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Introduction 

In each engineering discipline, the main question is whether the design work            
will actually be done as planned. This question is relevant when we develop             
mechanical machines, electrical circuits or chemical processes. The answer comes          
from the analysis of structures, using knowledge of the nature that will perform the              
projects. For example, when we design a bridge, we analyze how nature manages the              
project, namely how different forces (such as gravity, wind, and vibration) are applied             
to the bridge and whether the bridge structure is strong enough to withstand them.              
The same question applies to computer software. We want to make sure our software              
works as intended. The intention to analyze varies widely. For overall reliability, we             
want to ensure that the software does not fail in the event of an unexpected               
termination. If the software interacts with the outside world, we want to make sure              
that it will not be tricked into compromising the security of the host computer.              
Regarding specific functions, we want to check whether the software realizes its            
functional purpose. If the software is designed to drive cars, we want to make sure               
that it does not lead to an accident. 

However, there is one difference between software analysis and analysis of           
other types of engineering structures: for computer software, it is not nature that runs,              
but the computer itself. The computer executes the software according to the            
language values of the source software. The behavior of the software is determined             
solely by the values of the language of the software source. A computer is simply an                
illegible tool that blindly executes software exactly as it is written. Any execution             
behavior that deviates from our intent is that the software is misspelled in this way.               
So, for computer software, to answer the question of whether our design will work as               
we intended, we need knowledge with which we can somehow analyze the meaning             
of the language of the software source. Such knowledge corresponds to the            
knowledge accumulated by the natural sciences of nature. We need the knowledge            
that computer science has accumulated about processing the values of software           
source languages. There is a formal definition of software behavior, which is            
determined by the meanings, semantics of the language of its source. 
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1. Software Analysis Overview 

The semantics of a program is a description of its execution behavior. A             
semantic property is any property in relation to the behavior (semantics) of a program              
during program execution. Therefore, checking whether the software works as we           
intended is equivalent to checking whether the software satisfies the semantic           
property of interest. Next, we call the method of verifying that the program satisfies              
the semantic analysis of the program property, and we call the implementation of             
program analysis as a tool for analyzing the program. Figure 1. illustrates the             
correspondence between software analysis and design analysis of other engineering          
disciplines [17]. 
 

 

Name Computing area Other engineering areas  

Object Software Machine/building/circuit/chemi
cal process design  

Execution Computer  Nature 

Question Work as intended Work as intended 
 

Knowledge Program analysis 
 

Thermodynamic equations, 
and other principles 

 
Figure 1.  Program analysis versus other engineering areas  

 
  

1.1 Software Analysis Challenges  

Program analysis can be applied wherever understanding program semantics is          
important or beneficial. Software developers can use program analysis for quality           
assurance, to locate errors of any kind in their software. Software maintainers can use              
program analysis to understand legacy software that they maintain. System security           
gatekeepers can use program analysis to proactively screen out programs whose           
semantics can be malicious. Software that handles programs as data can use program             
analysis for the programs’ performance improvement too. Language processors such          
as translators or compilers need program analysis to translate the input programs into             
optimized ones. Interpreters, virtual machines, and query processors need program          
analysis for optimized execution of the input programs. Automatic program          
synthesizers can use program analysis to check and tune what they synthesize [18].             
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The use of program analysis is not limited to professional software or its developers.              
As programming becomes a way of living in a highly connected digitized            
environment, citizen programmers can benefit from program analysis, too, to          
sanity-check their daily program snippets. Once the object’s source language has           
semantics, program analysis can circumscribe its semantics to provide useful          
information. For example, program analysis of high-level system configuration         
scripts can provide information about any existing conflicting requests.  

Though the benefits of program analysis are obvious, building a cost-effective           
program analysis is not trivial, since computer programs are complex and often very             
large. For example, the number of lines of smartphone applications frequently           
reaches over half a million, not to mention larger software such as web browsers or               
operating systems, whose source sizes are over ten million lines. With semantics, the             
situation is much worse because a program execution is highly dynamic. Programs            
usually need to react to inputs from external, uncontrolled environments. The number            
of inputs, not to mention the number of program states, that can arise in all possible                
use cases is so huge that software developers are likely to fail to handle some corner                
cases. Given that software is in charge of almost all infrastructures in our personal,              
social, and global life, the need for cost-effective program analysis technology is            
greater than ever before. We have already experienced a sequence of appalling            
accidents whose causes are identified as mistakes in software. Such accidents have            
occurred in almost all sectors, including space, medical, military, electric power           
transmission, telecommunication, security, transportation, business, and      
administration. The long list includes accidents, the large-scale Twitter outage          
(2016), the fMRI software error (2016) that invalidated fifteen years of brain            
research, the Heartbleed bug (2014) in the popular OpenSSL cryptographic library           
that allows attackers to read the memory of any server that uses certain instances of               
OpenSSL, the stack overflow issues that can explain the Toyota sudden unintended            
acceleration (2004–2014), the Northeast blackout (2003), the explosion of the Ariane           
5 Flight 501 (1996), which took ten years and $7 billion to build and it is just a few                   
of the more prominent software accidents [17].  

Though building error-free software may be unlikely and unconvincing, at least           
within reasonable costs for large-scale software, cost-effective ways to reduce as           
many errors as possible are always in high demand. Static analysis, which is the              
focus of this book, is one kind of program analysis.  
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1.2 Static Analysis Concepts  

1.2.1 Areas to Analyze 
The first question to answer to characterize program analysis techniques is what             

programs they analyze in order to determine what properties.  
 
Target Program - An obvious characterization of the target programs to analyze is the              
programming languages in which the programs are written [19]. 

● Domain-specific analyses - certain analyses are aimed at specific families of           
programs. This specialization is a pragmatic way to achieve a cost-effective           
program analysis, because each family has a particular set of characteristics on            
which a program analysis can focus. For example, consider the C programming            
language. Though the language is widely used to write software, including           
operating systems, embedded controllers, and all sorts of utilities, each family           
of programs  has a special character.  

● Non-domain-specific analyses - some analyses are designed without focus on          
a particular family of programs of the target language. Such analyses are            
usually those incorporated inside compilers, interpreters, or general-purpose        
programming environments. Such analyses collect information about the input         
program to help compilers, interpreters, or programmers for an optimized or           
safe execution of the program. Non-domain-specific analyses risk being less          
precise and cost-effective than domain-specific ones in order to have an overall            
acceptable performance for a wide range of programs.  

 
Besides the language and family of programs to consider, the way input programs are              
handled may also vary and affects how the analysis works. An obvious option is to               
handle source programs directly just like a compiler would, but some analyses may             
input different descriptions of programs instead. There available two classes of           
techniques:  

● Program-level analyses are run on the source code of programs (e.g., written            
in C or Java) or on executable program binaries and typically involve a front              
end similar to a compiler’s that constructs the syntax trees of programs from             
the program source or  compiled files.  

● Model-level analyses consider a different input language that aims at modeling           
the semantics of programs; then the analyses input not a program in a language              
such as C or Java but a description that models the program to analyze. Such               
models either need to be constructed manually or are computed by a separate             
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tool. In both cases, the construction of the model may hide either difficulties or              
sources of inaccuracy that  need to be taken precisely into account.  

 

1.3 Families of Program Analysis Techniques  

1.3.1 Testing: Checking a Set of Finite Executions  
 

When trying to understand how a system behaves, often the first idea that             
comes to mind is to observe the executions of this system. In the case of a program                 
that may not terminate and may have infinitely many executions, it is of course not               
feasible to fully observe all executions. Therefore, the testing approach observes only            
a finite set of finite program executions. This technique is used by all developers,              
from beginners to large teams designing complex computer systems. In industry,           
many levels of testing are performed at all stages of development, such as unit testing               
and integration testing. Basic testing approaches, such as random testing [15],           
typically provide a low coverage of the tested code. However, more advanced            
techniques improve coverage. As an example, concolic testing [16] combines testing           
with symbolic execution (computation of exact relations between input and output           
variables on a single control flow path) so as to improve  coverage and accuracy.  

Testing has the following characteristics:  
● Easy to automate 
● Not robust 
● Complete since a failed testing run will produce an execution that is            

incorrect  
 

1.3.2 Assisted Proof: Relying on User-Supplied Invariants  
 
This is essentially the approach followed by machine-assisted techniques. This          

means that users may be required to supply additional information together with the             
program to analyze. In most cases, the information that needs to be supplied consists              
of loop invariants and possibly some other intermediate invariants. This often           
requires some level of expertise. On the other hand, a large part of the verification can                
generally still be carried out in a fully automatic way. We can cite several kinds of                
program analyses based on machine-assisted techniques. A first approach is based on            
theorem-proving tools like Coq [18]. This approach is adapted to the proof of             
sophisticated program properties. It was applied to the verified CompCert compiler           
from C to Power-PC assembly. 
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Machine-assisted techniques have the following characteristics:  
● They are not fully automatic and often require the most tedious logical            

arguments to come from the human user.  
● In practice, they are sound with respect to the model of the program             

semantics used for the proof, and they are also complete up to the             
abilities of the proof assistant to  verify proofs.  

In practice, the main limitation of machine-assisted techniques is the significant           
resources  they require, in terms of time and expertise.  

 

1.3.3 Model Checking: Exhaustive Exploration of Finite Systems  

Another approach focuses on finite systems, that is, systems whose behaviors           
can be exhaustively enumerated, so as to determine whether all executions satisfy the             
property of interest. This approach is called finite-state model checking [19] since it             
will check a model of a program using some kind of exhaustive enumeration. In              
practice, model checking tools use efficient data structures to represent program           
behaviors and avoid enumerating all executions thanks to strategies that reduce the            
search space. This solution is very different from the testing approach discussed in             
section 1.3.1. Indeed, testing samples a finite set of behaviors among a generally             
infinite set, whereas model checking attempts to check all executions of a finite             
system. The finite model-checking approach has been used both in hardware           
verification and in software verification.  

Model checking has the following characteristics: 

● It is automatic 
● It is robust and complete with respect to the model 

An important caveat is that the verification is performed at the model level and              
not at the program level. As a first consequence, this means that a model of the                
program needs to be constructed, either manually or by some automatic means. In             
practice, most model checking tools provide a front end for that purpose. A second              
consequence is that the relation between this model and the input program should be              
taken into account when assessing the results. If the model cannot capture exactly the              
behaviors of the program, the checking of the synthesized model may be either             
incomplete or not robust, with respect to the input program.  

In practice, model-checking tools are often conservative and are thus robust           
and incomplete with respect to the input program. A large number of            
model-checking tools have been developed for verifying different kinds of logical           
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assertions on various models  or programming languages. 
 

1.3.4 Conservative Static Analysis: Automatic, Robust, and Incomplete 
Approach  
 

Instead of constructing a finite model of programs, static analysis relies on            
other techniques to compute conservative descriptions of program behaviors using          
finite resources. The core idea is to finitely over-approximate the set of all program              
behaviors using a specific set of properties, the computation of which can be             
automated [20]. An example is the type inference present in many modern            
programming languages such as variants of ML. Types provide a coarse view of             
what a function does but do so in a very effective manner, since the correctness of                
type systems guarantees that a function of type int - > bool will always input an                
integer and return a Boolean.  

Static analysis approaches have the following characteristics:  

● It is automatic; 
● It produces robust results, as they compute a conservative description of           

program  behaviors, using a limited set of logical properties.  
● It is generally incomplete because they cannot represent all program          

properties and rely on algorithms that enforce termination of the analysis           
even when the input  program may have infinite executions.  

While a static analysis is incomplete in general, it is often possible to design a               
robust static analysis that gives the best possible answer on classes of interesting             
input programs. However, it is then always possible to craft a correct input program              
for which the analysis will fail to return a conclusive result.  

 

1.3.5 Bug Finding: Error Search, Automatic, Unsound, Incomplete, Based on         
Heuristics  

 
Some automatic program analysis tools sacrifice not only completeness but          

also robustness. The main motivation to do so is to simplify the design and              
implementation of analysis tools and to provide lighter-weight verification         
algorithms. The techniques used in such tools are often similar to those used in              
model checking or static analysis, but they relax the robustness objective. For            
instance, they may construct not robust finite models of programs so as to quickly              
enumerate a subset of the executions of the analyzed program, such as by considering              
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only what happens in the first iteration of each loop, whereas a robust tool would               
have to consider possibly unbounded iteration numbers. As an example, the tool            
CODESONAR [21] relies on such approaches so as to search for defects in C/C++ or               
Assembly programs. It is thus a case that a model checker gives up on robustness in                
order to produce fewer alarms. Since the main motivation of this approach is to              
discover bugs (and not to prove their absence), it is often referred to as bug finding.                
Such tools are usually applied to improve the quality of noncritical programs at a low               
cost.  

Bug-finding tools have the following characteristics:  
● They are automatic  
● They are neither robust nor complete, instead, they aim at discovering           

bugs rather quickly, so as to help developers.  
 
 

Techniques Automatic Robust Complete Object Execution 

Testing Yes No Yes Program Dynamic 

Assisted proving No Yes Yes/No Model Static 

Model checking of 
finite-state model 

Yes Yes Yes Finite 
Model 

Static 

Model checking at 
program level 

Yes Yes No Program Static 

Conservative static 
analysis 

Yes Yes No Program Static 

Bug finding Yes No No Program Static 

 
Figure 2.  An overview of program analysis techniques  

 

1.4 Static Analysis Overview  

Static analysis is an automatic technique for program-level analysis that          
approximates in a conservative manner semantic properties of programs before their           
execution [17].  

This term is applied to the analysis performed by an automated tool, with             
accompanied human analysis being called program understanding or code review. 

The code review of the analysis performed by tools varies from those that only              
consider the behavior of individual statements and declarations, to those that include            
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the complete source code of a program in their analysis. Uses of the information              
obtained from the analysis vary from highlighting possible coding errors to formal            
methods that mathematically prove properties about a given program (e.g., its           
behavior matches that of its specification). 

It can be argued that software metrics and reverse engineering are forms of             
static analysis. In fact, deriving software metrics and static analysis are increasingly            
deployed together, especially in creation of embedded systems, by defining so called            
software quality objectives. 

A growing commercial use of static analysis is in the verification of properties             
of software used in safety-critical computer systems and locating potentially          
vulnerable code. Some of the implementation techniques of static analysis include: 

● Model checking considers systems that have finite state or may be reduced to             
finite state by abstraction; 

● Data-flow analysis is a lattice-based technique for gathering information about          
the possible set of values; 

● Abstract interpretation models the effect that every statement has on the state            
of an abstract machine. This abstract machine over-approximates the behaviors          
of the system: the abstract system is thus made simpler to analyze, at the              
expense of incompleteness. If properly done, though, abstract interpretation is          
robust.  

● Use of assertions in program code. There is tool support for most programming             
languages. 

 
This term is applied to the analysis carried out by the automated tool, therefore              

the accompanying analysis of the person is called understanding the program or            
displaying the code. 

The verification of the analysis code carried out by the tools ranges from those              
that only take into account the behavior of individual instructions and declarations to             
those that include the complete source code of the program in their analysis. The use               
of the information obtained from the analysis varies from the selection of possible             
coding errors to formal methods that mathematically substantiate the properties of a            
particular program (e.g. its behavior corresponds to that specified in its specification). 

It can be argued that software metrics and reverse engineering are forms of             
static analysis. In fact, software output and static analysis are increasingly being            
developed together, especially when creating embedded systems by defining         
so-called software quality goals. 
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The increasing commercial use of static analysis is to test the properties of             
software used in security-critical computer systems and to look for potentially           
vulnerable code. Some of the methods for implementing static analysis include: 

● Model checking - takes into account systems that have a finite state or that can               
be reduced to a finite state by abstraction.  

● Data-flow analysis - analysis is a grid method for collecting information about            
a possible set of values. 

● Abstract interpretation - simulates the effect of each statement on the state of             
the abstract machine. This abstract machine approaches the behavior of the           
system: In this way, the abstract system becomes easier to analyze due to             
incompleteness. An abstract interpretation, however, is reliable when executed         
correctly. 

● Use of assertions 
 

 

1.5 Dynamic Software Analysis Overview 
Dynamic analysis is the testing and evaluation of a program by executing data             

in real-time. The aim is to find bugs in the program during startup and not to study                 
the code repeatedly offline. 

By debugging the program in all scenarios for which it was developed,            
dynamic analysis eliminates the need to artificially create situations that can lead to             
errors. Other advantages include lower testing and maintenance costs, the          
identification and elimination of unnecessary program components, and ensuring that          
the program to be tested is compatible with other programs. 

For the analysis of dynamic programs to be effective, the target program must             
be executed with sufficient test inputs to generate interesting behavior. The use of             
software testing methods such as B. Code coverage helps to ensure that an             
appropriate part of the possible program behavior is adhered to. Care should also be              
taken to minimize the impact of the toolkit on the execution (including the time              
characteristics) of the target program. Inadequate testing can lead to catastrophic           
failures. 

The dynamic analysis is carried out through program execution and          
performance monitoring. Testing and profiling is dynamic standard analysis. The          
dynamic analysis is done precisely because no approximation or abstraction is           
required: the analysis can examine the actual, precise behavior of the program in the              
execution process. It is not clear which control flow paths were adopted, which values              
were calculated, how much memory was used, how long it took for the program to               
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run, or other interesting values. 
Dynamic analysis can be as fast as program execution.  
Advantages of dynamic analysis: 

● Is able to detect dependencies that are not possible in static analysis.  
Example: dynamic dependencies using reflection, dependency injection,       
polymorphism. 

● Can collect temporal information 
● Deals with real runtime values 

  
The disadvantage of dynamic analysis is that its results may not generalize to             

future executions. There is no guarantee that the test suite over which the program              
was run (that is, the set of inputs for which execution of the program was observed) is                 
characteristic of all possible program executions. Applications that require correct          
inputs (such as semantics-preserving code transformations) are unable to use the           
results of a typical dynamic analysis, just as applications that require precise inputs             
are unable to use the results of a typical static analysis. Whereas the chief challenge               
of building a static analysis is choosing a good abstraction function, the chief             
challenge of performing a good dynamic analysis is selecting a representative set of             
test cases (inputs to the program being analysed). (Efficiency concerns affect both            
types of analysis.) A well-selected test suite can reveal properties of the program or of               
its execution context; failing that, a dynamic analysis indicates properties of the test             
suite itself, but it can be difficult to know whether a particular property is a test suite                 
artefact or a true program property. 

1.6 Software Metrics 
A software metric is a measure of a property of software or its specifications.              

Because quantitative measurements are important in all sciences, computer scientists          
and theorists are constantly trying to introduce similar approaches to software           
development. The goal is to obtain objective, reproducible and quantifiable indicators           
that can contain numerous valuable programs for budget planning and planning, cost            
estimation, quality assurance tests, software debugging, software performance        
optimization and optimal tasks for employees. 

There are three groups of methods of data collection: direct, indirect and            
independent. The main criterion for grouping techniques is how the researcher should            
contact members. Direct methods require the researcher direct contact with research           
participants. Indirect methods allow indirect access to research participants through          
direct access to the workspace members. Independent methods require that the           
researcher seek only to objects of study participants, such as source code and             
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documentation. 
▪ Direct methods include brainstorming and focus groups, interviews and         

questionnaires, conceptual modelling, doing business diaries, sound work, and         
general observations shadow observation, active surveillance. 

▪ Indirect methods are also exploring the work of software engineers, but, unlike            
direct, do not require direct contact with participants in the experiment. The            
following indirect methods: instrumentation systems and remote monitoring. 

▪ Independent method is a technique that allows to obtain information about           
software products over which the work of software engineers. The following           
independent methods - analysis of databases of the work, the analysis of log             
files tools, documentation analysis, statistical analysis and dynamic systems. 

Some software developers point out that simplified measurements can do more harm            
than good. Others found that metrics have become an integral part of the software              
development process. The impact of measurements on the psychology of          
programmers has raised concerns about the detrimental effects on productivity from           
stress, anxiety, and attempts at performance, while others believe that they have a             
positive impact on the value of developers for their own work and prevent             
underestimation. Some argue that the definition of many measurement methods is           
inaccurate, and therefore it is often unclear how the tools for their calculation will              
produce a certain result, while others argue that incomplete quantification is better            
than none. There is evidence that software metrics from government agencies, like            
the U.S. military, NASA, are widely available. 
 

1.7 The SQALE Model 
SQALE (Lifecycle Quality Assessment) is a method to support the evaluation           

of software sources. This is a general method that is independent of language and              
source analysis tools. 

The SQALE quality model is used to formulate and organize non-functional           
code quality requirements. It is organized in three hierarchical levels. The first level             
consists of characteristics, the second of sub-characteristics. The third level consists           
of the requirements for the internal attributes of the source code. These requirements             
usually depend on the context and language of the software. 

The SQALE analysis model contains, on the one hand, the rules for            
normalizing the key figures and controls in relation to the code and on the other hand                
the aggregation rules for the normalized values. The SQALE method normalizes the            
reports obtained using source code analysis tools and converts them into correction            
costs. To do this, use either the recovery factor or the recovery function. The SQALE               
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method defines rules for the aggregation of restoration costs either in the structure of              
the quality model tree or in the hierarchy of the source code artifacts. 

 

1.7.1 SQALE Model Indexes 
The indicators of the model represent the costs. These costs can be calculated             

in a unit of work, in a unit of time, or in a unit of money. In all cases, the values of                      
the indices are on a scale of the type of relationship. You can use them to perform all                  
permissible operations for this type of scale. For each element of the source code              
artifact hierarchy, the cost of restoration associated with that characteristic can be            
estimated by adding all of the restoration costs associated with the characteristics of             
the characteristic. The indices of SQALE characteristics are the following [23]: 

● Testability Index : STI 
● Reliability Index : SRI 
● Changeability Index : SCI 
● Efficiency Index : SEI 
● Security Index : SSI 
● Maintainability Index : SMI 
● Portability Index : SPI 
● Reusability Index : SRuI 

The method also defines a global index: for each element of the hierarchy of              
source code artifacts, the restoration costs that relate to all characteristics of the             
quality model can be estimated by adding all the restoration costs that are associated              
with all requirements of the quality model. 
This derived measurement is called: SQALE Quality Index [23]. 
 

2. Tools overview 

2.1 IBM Rational Software Architect 
IBM Rational Software Architect (RSA) is a comprehensive modeling and          

development environment that uses the Unified Modeling Language (UML) to design           
the architecture of C ++ and Java 2 Enterprise Edition (J2EE) application and web              
services. Rational Software Architect is based on Eclipse open-source software and           
includes features that focus on architecture code analysis, C ++, and UML modeling             
(MDD) to build robust applications and web services. 

Rational Software Architect includes the following capabilities: 
1. Built on Eclipse 
2. Supports UML 
3. Supports model-to-code and code-to-model transformations.  
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4. Includes all of the capabilities of IBM Rational Application Developer 
5. Enables model management for parallel development and architectural        

re-factoring. 
6. Provides visual construction tools 

Benefits of using Rational Software Architect include: 
▪ Build a software architecture that supports change with a common platform           

that facilitates direct rotation, model and code synchronization. 
▪ Accelerate implementation and facilitate support for a successful        

service-oriented architecture solution (SOA), such as web service with         
powerful tools and process management. 

▪ Use UML to ensure continuous communication between multiple stakeholders         
in your software development projects and to use certain specifications to start            
development quickly. 

▪ Familiarize yourself with distributed projects and control shared information         
more closely. 

 

2.2 iPlasma 
iPlasma is an integrated environment for analyzing the quality of object-oriented           
software systems that includes support for all required analysis phases: from model            
extraction (including scalable analysis for C ++ and Java) to monitoring based on             
high-level metrics or code duplication. iPlasma has three main advantages: 

● Extensibility of the supported analysis 
● Integration with other analysis tools 
● Scalability as used in the past to analyze large projects the size of millions of               

lines of code. 
 

An important task in software analysis is to create a suitable model of the              
system. The purpose of creating a model is to extract information from the source              
code that is relevant to a particular purpose. For analyzes that focus on             
object-oriented design, it is therefore important to know the analyzed system types,            
functions and variables as well as information about their use, inheritance           
relationships between classes, call plan, etc. 

Based on the extracted information, we can identify different types of design            
analysis (e.g. metrics, rules based on metrics to identify design problems, quality            
models, etc.). Next we will discuss how these tests are supported in iPlasma. 
iPlasma contains a library of more than 80 state-of-the-art and new design metrics             
that can be applied at various levels of abstraction, from system-level metrics that             
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create a system map to primitive metrics that describe details in a single method. 
Indicators can be divided into the following categories: 

● Size indicators - Measure the size of the analyzed object (e.g. lines of             
code). 

● Complexity Indicators - Measure the complexity of the entity being          
analyzed (e.g. cyclomatic complexity). 

● Connection metrics - Measure data connections between objects (e.g.         
connections between objects). 

● Cohesion Coefficients - Measure the cohesion of classes (e.g. class          
cohesion). 

A detection strategy is a quantified expression of a rule that allows design             
fragments that match this rule to be recognized in the source code. With this              
quantification, we can automatically detect design errors in the software system,           
design units that represent some deviations from good object-oriented design criteria,           
which prevents the simple development of the system and degrades its design quality. 
The main problem with any metric-based approach, including detection strategies, is           
that a pair of thresholds must be used to identify those design objects that have some                
"abnormal" properties. DSTM (Detection Strategy Tuning Strategy) implements a         
method that is metaphorically called a tuning machine and can be used to set suitable               
threshold values for a detection strategy. An important advantage of this method is             
that the detection strategy can be calibrated for a specific development environment.            
The downside is that the method requires human feedback over a period of time to get                
good results. 
 
 

2.3 SonarQube as a platform for continuous analysis 
SonarQube is an open-source platform for continuous inspection of code quality to            
perform automatic reviews with static analysis of code to detect bugs, code smells,             
and security vulnerabilities on 20+ programming languages. SonarQube offers reports          
on duplicated code, coding standards, unit tests, code coverage, code complexity,           
comments, bugs, and security vulnerabilities. 
SonarQube can record metrics history and provides evolution graphs. SonarQube          
provides fully automated analysis and integration with Maven, Ant, Gradle, MSBuild           
and continuous integration tools (Atlassian Bamboo, Jenkins, Hudson, etc.). 
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3. Projects Analysis  

3.1 Project overview 
Art of Illusion is a free, open source 3D modelling and rendering studio. Many of its 
capabilities rival those found in commercial programs. Highlights include subdivision 
surface based modelling tools, skeleton based animation, and a graphical language for 
designing procedural textures and materials [22]. 
 
3.2 Structure visualization 
3.2.1 Package diagram 
The package diagram in a common modeling language shows the relationships           
between the packages that make up the model. 
Package diagrams can use packages that contain usage options to demonstrate the            
functionality of the software system. Package diagrams can use packages that           
represent different levels of the software system to illustrate the tiered architecture of             
the software system. The relationships between these packages can be embellished           
with labels/stereotypes to show the communication mechanism between the levels. 
The diagram of the ArtOfIllusion package is shown in Figure 3. Since it is too large, I                 
have only included part of it in the report. 
 

 
Figure 3. ArtOfIllusion package diagram 

 

3.2.2 Class diagram 
The class diagram is the main building block of object-oriented modeling. It is             
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used both for general conceptual modeling of the systematics of the application and             
for the detailed modeling of the translation of the models into program code. Class              
diagrams can also be used for data modeling. The classes in a class diagram represent               
both the main objects and the interactions in the application and the objects to be               
programmed. In the class diagram, these classes are shown with fields that contain             
three parts: 

● The upper part contains the name of the class 
● The middle part contains the attributes of the class 
● The lower part specifies the methods or operations that the class can perform 

When designing a system, several classes are identified and summarized in a class             
diagram to determine the static relationships between these objects. In the case of             
detailed modeling, the classes of the conceptual design are often divided into several             
sub-classes. 

To further describe the behavior of systems, these class diagrams can be            
supplemented by a state diagram or a UML state machine. Instead of object class              
diagrams, role modeling can also be used if you only want to model the classes and                
their relationships. 

The ArtOfIllusion class diagram is shown on Figure 5 and 6. As it has too               
many classes, I placed only a part of it (classes for one package) into the report. 
 
The depth of inheritance for classes from ‘Distortion’ class is shown on the Figure 5. 

 
Figure 4. Inheritance tree of ‘Distortion’ class 
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Figure 5. ArtOfIllusion class diagram for “Image” package. Part I 

 



24 

 
Figure 6. ArtOfIllusion class diagram for “Image” package. Part II 

3.3 Project metrics 
Main directed metrics measured in iPlasma are shown in Table 1. 
Each line has a colored percentage. The percentage is derived from the ratio of the               
number in this line to the number below. 
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        Table 1. Metrics  
Code Description 
NDD Number of direct descendants 
HIT Height of inheritance tree 
NOP Number of packages 
NOC Number of classes 
NOM Number of methods 
LOC Lines of code 

CYCLO Cyclomatic complexity 
CALL Calls per method 
FOUT Fan out (number of other methods called by a given method) 

 
The numbers indicate the ratio; Colors indicate where the conditions fit into            
industry-standard areas (derived from numerous open-source projects). Each ratio is          
either green (inside the area), blue (below the area), or red (outside the area). For the                
Struts code base, NDD and CYCLO are outside of the industry standards for these              
values, and LOC and NOM are listed below. 

                Table 2. Industry ranging for metrics 
 Low Medium High 
CYCLO / Line 0.16 0.20 0.24 
LOC / method 7 10 13 
NOM / class 4 7 10 
NOC / package 6 17 26 
CALLS / method 2.01 2.62 3.20 
FANOUT / call 0.56 0.62 0.68 

 
 
Metrics Pyramid for ArtOfIllusion generated in iPlasma is shown on the Figure 7. 
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Figure 7. iPlasma Metrics Pyramid for ArtOfIllusion 

 
 
 
So, the metrics on this pyramid for ArtOfIllusion project indicate that: 

▪ Class hierarchies tend to be tall and narrow  
▪ Classes tend to be: 

o rather large (i.e. they define many methods) 
o organized in rather fine-grained packages  

▪ Methods tend to: 
o be rather long yet having a rather simple logic (i.e. few conditional            

branches) 
o call several methods from few other classes (i.e. low coupling          

dispersion) 
 
Among indirect metrics, for ArtOfIllusion project I’ve measured: 

▪ ATDF – access to foreign data is the number of attributes from unrelated             
classes that are accessed directly or by invoking accessor methods. Few (i.e.            
min value) for this metric is empirically defined as 3. 
The value distribution per number of classes for ArtOfIllusion project is shown            
on Figure 8. 

▪ WMC – weighted method count. The sum of the statical complexity of all             
methods of a class. The CYCLO metric is used to quantify the method’s             
complexity. 
The value distribution per number of classes for ArtOfIllusion project is shown            
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on Figure 9 
▪ TCC – tight class cohesion is the relative number of method pairs of a class               

that access at least one common attribute of that class. Value of this metric is               
from 0 to 1, so one third equals 1/3. 
The value distribution per number of classes for ArtOfIllusion project is shown            
on Figure 10. 

▪ NOM – Number of methods per class 
The value distribution per number of classes for ArtOfIllusion project is shown            
on Figure 11. 
 
 
 
 
 
 
 

 
Figure 8. ATFD metric value distribution for ArtOfIllusion project classes 
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Figure 9. WMC metric value distribution for ArtOfIllusion project classes 

 
 

 
Figure 10. TCC metric value distribution for ArtOfIllusion project classes 

 



29 

 
Figure 11. NOM metric value distribution for ArtOfIllusion project classes 
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Figure 12. IBM RSA Gathered metrics for ArtOfIllusion project 

 
All described metrics were used to identify so called God classes in the ArtOfIllusion              
project 
God class problem is characterized in literature this way:  

▪ Top-level classes in a design should share work uniformly.  
▪ Beware of classes with much non-communicative behavior. 
▪ Beware of classes that access directly data from other classes.  

We are going to find them using the Goal–Question–Metric (GQM) model that            
defines the necessary obligations for setting objectives before embarking on any           
software measurement activity. Main steps are: 

▪  List the major Goals for which metrics are going to be employed. 
▪ From each goal derive the Questions that must be answered to determine if the               

goals are met. 
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▪ Decide what Metrics must be collected to answer the questions. 
So questions can be formulated like this:  

▪ Is class excessively complex?  
▪ Is class highly coupled?  
▪ Does class accesses foreign data too much? 

First question can be answered by metric WMC, second by metric TCC, third by              
metric ATFD. 
So, iPlasma identified 41 God and 43 classes in ArtOfIllusion project. Some of them               
are. 
 

 Table 3. God and Data Classes 
God Classes Data Classes 

 
Actor 
ArtOfIllusion 
Camera 
Curve 
CustomDistortionTr
ack 
EditKeyframesDialo
g 
ExprModule 
ExternalObject 
ImageSaver 
LayoutWindow 
MaterialPreviewer 
MeshEditorWindow 
Module 
Object3D 
ObjectEditorWindo
w 
ObjectInfo 
ObjectPropertiesPan
el 
ObjectViewer 
OutlineFilter 
ProceduralDirection
alLight 
ProceduralMaterial3
D 
ProceduralPointLigh
t 

 
AnimationPrevi
ewer 
BiasModule 
BMPEncoder 
CosineModule 
ExpModule 
GainModule 
GridModule 
InfoBox 
InterpModule 
IOPort 
JitterModule 
KeystrokeRecor
d 
Light 
LogModule 
Mapping3D 
Marker 
MaterialSpec 
MeshVertex 
MeshViewer 
ObjectMaterial
Dialog 
OPort 
ParameterModu
le 
PointInfo 
PowerModule 
ProductModule 
Property 
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ProceduralPositionT
rack 
ProceduralRotationT
rack 
ProceduralTexture2
D 
ProceduralTexture3
D 
ProcedureEditor 
Scene 
Score 
SplineMesh 
SplineMeshEditorWi
ndow 
SpotLight 
ThemeManager 
TreeList 
TriangleMesh 
TriMeshEditorWind
ow 
Tube 
UVMapping 
UVMappingViewer 
UVMappingWindow 
ViewerCanvas 

 

RandomModule 
RatioModule 
RenderingMesh 
RenderingTrian
gle 
RenderSetupDia
log 
ResetButton 
SelectionInfo 
SineModule 
SphericalModul
e 
SqrtModule 
TextureSpec 
TimeAxis 
Token 
UVMappedTria
ngle 
UVWMappedTr
iangle 
WireframeMesh 
WoodModule 

 

 
Having analysed selected project (ArtOfIllusion) with metrics, I’ve discovered         

that: 
▪ Class hierarchies tend to be tall and narrow (i.e. inheritance trees tend to have              

many depth-levels and base-classes with few directly derived sub-classes) 
▪ Classes tend to be: 

o rather large (i.e. they define many methods) 
o organized in rather fine-grained packages (i.e. few classes per package) 

▪ Methods tend to: 
o be rather long yet having a rather simple logic (i.e. few conditional            

branches) 
o call several methods from few other classes (i.e. low coupling          

dispersion) 
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3.4 Unit tests 
Unit testing is a method of testing individual units of source code to determine              

if they can be used. The device is the smallest part of the program tested. In                
procedural programming, a unit can be an entire module, but more often a single              
function or procedure. In object-oriented programming, a unit is often an integer            
interface, e.g. B. a class, but can be a single method. Test units are created during the                 
development of programmers or periodic white field testers. 

Ideally, each test case is independent of the others: Substitutes such as method             
connectors, models, counterfeits, and test wiring harnesses can be used to test the             
module in isolation. Block tests are typically written and performed by software            
developers to ensure that the code conforms to the design and behaves as intended.              
The implementation can range from very manual (pencil and paper) to formalization            
in the context of building automation. 
 
 
Unit tests for ArtOfIllusion project 
/* 
 * To change this template, choose Tools | Templates 
 * and open the template in the editor. 
 */ 
package sample; 
 
import org.junit.After; 
import org.junit.AfterClass; 
import org.junit.Before; 
import org.junit.BeforeClass; 
import org.junit.Ignore; 
import org.junit.Test; 
import static org.junit.Assert.*; 
 
/** 
 ** Sample JUnit 4 test class. 
 *  
 * Note that it does not need to be a subclass of any particular class. 
 *  
 * @author nb 
 */ 
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public class UtilsJUnit4Test { 
 
    public UtilsJUnit4Test() { 
    } 
 
  
    /** 
     * Initialization method that is called only once. It is run before 
     * any test method is executed. It is run even sooner than any 
     * {@code @Before} method. If a test class is a test suite, its 
     * {@code @BeforeClass} method is called even sooner than any of test 
     * classes contained in the suite. <em>But:</em> If any of superclasses 
     * of a test class has some {@code @BeforeClass} method, the superclass 
     * {@code @BeforeClass} is called before. There may be only one method 
     * annotated with the {@code @BeforeClass} annotation. 
     * The name of the method is irrelevant - the only mandatory attributes are: 
     *   the {@code @BeforeClass} annotation, 
     *   the {@code public} and {@code static} modifiers 
     *   {@void} return type and 
     *   no arguments. 
     */ 
    @BeforeClass 
    public static void setUpClass() throws Exception { 
        /* 
         * E.g. establish connection to a database so that it does not need to 
         * be established for each test separately. 
         */ 
        System.out.println("* UtilsJUnit4Test: @BeforeClass method"); 
    } 
 
  
    /** 
     * Tear down method that is called only once. It is run after all test 
     * methods and their {@code @After} methods are executed. 
     * If a test class is a test suite, its {@code @AfterClass} method is called 
     * even only after all test classes contained in the suite finish running. 
     * <em>But:</em> If any of the superclasses of a test class has some 
     * {@code @BeforeClass} method, the superclass {@code @BeforeClass} is 
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     * called later. There may be only one method annotated with the 
     * {@code @AfterClass} annotation. 
     * The name of the method is irrelevant - the only mandatory attributes are: 
     *   the {@code @AfterClass} annotation, 
     *   the {@code public} and {@code static} modifiers 
     *   {@void} return type and 
     *   no arguments. 
     */ 
    @AfterClass 
    public static void tearDownClass() throws Exception { 
        /* 
         * E.g. disconnect from the database - i.e. the complement to the action 
         * performed in setUpClass(). 
         */ 
        System.out.println("* UtilsJUnit4Test: @AfterClass method"); 
    } 
 
  
    /** 
     * Test initialization method. It is executed before each test method 
     * of this test class. There may be multiple test initialization methods 
     * - in such a case, all these methods are executed before each test method 
     * but order of their execution is undefined. The name of the method is 
     * irrelevant - the only mandatory attributes are: 
     *   the {@code @Before} annotation, 
     *   the {@code public} access modifier 
     *   the {@void} return type and 
     *   no arguments. 
     */ 
    @Before 
    public void setUp() { 
        System.out.println("* UtilsJUnit4Test: @Before method"); 
    } 
 
  
    /** 
     * Test shutdown method. It is executed after each test method 
     * of this test class. There may be multiple test shutdown methods 
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     * - in such a case, all these methods are executed after each test method 
     * but order of their execution is undefined. The name of the method is 
     * irrelevant - the only mandatory attributes are: 
     *   the {@code @After} annotation, 
     *   the {@code public} access modifier 
     *   the {@void} return type and 
     *   no arguments. 
     */ 
    @After 
    public void tearDown() { 
        System.out.println("* UtilsJUnit4Test: @After method"); 
    } 
 
    /** 
     * Test of concatWords method, of class Utils. 
     * Simple test method. It does not need to follow any naming conventions, 
     * just the {@code @Test} annotation is important. 
     */ 
    @Test 
    public void helloWorldCheck() { 
        System.out.println("* UtilsJUnit4Test: test method 1 - helloWorldCheck()"); 
        assertEquals("Hello, world!", Utils.concatWords("Hello", ", ", "world", "!")); 
    } 
 
    /** 
     * Test with timeout. If the testing routine does not finish in one second, 
     * it is interrupted and the test fails. The timeout is declared by an 
     * argument to the {@code @Test} annotation. 
     *  
     */ 
    @Test(timeout = 1000) 
    public void testWithTimeout() { 
        System.out.println("* UtilsJUnit4Test: test method 2 - testWithTimeout()"); 
        final int factorialOf = 1 + (int) (30000 * Math.random()); 
        System.out.println("computing " + factorialOf + '!'); 
        System.out.println(factorialOf + "! = " + Utils.computeFactorial(factorialOf)); 
    } 
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    /** 
     * Test of expected exception. If a given exception is not thrown during the 
     * tested routine, the test fails. If the exception is thrown, the test 
     * passes. The expected annotation is declared by an argument to the 
     * {@code @Test} annotation. 
     */ 
    @Test(expected = IllegalArgumentException.class) 
    public void checkExpectedException() { 

System.out.println("* UtilsJUnit4Test: test method 3 -       
checkExpectedException()"); 
        final int factorialOf = -5; 
        System.out.println(factorialOf + "! = " + Utils.computeFactorial(factorialOf)); 
    } 
 
    /** 
     * Test that is temporarily disabled simply by the special {@code @Ignore} 
     * annotation. 
     */ 
    @Ignore 
    @Test 
    public void temporarilyDisabledTest() throws Exception { 

System.out.println("* UtilsJUnit4Test: test method 4 -       
checkExpectedException()"); 
        assertEquals("Malm\u00f6", Utils.normalizeWord("Malmo\u0308")); 
    } 
} 
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3.5 Continuous Code Analysis with the SonarQube 
The SonarQube uses an evolved SQALE model.  
Bugs, Vulnerabilities and Code Smells are main metrics to measure.  

● Bugs: Code that is demonstrably wrong or highly likely to yield unexpected 
behaviour. 

● Vulnerabilities: Code that is potentially vulnerable to exploitation by hackers. 
● Code Smells: Will confuse maintainers or give them pause.  Not only ratings, 

but also approximate remediation efforts. 
 
3.5.1 Three Lines of Analysis 

 
Figure 13. SonarQube Three Lines of Analysis 

 
First line is a SonarLint, that runs in IDE and analyses new code and highlights               

issues if any. 
Second, pull request analysis. When a pull request (PR) is submitted to the             

repository user comment the changed code with any new issues. After it is up to the                
manual reviewer to decide if the issues are critical or accepted in the context before               
merging the PR. 

Finally, quality gates and leak management. If previous prevention fails, there           
is an ability to set up a collection of go/no-go conditions that indicate whether or not                
the project is releasable - Quality Gate. In case the project fails the Quality gate then                
the tool automatically informs about it. 
 

Security and Reliability ratings are based on the severity of the worst open             
issue in that domain [24]: 

● E - Blocker 
● D - Critical 
● C - Major 
● B - Minor 
● A - Info or no open issues 
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For Maintainability the rating is based on the ratio of the size of the code base                
to the estimated time to fix all open Maintainability issues [24]: 

● <=5% of the time that has already gone into the application, the rating is A 
● between 6 to 10% the rating is a B 
● between 11 to 20% the rating is a C 
● between 21 to 50% the rating is a D 
● anything over 50% is an E 

 
3.5.2 SonarQube results for ArtOfIllusion project  
 

The SonarQube provider comprehensive code analysis. The tool found 223 
bugs, 125 vulnerabilities, 15 security hotspots. All this categories are marked with 
rating E, with means Blocker and must be fixed before next release (Figure 14.). 
  
 

 
Figure 14. SonarQube Overall Code Analysis Results 
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Figure 15.  SonarQube Bug Analysis Results 

 
 

 
Figure 17. SonarQube Vulnerabilities Analysis Results 

 

 
Figure 18. SonarQube Security Hotspots Analysis 
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Conclusions 
 

As a summary of techniques for software analysis, represented on Figure 1, due 
to the computability barrier, no technique can provide fully automatic, robust, and 
complete analyses. Testing  sacrifices robustness. Assisted proving is not automatic 
(even if it is often partly automated, the main proof arguments generally need to be 
human provided). Model-checking  approaches can achieve robustness and 
completeness only with respect to finite models, and they generally give up 
completeness when considering programs (the incompleteness  is often introduced in 
the modeling stage). Static analysis gives up completeness (though it  may be 
designed to be precise for large classes of interested programs). Last, bug finding  is 
neither robust nor complete.  Another important dimension is scalability. In practice, 
all approaches have limitations regarding scalability, although these limitations vary 
depending  on the intended applications (e.g., input programs, target properties, and 
algorithms used).  

The application must be analysed on all stages during the development life            
cycle.  

During the design phase, tools like IBM RSA one can easily find architectural             
bottlenecks in the software and prevent them cheaply and quickly before the start of              
development. 

Already implemented code could be analysed in a continuous integration          
environment by a tool like SonarQube. Property configured metrics and quality gates            
provide scalability and continuous analysis that fits modern Agile development life           
cycle.  
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