code is written using PyTorch[41]
framework and trained on single Nvidia 2080 RTX GPU with batch size of 4. It takes
approximately 3 days to converge for stage 1 and 18-24 hours for stage 2. We employ
linear learning rate annealing at the end of the training for both first and second

stages.

Section 4. Analysis

We provide the quantitative comparison of our result comparing it to the other
solutions in the field and running the ablation studies to understand the effect of each

component in our pipeline.

4.1. Quantitative evaluation

We are using test set from LRS2 dataset which consists of 1285 videos. For
inference the same settings of sampling the identity and reference frames are used so
that true frame does not leak to the reference.

The examination of the solution consists of visual quality investigation and the
quality of lip synchronization. For quality comparison we selected three different
metrics: perceptual metric, peak signal to noise ratio (PSNR) and the Laplacian
variance (vL). While for lip synchronization quality examination we used the expert
network that was used for training the whole pipeline.

We will go into details of each metric to gain better understanding of what each
of them checks.

Perceptual metric. This is the important visual quality metric which compares
two images feature representations extracted using VGG16[32] trained on
ImageNet[33]. One of the important characteristics of it is its correspondence with
humans’ judgment and perception[42]. Different variations of perceptual metric are

widely used to verify the results of generative models as: GANs[37], VAEs[43] etc.
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This metric should provide insights on high-level image similarities and the
value of it should be minimized. More details on this metrics is provided in section
3.7, formula (7). We use this metric upon the classic structural similarity index
(SSIM) which is also strongly bonded with human perception because it used hand-
constructed features which are less versatile than the ones extracted with high-
capacity neural network, though it would also be acceptable to use.

PSNR. Peak signal to noise ratio is a classic metric to compute the similarity
between the ground-truth image and the reconstructed version of it. It is widely used
to evaluate the quality of compression of images and audios. The main advantage of
using this metric is that it is relative — being dependent on how much signal is inside
the image. It is advised to compute the metric over the converted luminance channel
or by converting the color image to grayscale given that human eyes are 4 times less
susceptible to changes in chrominance rather than in luminance. However, in our
implementation we compared each channel in RGB space and average the final
value.

In our experiments we used the masked version of this metric given that

generated part of the image is blended into the results and most of the image is

untouched.
PSNR(F, g) = 20log;( MAY ) (15)
BT A SE
1
MSE(fo)= —— MG, i i) — o ] 2 16
(f, &) Zi,jM(i’j)zi:; G DG =GN (16)

where f is a clean image, g — reconstructed image, MA X, is a maximum value

of our true distribution of images. It equals to 255 in most occasions. This metric
should be maximized for better reconstructed images.

Laplacian variance (vL). We use this metric to evaluate how sharp the
generated images are. The blurriness of generated images was an issue for past

research[8, 17] that is why image discriminators for adversarial training are widely
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employed to get more fine-grained results. Thus, we decided that it would be relevant
to compute such metric and to compare it with other works in the field.

This function 1s computed using the Laplacian of an image which is a second
order derivative calculated by applying Sobel filter twice. Then, variance of the result
is computed. We also use the masked version of this metric by computing the
variance only for the values inside the mask.

There are several preliminary steps to preprocess the images before getting a
Laplacian. First, they should be gray scaled and processed with Gaussian filter to
suppress the noise. However, we do not use the Gaussian Filter because our images
are already quite blurry and the additional transformation would harm the true
estimates.

This metric should be maximized which would indicate that image is sharper.

Lip synchronization quality. We use trained lip-sync expert to evaluate the
consistency of lips movements on generated results. The lip-sync expert is trained to
high accuracy of 91% of finding the out-of-sync sequences. That is why we decided
that it would be relevant to use, especially given that it was trained on LRS2 dataset.

We experimented with different losses obtained from the networks final layers,
but most accurate and interpretable for us was the binary cross entropy function (8)
which is also used for training. Using the cosine similarity between audio and face
embeddings directly is misleading given that the values of this metrics are not
uniform and are distributed near its bounds.

To compute the loss we sample video and audio frames with step 5 and
compute the expert loss on those sequences. The final value is obtained by averaging.

Comparison with others. To compare the performance of our solution with
existing in the field we selected Wav2Lip[5] solution given its similarity to previous
solutions and its superiority upon them. You can refer to Table 4.1 for more details.

During qualitative comparison we spotted that Wav2Lip solution has more
natural lips movements while our has more acceptable visual quality with higher
sharpness (vL) and perceptual VGG metric. We also provide visual comparison

between generated samples by sampling a sequence of 5 frames, see Figure 4.1.
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Refs. Architecture Losses Metrics
Sampling | p Net | Attn. | 2"% | Mask | GAN | Expert| Perc. | PSNR | L
method skips
Random 1 No No No No No 0.833 35.5 13.7 66.2
Random Iin 1 o | No | No | No | 0820 | 351 | 135 | 668
neigh. of 30
KMeans No No No No No 0.818 344 13.8 66.4
KMeans + Aug No No No No No 0.789 33.6 13.6 69.1
KMeans + Aug Yes Yes No No No 0.753 30.4 14.6 78.3
KMeans + Aug Yes Yes Yes No No 0.724 29.7 14.2 79.5
KMeans + Aug Yes Yes Yes Yes No 0.693 28.1 15.2 86.1
KMeans + Aug Yes Yes Yes Yes Yes 0.716 | 24.28 15.44 | 103.2
Real 0.651 - - 198.3
Wav2Lip|5] 0.679 | 26.89 | 15.75 | 73.42

Table 4.1. Ablation studies and comparison with other solutions in the field. Real indicates

the metrics on real images from the dataset. Attn. is attention for reference frames, ResNet

stands for adding the residual connections, audio skips — skip-connections of audio
embedding to decoder, mask stands for predicting the mask and blending. Expert loss is lip-
sync quality metric. Bold values indicates best results.

4.2 Ablation studies

During our experiments we evaluated different hypothesis including reference
sampling, architectural components and different losses. For those different stages of
research we recorded the target metrics to show the effect of each one. Please refer to
table 4.1 for more information.

Different techniques are relevant for visual quality and lip synchronization. We
experimented with several architectural designs and spotted that residual connections
are important for the visual quality and convergence. As can be seen from the table,
ResNet provided gain in visual quality as well as in lip sync consistency. We also
added the attention which together with ResNet gave considerable improvement in
lip sync quality.

On the other hand, we also evaluated the effect of skip-connections and giving

the decoder information about lip movements and shape, which is encoded in audio

33



embedding. This also resulted in considerable gain in lip sync quality, though it was
not significant for visual quality.

We also researched the value of different sampling methods for reference
frames. As a baseline we trained the random frame generation sampling technique
when reference frame is taken in random from the whole video, excluding the
identity frame. This technique was volatile and we spotted the significant ambiguity
between poses and lighting conditions between identity and reference frames during
training. This difference may be more erroneous if trained on other dataset with
longer training videos. Our heuristic decision was to choose the frames from the
neighborhood around the target frame assuming that frames are less different in this
setting. This worked better, but we continued and experimented with more advanced
technique by sampling multiple frames using KMeans to cluster all frames and get
complete representations of an identity. By combining this technique with random
augmentations of those frames, we got more robust solution with better convergence
and all metrics. Please note that when KMeans was used without attention we just
averaged the embeddings and intermediate feature representations.

After we added mask predictions with blending into original frame afterwards
the visual quality improved, partly because there were less errors in background
images. This also helped with training convergence.

Finally, visual quality has been significantly improved after adding adversarial
training with nearly 25% gain in sharpness and 15% in perceptual. However, adding
adversarial training resulted in increasing the expert loss which is quite surprising
given that multi-frame discriminator should help with making lips movements more
natural. However, from qualitative point of view, there were not any significant
changes and such difference could be due to the expert network artifacts. We did not

research this further.

4.3. Future work
There are several ideas which might help with making our decision better and

which we have not covered in this work.
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Figure 4.1. Overview of the results. Comparison between Wav2Lip[5] model and ours given
random sequences of generated videos. Source indicates true images from the dataset. Our
results are sharper than those produced with Wav2Lip while the lip sync quality is
comparable.

Fist proposal is data-centric, given our training dataset LRS2 is collected from
different British TV shows of 2010-2017 there is large variance in quality of these
samples. And we could not get good quality even after training with adversarial
training. That is why using newer and bigger dataset may make a significant
difference, we believe our solution can scale to the new datasets quite well.

Secondly, we did not evaluate our algorithm in multilingual setup using
English-only dataset, though it is quite extensive. This problem can be solved with
collection more data or taking the existing dataset. For instance, AVSpeech[26] may
be a good fit to continue the research with.

Thirdly, the information leak problem was not solved completely. Though our

training techniques helped to solve the most of the problems the face detection



network we used leaks the information about the chin position mildly, that is why our
solution is not as natural as it could be.

Finally, we have hypothesis that the model design may be redundant and the
whole task could be reformulated in predicting the deformation field to warp the
reference image rather than generating the whole image. This approach is quite
promising with recent works in image animation[44, 45] going for it. We have
worked out the possible architecture with encoder-decoder design where the
bottleneck would gradually predict the deformation field to warp reference image. All
information will be incorporated and shared during the generation rather that using
independent encoders for each. We believe that such architectural design may apply
its capacity in a more efficient way. Also, this design will give lighter and faster
network. However, this may create the additional difficulties for training with

additional restraints on deformation field.
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Conclusions

In this work we constructed a new algorithm for lip synchronization task with
the use of deep learning. We analyzed previous works to construct the efficient neural
network architecture and provided the insights on training such system. Our solution
produces the comparable results with those existing in the field with improved visual
quality. The ablation studies show that learning from additional expert network has
significant effect on lip movements consistency. We also showed that skip-
connections and residual blocks are superior for the performance and together with
adversarial training one can reach visually appealing talking face results.

In future work we want to research the applicability of our solution to more
versatile, multilingual datasets which should improve the quality. Furthermore, we

believe that our architecture can be improved and propose more efficient design.
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