

Ministry of Education and Science of Ukraine
National University of "Kyiv-Mohyla Academy"

Informatics Department Informatics Faculty

Statical and Dynamical Software Analysis
Course work

in specialty “Software Engineering”

Coursework supervisor
Associate Professor, Doctor of Technical Science

Hlybovets A.M.

(signature)

“____” ____________ 2020

Made by student
Sosnytskyi S. O.

“____” ____________ 2020

Kyiv 2020

2

Ministry of Education and Science of Ukraine
National University of "Kyiv-Mohyla Academy"

Department of Computer Science of the Faculty of Informatics

APPROVED

Coursework supervisor

Head of the Department of Computer Science,
Associate Professor of Computer Science

 _____________________ Gorokhovsky S.S.
(signature)_____________________________

“____” ____________ 2020

INDIVIDUAL TASK
for course work

For the student of the Software Engineering Faculty,
Masters Degree first year
THEME Statical and Dynamical Software Analysis

Output data:

Text part content of coursework:
An individual task
Calendar plan
Annotation
An introduction
Part 1: Software Analysis Overview
Part 2: Projects Analysis
Summary
References

Issue date “____” ____________ 2020 Supervisor __________________
 (signature)

Task received __________________
(signature)_

3

Theme: Statical and Dynamical Software Analysis

Calendar plan of coursework execution:

№ Stage name Deadline Note
1. Getting of coursework topic 01.09.2019
2. Searching of appropriate literature 10.09.2019
3. Researching in software analysis

area
10.12.2019

4. Exploring software analysis
techniques

25.12.2019

5. Researching statical software
analysis

01.01.2020

6. Researching dynamical software
analysis

30.01.2020

7. Specification definition 05.02.2020
8. Documentation forming 10.02.2020
9. Tests implementation 10.04.2020

10. Writing architectures overview
part

23.04.2020

11. Coursework analysis with the
supervisor

24.04.2020

12. Writing second part of the
coursework

30.04.2020

13. Coursework analysis with the
supervisor

01.05.2020

14. Writing coursework summary 01.05.2020
15. Coursework analysis with the

supervisor
02.05.2020

16. Coursework changing according
to the supervisor’s remarks

03.05.2020

17. Creating of the presentation 05.05.2020
18. Defending of the coursework

Student Sosnytskyi S. O.

Supervisor Hlybovets A.M.

4

“____” ________________

Content

Annotation 5

Introduction 6

Software Analysis Overview 7
Software Analysis Challenges 7
Static Analysis Concepts 9

Areas to Analyze 9
Families of Program Analysis Techniques 10

Testing: Checking a Set of Finite Executions 10
Assisted Proof: Relying on User-Supplied Invariants 10
Model Checking: Exhaustive Exploration of Finite Systems 11
Conservative Static Analysis: Automatic, Robust, and Incomplete Approach 11
Bug Finding: Error Search, Automatic, Unsound, Incomplete, Based on Heuristics 12

Static Analysis Overview 13
Dynamic Software Analysis Overview 15
Software Metrics 16
The SQALE Model 17

SQALE Model Indexes 17

Tools overview 18
IBM Rational Software Architect 18
iPlasma 19
SonarQube as a platform for continuous analysis 20

Projects Analysis 20
Project overview 20
Structure visualization 21

Package diagram 21
Class diagram 21

Project metrics 24

Unit tests 32

Continuous Code Analysis with the SonarQube 36

Three Lines of Analysis 36

Conclusions 38

Sources 39

5

Annotation

Development of software with build in quality has become an important trend and a
natural choice in many organisations. Currently, methods of measurement and
assessment of software quality, security, trustworthiness cannot guarantee safe and
reliable operations of software systems completely and effectively.
In this coursework overviewed statistical and dynamical software analysis methods,
main concepts and techniques families.
The second part of the coursework is dedicated software analysis including solutions
for continuous analysis in agile development life cycle.
Key words: Statical Analysis, Dynamical Analysis, Testing, SQALE Mode, IBM
Rational Software Architect, Continuous Code Analysis, SonarQube

6

Introduction

In each engineering discipline, the main question is whether the design work
will actually be done as planned. This question is relevant when we develop
mechanical machines, electrical circuits or chemical processes. The answer comes
from the analysis of structures, using knowledge of the nature that will perform the
projects. For example, when we design a bridge, we analyze how nature manages the
project, namely how different forces (such as gravity, wind, and vibration) are applied
to the bridge and whether the bridge structure is strong enough to withstand them.
The same question applies to computer software. We want to make sure our software
works as intended. The intention to analyze varies widely. For overall reliability, we
want to ensure that the software does not fail in the event of an unexpected
termination. If the software interacts with the outside world, we want to make sure
that it will not be tricked into compromising the security of the host computer.
Regarding specific functions, we want to check whether the software realizes its
functional purpose. If the software is designed to drive cars, we want to make sure
that it does not lead to an accident.

However, there is one difference between software analysis and analysis of
other types of engineering structures: for computer software, it is not nature that runs,
but the computer itself. The computer executes the software according to the
language values of the source software. The behavior of the software is determined
solely by the values of the language of the software source. A computer is simply an
illegible tool that blindly executes software exactly as it is written. Any execution
behavior that deviates from our intent is that the software is misspelled in this way.
So, for computer software, to answer the question of whether our design will work as
we intended, we need knowledge with which we can somehow analyze the meaning
of the language of the software source. Such knowledge corresponds to the
knowledge accumulated by the natural sciences of nature. We need the knowledge
that computer science has accumulated about processing the values of software
source languages. There is a formal definition of software behavior, which is
determined by the meanings, semantics of the language of its source.

7

1. Software Analysis Overview

The semantics of a program is a description of its execution behavior. A
semantic property is any property in relation to the behavior (semantics) of a program
during program execution. Therefore, checking whether the software works as we
intended is equivalent to checking whether the software satisfies the semantic
property of interest. Next, we call the method of verifying that the program satisfies
the semantic analysis of the program property, and we call the implementation of
program analysis as a tool for analyzing the program. Figure 1. illustrates the
correspondence between software analysis and design analysis of other engineering
disciplines [17].

Name Computing area Other engineering areas

Object Software Machine/building/circuit/chemi
cal process design

Execution Computer Nature

Question Work as intended Work as intended

Knowledge Program analysis

Thermodynamic equations,
and other principles

Figure 1. Program analysis versus other engineering areas

1.1 Software Analysis Challenges

Program analysis can be applied wherever understanding program semantics is
important or beneficial. Software developers can use program analysis for quality
assurance, to locate errors of any kind in their software. Software maintainers can use
program analysis to understand legacy software that they maintain. System security
gatekeepers can use program analysis to proactively screen out programs whose
semantics can be malicious. Software that handles programs as data can use program
analysis for the programs’ performance improvement too. Language processors such
as translators or compilers need program analysis to translate the input programs into
optimized ones. Interpreters, virtual machines, and query processors need program
analysis for optimized execution of the input programs. Automatic program
synthesizers can use program analysis to check and tune what they synthesize [18].

8

The use of program analysis is not limited to professional software or its developers.
As programming becomes a way of living in a highly connected digitized
environment, citizen programmers can benefit from program analysis, too, to
sanity-check their daily program snippets. Once the object’s source language has
semantics, program analysis can circumscribe its semantics to provide useful
information. For example, program analysis of high-level system configuration
scripts can provide information about any existing conflicting requests.

Though the benefits of program analysis are obvious, building a cost-effective
program analysis is not trivial, since computer programs are complex and often very
large. For example, the number of lines of smartphone applications frequently
reaches over half a million, not to mention larger software such as web browsers or
operating systems, whose source sizes are over ten million lines. With semantics, the
situation is much worse because a program execution is highly dynamic. Programs
usually need to react to inputs from external, uncontrolled environments. The number
of inputs, not to mention the number of program states, that can arise in all possible
use cases is so huge that software developers are likely to fail to handle some corner
cases. Given that software is in charge of almost all infrastructures in our personal,
social, and global life, the need for cost-effective program analysis technology is
greater than ever before. We have already experienced a sequence of appalling
accidents whose causes are identified as mistakes in software. Such accidents have
occurred in almost all sectors, including space, medical, military, electric power
transmission, telecommunication, security, transportation, business, and
administration. The long list includes accidents, the large-scale Twitter outage
(2016), the fMRI software error (2016) that invalidated fifteen years of brain
research, the Heartbleed bug (2014) in the popular OpenSSL cryptographic library
that allows attackers to read the memory of any server that uses certain instances of
OpenSSL, the stack overflow issues that can explain the Toyota sudden unintended
acceleration (2004–2014), the Northeast blackout (2003), the explosion of the Ariane
5 Flight 501 (1996), which took ten years and $7 billion to build and it is just a few
of the more prominent software accidents [17].

Though building error-free software may be unlikely and unconvincing, at least
within reasonable costs for large-scale software, cost-effective ways to reduce as
many errors as possible are always in high demand. Static analysis, which is the
focus of this book, is one kind of program analysis.

9

1.2 Static Analysis Concepts

1.2.1 Areas to Analyze
The first question to answer to characterize program analysis techniques is what

programs they analyze in order to determine what properties.

Target Program - An obvious characterization of the target programs to analyze is the
programming languages in which the programs are written [19].

● Domain-specific analyses - certain analyses are aimed at specific families of
programs. This specialization is a pragmatic way to achieve a cost-effective
program analysis, because each family has a particular set of characteristics on
which a program analysis can focus. For example, consider the C programming
language. Though the language is widely used to write software, including
operating systems, embedded controllers, and all sorts of utilities, each family
of programs has a special character.

● Non-domain-specific analyses - some analyses are designed without focus on
a particular family of programs of the target language. Such analyses are
usually those incorporated inside compilers, interpreters, or general-purpose
programming environments. Such analyses collect information about the input
program to help compilers, interpreters, or programmers for an optimized or
safe execution of the program. Non-domain-specific analyses risk being less
precise and cost-effective than domain-specific ones in order to have an overall
acceptable performance for a wide range of programs.

Besides the language and family of programs to consider, the way input programs are
handled may also vary and affects how the analysis works. An obvious option is to
handle source programs directly just like a compiler would, but some analyses may
input different descriptions of programs instead. There available two classes of
techniques:

● Program-level analyses are run on the source code of programs (e.g., written
in C or Java) or on executable program binaries and typically involve a front
end similar to a compiler’s that constructs the syntax trees of programs from
the program source or compiled files.

● Model-level analyses consider a different input language that aims at modeling
the semantics of programs; then the analyses input not a program in a language
such as C or Java but a description that models the program to analyze. Such
models either need to be constructed manually or are computed by a separate

10

tool. In both cases, the construction of the model may hide either difficulties or
sources of inaccuracy that need to be taken precisely into account.

1.3 Families of Program Analysis Techniques

1.3.1 Testing: Checking a Set of Finite Executions

When trying to understand how a system behaves, often the first idea that
comes to mind is to observe the executions of this system. In the case of a program
that may not terminate and may have infinitely many executions, it is of course not
feasible to fully observe all executions. Therefore, the testing approach observes only
a finite set of finite program executions. This technique is used by all developers,
from beginners to large teams designing complex computer systems. In industry,
many levels of testing are performed at all stages of development, such as unit testing
and integration testing. Basic testing approaches, such as random testing [15],
typically provide a low coverage of the tested code. However, more advanced
techniques improve coverage. As an example, concolic testing [16] combines testing
with symbolic execution (computation of exact relations between input and output
variables on a single control flow path) so as to improve coverage and accuracy.

Testing has the following characteristics:
● Easy to automate
● Not robust
● Complete since a failed testing run will produce an execution that is

incorrect

1.3.2 Assisted Proof: Relying on User-Supplied Invariants

This is essentially the approach followed by machine-assisted techniques. This

means that users may be required to supply additional information together with the
program to analyze. In most cases, the information that needs to be supplied consists
of loop invariants and possibly some other intermediate invariants. This often
requires some level of expertise. On the other hand, a large part of the verification can
generally still be carried out in a fully automatic way. We can cite several kinds of
program analyses based on machine-assisted techniques. A first approach is based on
theorem-proving tools like Coq [18]. This approach is adapted to the proof of
sophisticated program properties. It was applied to the verified CompCert compiler
from C to Power-PC assembly.

11

Machine-assisted techniques have the following characteristics:
● They are not fully automatic and often require the most tedious logical

arguments to come from the human user.
● In practice, they are sound with respect to the model of the program

semantics used for the proof, and they are also complete up to the
abilities of the proof assistant to verify proofs.

In practice, the main limitation of machine-assisted techniques is the significant
resources they require, in terms of time and expertise.

1.3.3 Model Checking: Exhaustive Exploration of Finite Systems

Another approach focuses on finite systems, that is, systems whose behaviors
can be exhaustively enumerated, so as to determine whether all executions satisfy the
property of interest. This approach is called finite-state model checking [19] since it
will check a model of a program using some kind of exhaustive enumeration. In
practice, model checking tools use efficient data structures to represent program
behaviors and avoid enumerating all executions thanks to strategies that reduce the
search space. This solution is very different from the testing approach discussed in
section 1.3.1. Indeed, testing samples a finite set of behaviors among a generally
infinite set, whereas model checking attempts to check all executions of a finite
system. The finite model-checking approach has been used both in hardware
verification and in software verification.

Model checking has the following characteristics:

● It is automatic
● It is robust and complete with respect to the model

An important caveat is that the verification is performed at the model level and
not at the program level. As a first consequence, this means that a model of the
program needs to be constructed, either manually or by some automatic means. In
practice, most model checking tools provide a front end for that purpose. A second
consequence is that the relation between this model and the input program should be
taken into account when assessing the results. If the model cannot capture exactly the
behaviors of the program, the checking of the synthesized model may be either
incomplete or not robust, with respect to the input program.

In practice, model-checking tools are often conservative and are thus robust
and incomplete with respect to the input program. A large number of
model-checking tools have been developed for verifying different kinds of logical

12

assertions on various models or programming languages.

1.3.4 Conservative Static Analysis: Automatic, Robust, and Incomplete
Approach

Instead of constructing a finite model of programs, static analysis relies on
other techniques to compute conservative descriptions of program behaviors using
finite resources. The core idea is to finitely over-approximate the set of all program
behaviors using a specific set of properties, the computation of which can be
automated [20]. An example is the type inference present in many modern
programming languages such as variants of ML. Types provide a coarse view of
what a function does but do so in a very effective manner, since the correctness of
type systems guarantees that a function of type int - > bool will always input an
integer and return a Boolean.

Static analysis approaches have the following characteristics:

● It is automatic;
● It produces robust results, as they compute a conservative description of

program behaviors, using a limited set of logical properties.
● It is generally incomplete because they cannot represent all program

properties and rely on algorithms that enforce termination of the analysis
even when the input program may have infinite executions.

While a static analysis is incomplete in general, it is often possible to design a
robust static analysis that gives the best possible answer on classes of interesting
input programs. However, it is then always possible to craft a correct input program
for which the analysis will fail to return a conclusive result.

1.3.5 Bug Finding: Error Search, Automatic, Unsound, Incomplete, Based on
Heuristics

Some automatic program analysis tools sacrifice not only completeness but

also robustness. The main motivation to do so is to simplify the design and
implementation of analysis tools and to provide lighter-weight verification
algorithms. The techniques used in such tools are often similar to those used in
model checking or static analysis, but they relax the robustness objective. For
instance, they may construct not robust finite models of programs so as to quickly
enumerate a subset of the executions of the analyzed program, such as by considering

13

only what happens in the first iteration of each loop, whereas a robust tool would
have to consider possibly unbounded iteration numbers. As an example, the tool
CODESONAR [21] relies on such approaches so as to search for defects in C/C++ or
Assembly programs. It is thus a case that a model checker gives up on robustness in
order to produce fewer alarms. Since the main motivation of this approach is to
discover bugs (and not to prove their absence), it is often referred to as bug finding.
Such tools are usually applied to improve the quality of noncritical programs at a low
cost.

Bug-finding tools have the following characteristics:
● They are automatic
● They are neither robust nor complete, instead, they aim at discovering

bugs rather quickly, so as to help developers.

Techniques Automatic Robust Complete Object Execution

Testing Yes No Yes Program Dynamic

Assisted proving No Yes Yes/No Model Static

Model checking of
finite-state model

Yes Yes Yes Finite
Model

Static

Model checking at
program level

Yes Yes No Program Static

Conservative static
analysis

Yes Yes No Program Static

Bug finding Yes No No Program Static

Figure 2. An overview of program analysis techniques

1.4 Static Analysis Overview

Static analysis is an automatic technique for program-level analysis that
approximates in a conservative manner semantic properties of programs before their
execution [17].

This term is applied to the analysis performed by an automated tool, with
accompanied human analysis being called program understanding or code review.

The code review of the analysis performed by tools varies from those that only
consider the behavior of individual statements and declarations, to those that include

14

the complete source code of a program in their analysis. Uses of the information
obtained from the analysis vary from highlighting possible coding errors to formal
methods that mathematically prove properties about a given program (e.g., its
behavior matches that of its specification).

It can be argued that software metrics and reverse engineering are forms of
static analysis. In fact, deriving software metrics and static analysis are increasingly
deployed together, especially in creation of embedded systems, by defining so called
software quality objectives.

A growing commercial use of static analysis is in the verification of properties
of software used in safety-critical computer systems and locating potentially
vulnerable code. Some of the implementation techniques of static analysis include:

● Model checking considers systems that have finite state or may be reduced to
finite state by abstraction;

● Data-flow analysis is a lattice-based technique for gathering information about
the possible set of values;

● Abstract interpretation models the effect that every statement has on the state
of an abstract machine. This abstract machine over-approximates the behaviors
of the system: the abstract system is thus made simpler to analyze, at the
expense of incompleteness. If properly done, though, abstract interpretation is
robust.

● Use of assertions in program code. There is tool support for most programming
languages.

This term is applied to the analysis carried out by the automated tool, therefore

the accompanying analysis of the person is called understanding the program or
displaying the code.

The verification of the analysis code carried out by the tools ranges from those
that only take into account the behavior of individual instructions and declarations to
those that include the complete source code of the program in their analysis. The use
of the information obtained from the analysis varies from the selection of possible
coding errors to formal methods that mathematically substantiate the properties of a
particular program (e.g. its behavior corresponds to that specified in its specification).

It can be argued that software metrics and reverse engineering are forms of
static analysis. In fact, software output and static analysis are increasingly being
developed together, especially when creating embedded systems by defining
so-called software quality goals.

15

The increasing commercial use of static analysis is to test the properties of
software used in security-critical computer systems and to look for potentially
vulnerable code. Some of the methods for implementing static analysis include:

● Model checking - takes into account systems that have a finite state or that can
be reduced to a finite state by abstraction.

● Data-flow analysis - analysis is a grid method for collecting information about
a possible set of values.

● Abstract interpretation - simulates the effect of each statement on the state of
the abstract machine. This abstract machine approaches the behavior of the
system: In this way, the abstract system becomes easier to analyze due to
incompleteness. An abstract interpretation, however, is reliable when executed
correctly.

● Use of assertions

1.5 Dynamic Software Analysis Overview
Dynamic analysis is the testing and evaluation of a program by executing data

in real-time. The aim is to find bugs in the program during startup and not to study
the code repeatedly offline.

By debugging the program in all scenarios for which it was developed,
dynamic analysis eliminates the need to artificially create situations that can lead to
errors. Other advantages include lower testing and maintenance costs, the
identification and elimination of unnecessary program components, and ensuring that
the program to be tested is compatible with other programs.

For the analysis of dynamic programs to be effective, the target program must
be executed with sufficient test inputs to generate interesting behavior. The use of
software testing methods such as B. Code coverage helps to ensure that an
appropriate part of the possible program behavior is adhered to. Care should also be
taken to minimize the impact of the toolkit on the execution (including the time
characteristics) of the target program. Inadequate testing can lead to catastrophic
failures.

The dynamic analysis is carried out through program execution and
performance monitoring. Testing and profiling is dynamic standard analysis. The
dynamic analysis is done precisely because no approximation or abstraction is
required: the analysis can examine the actual, precise behavior of the program in the
execution process. It is not clear which control flow paths were adopted, which values
were calculated, how much memory was used, how long it took for the program to

16

run, or other interesting values.
Dynamic analysis can be as fast as program execution.
Advantages of dynamic analysis:

● Is able to detect dependencies that are not possible in static analysis.
Example: dynamic dependencies using reflection, dependency injection,
polymorphism.

● Can collect temporal information
● Deals with real runtime values

The disadvantage of dynamic analysis is that its results may not generalize to

future executions. There is no guarantee that the test suite over which the program
was run (that is, the set of inputs for which execution of the program was observed) is
characteristic of all possible program executions. Applications that require correct
inputs (such as semantics-preserving code transformations) are unable to use the
results of a typical dynamic analysis, just as applications that require precise inputs
are unable to use the results of a typical static analysis. Whereas the chief challenge
of building a static analysis is choosing a good abstraction function, the chief
challenge of performing a good dynamic analysis is selecting a representative set of
test cases (inputs to the program being analysed). (Efficiency concerns affect both
types of analysis.) A well-selected test suite can reveal properties of the program or of
its execution context; failing that, a dynamic analysis indicates properties of the test
suite itself, but it can be difficult to know whether a particular property is a test suite
artefact or a true program property.

1.6 Software Metrics
A software metric is a measure of a property of software or its specifications.

Because quantitative measurements are important in all sciences, computer scientists
and theorists are constantly trying to introduce similar approaches to software
development. The goal is to obtain objective, reproducible and quantifiable indicators
that can contain numerous valuable programs for budget planning and planning, cost
estimation, quality assurance tests, software debugging, software performance
optimization and optimal tasks for employees.

There are three groups of methods of data collection: direct, indirect and
independent. The main criterion for grouping techniques is how the researcher should
contact members. Direct methods require the researcher direct contact with research
participants. Indirect methods allow indirect access to research participants through
direct access to the workspace members. Independent methods require that the
researcher seek only to objects of study participants, such as source code and

17

documentation.
▪ Direct methods include brainstorming and focus groups, interviews and

questionnaires, conceptual modelling, doing business diaries, sound work, and
general observations shadow observation, active surveillance.

▪ Indirect methods are also exploring the work of software engineers, but, unlike
direct, do not require direct contact with participants in the experiment. The
following indirect methods: instrumentation systems and remote monitoring.

▪ Independent method is a technique that allows to obtain information about
software products over which the work of software engineers. The following
independent methods - analysis of databases of the work, the analysis of log
files tools, documentation analysis, statistical analysis and dynamic systems.

Some software developers point out that simplified measurements can do more harm
than good. Others found that metrics have become an integral part of the software
development process. The impact of measurements on the psychology of
programmers has raised concerns about the detrimental effects on productivity from
stress, anxiety, and attempts at performance, while others believe that they have a
positive impact on the value of developers for their own work and prevent
underestimation. Some argue that the definition of many measurement methods is
inaccurate, and therefore it is often unclear how the tools for their calculation will
produce a certain result, while others argue that incomplete quantification is better
than none. There is evidence that software metrics from government agencies, like
the U.S. military, NASA, are widely available.

1.7 The SQALE Model
SQALE (Lifecycle Quality Assessment) is a method to support the evaluation

of software sources. This is a general method that is independent of language and
source analysis tools.

The SQALE quality model is used to formulate and organize non-functional
code quality requirements. It is organized in three hierarchical levels. The first level
consists of characteristics, the second of sub-characteristics. The third level consists
of the requirements for the internal attributes of the source code. These requirements
usually depend on the context and language of the software.

The SQALE analysis model contains, on the one hand, the rules for
normalizing the key figures and controls in relation to the code and on the other hand
the aggregation rules for the normalized values. The SQALE method normalizes the
reports obtained using source code analysis tools and converts them into correction
costs. To do this, use either the recovery factor or the recovery function. The SQALE

18

method defines rules for the aggregation of restoration costs either in the structure of
the quality model tree or in the hierarchy of the source code artifacts.

1.7.1 SQALE Model Indexes
The indicators of the model represent the costs. These costs can be calculated

in a unit of work, in a unit of time, or in a unit of money. In all cases, the values of
the indices are on a scale of the type of relationship. You can use them to perform all
permissible operations for this type of scale. For each element of the source code
artifact hierarchy, the cost of restoration associated with that characteristic can be
estimated by adding all of the restoration costs associated with the characteristics of
the characteristic. The indices of SQALE characteristics are the following [23]:

● Testability Index : STI
● Reliability Index : SRI
● Changeability Index : SCI
● Efficiency Index : SEI
● Security Index : SSI
● Maintainability Index : SMI
● Portability Index : SPI
● Reusability Index : SRuI

The method also defines a global index: for each element of the hierarchy of
source code artifacts, the restoration costs that relate to all characteristics of the
quality model can be estimated by adding all the restoration costs that are associated
with all requirements of the quality model.
This derived measurement is called: SQALE Quality Index [23].

2. Tools overview

2.1 IBM Rational Software Architect
IBM Rational Software Architect (RSA) is a comprehensive modeling and

development environment that uses the Unified Modeling Language (UML) to design
the architecture of C ++ and Java 2 Enterprise Edition (J2EE) application and web
services. Rational Software Architect is based on Eclipse open-source software and
includes features that focus on architecture code analysis, C ++, and UML modeling
(MDD) to build robust applications and web services.

Rational Software Architect includes the following capabilities:
1. Built on Eclipse
2. Supports UML
3. Supports model-to-code and code-to-model transformations.

19

4. Includes all of the capabilities of IBM Rational Application Developer
5. Enables model management for parallel development and architectural

re-factoring.
6. Provides visual construction tools

Benefits of using Rational Software Architect include:
▪ Build a software architecture that supports change with a common platform

that facilitates direct rotation, model and code synchronization.
▪ Accelerate implementation and facilitate support for a successful

service-oriented architecture solution (SOA), such as web service with
powerful tools and process management.

▪ Use UML to ensure continuous communication between multiple stakeholders
in your software development projects and to use certain specifications to start
development quickly.

▪ Familiarize yourself with distributed projects and control shared information
more closely.

2.2 iPlasma
iPlasma is an integrated environment for analyzing the quality of object-oriented
software systems that includes support for all required analysis phases: from model
extraction (including scalable analysis for C ++ and Java) to monitoring based on
high-level metrics or code duplication. iPlasma has three main advantages:

● Extensibility of the supported analysis
● Integration with other analysis tools
● Scalability as used in the past to analyze large projects the size of millions of

lines of code.

An important task in software analysis is to create a suitable model of the
system. The purpose of creating a model is to extract information from the source
code that is relevant to a particular purpose. For analyzes that focus on
object-oriented design, it is therefore important to know the analyzed system types,
functions and variables as well as information about their use, inheritance
relationships between classes, call plan, etc.

Based on the extracted information, we can identify different types of design
analysis (e.g. metrics, rules based on metrics to identify design problems, quality
models, etc.). Next we will discuss how these tests are supported in iPlasma.
iPlasma contains a library of more than 80 state-of-the-art and new design metrics
that can be applied at various levels of abstraction, from system-level metrics that

20

create a system map to primitive metrics that describe details in a single method.
Indicators can be divided into the following categories:

● Size indicators - Measure the size of the analyzed object (e.g. lines of
code).

● Complexity Indicators - Measure the complexity of the entity being
analyzed (e.g. cyclomatic complexity).

● Connection metrics - Measure data connections between objects (e.g.
connections between objects).

● Cohesion Coefficients - Measure the cohesion of classes (e.g. class
cohesion).

A detection strategy is a quantified expression of a rule that allows design
fragments that match this rule to be recognized in the source code. With this
quantification, we can automatically detect design errors in the software system,
design units that represent some deviations from good object-oriented design criteria,
which prevents the simple development of the system and degrades its design quality.
The main problem with any metric-based approach, including detection strategies, is
that a pair of thresholds must be used to identify those design objects that have some
"abnormal" properties. DSTM (Detection Strategy Tuning Strategy) implements a
method that is metaphorically called a tuning machine and can be used to set suitable
threshold values for a detection strategy. An important advantage of this method is
that the detection strategy can be calibrated for a specific development environment.
The downside is that the method requires human feedback over a period of time to get
good results.

2.3 SonarQube as a platform for continuous analysis
SonarQube is an open-source platform for continuous inspection of code quality to
perform automatic reviews with static analysis of code to detect bugs, code smells,
and security vulnerabilities on 20+ programming languages. SonarQube offers reports
on duplicated code, coding standards, unit tests, code coverage, code complexity,
comments, bugs, and security vulnerabilities.
SonarQube can record metrics history and provides evolution graphs. SonarQube
provides fully automated analysis and integration with Maven, Ant, Gradle, MSBuild
and continuous integration tools (Atlassian Bamboo, Jenkins, Hudson, etc.).

21

3. Projects Analysis

3.1 Project overview
Art of Illusion is a free, open source 3D modelling and rendering studio. Many of its
capabilities rival those found in commercial programs. Highlights include subdivision
surface based modelling tools, skeleton based animation, and a graphical language for
designing procedural textures and materials [22].

3.2 Structure visualization
3.2.1 Package diagram
The package diagram in a common modeling language shows the relationships
between the packages that make up the model.
Package diagrams can use packages that contain usage options to demonstrate the
functionality of the software system. Package diagrams can use packages that
represent different levels of the software system to illustrate the tiered architecture of
the software system. The relationships between these packages can be embellished
with labels/stereotypes to show the communication mechanism between the levels.
The diagram of the ArtOfIllusion package is shown in Figure 3. Since it is too large, I
have only included part of it in the report.

Figure 3. ArtOfIllusion package diagram

3.2.2 Class diagram
The class diagram is the main building block of object-oriented modeling. It is

22

used both for general conceptual modeling of the systematics of the application and
for the detailed modeling of the translation of the models into program code. Class
diagrams can also be used for data modeling. The classes in a class diagram represent
both the main objects and the interactions in the application and the objects to be
programmed. In the class diagram, these classes are shown with fields that contain
three parts:

● The upper part contains the name of the class
● The middle part contains the attributes of the class
● The lower part specifies the methods or operations that the class can perform

When designing a system, several classes are identified and summarized in a class
diagram to determine the static relationships between these objects. In the case of
detailed modeling, the classes of the conceptual design are often divided into several
sub-classes.

To further describe the behavior of systems, these class diagrams can be
supplemented by a state diagram or a UML state machine. Instead of object class
diagrams, role modeling can also be used if you only want to model the classes and
their relationships.

The ArtOfIllusion class diagram is shown on Figure 5 and 6. As it has too
many classes, I placed only a part of it (classes for one package) into the report.

The depth of inheritance for classes from ‘Distortion’ class is shown on the Figure 5.

Figure 4. Inheritance tree of ‘Distortion’ class

23

Figure 5. ArtOfIllusion class diagram for “Image” package. Part I

24

Figure 6. ArtOfIllusion class diagram for “Image” package. Part II

3.3 Project metrics
Main directed metrics measured in iPlasma are shown in Table 1.
Each line has a colored percentage. The percentage is derived from the ratio of the
number in this line to the number below.

25

 Table 1. Metrics
Code Description
NDD Number of direct descendants
HIT Height of inheritance tree
NOP Number of packages
NOC Number of classes
NOM Number of methods
LOC Lines of code

CYCLO Cyclomatic complexity
CALL Calls per method
FOUT Fan out (number of other methods called by a given method)

The numbers indicate the ratio; Colors indicate where the conditions fit into
industry-standard areas (derived from numerous open-source projects). Each ratio is
either green (inside the area), blue (below the area), or red (outside the area). For the
Struts code base, NDD and CYCLO are outside of the industry standards for these
values, and LOC and NOM are listed below.

 Table 2. Industry ranging for metrics
 Low Medium High
CYCLO / Line 0.16 0.20 0.24
LOC / method 7 10 13
NOM / class 4 7 10
NOC / package 6 17 26
CALLS / method 2.01 2.62 3.20
FANOUT / call 0.56 0.62 0.68

Metrics Pyramid for ArtOfIllusion generated in iPlasma is shown on the Figure 7.

26

Figure 7. iPlasma Metrics Pyramid for ArtOfIllusion

So, the metrics on this pyramid for ArtOfIllusion project indicate that:

▪ Class hierarchies tend to be tall and narrow
▪ Classes tend to be:

o rather large (i.e. they define many methods)
o organized in rather fine-grained packages

▪ Methods tend to:
o be rather long yet having a rather simple logic (i.e. few conditional

branches)
o call several methods from few other classes (i.e. low coupling

dispersion)

Among indirect metrics, for ArtOfIllusion project I’ve measured:

▪ ATDF – access to foreign data is the number of attributes from unrelated
classes that are accessed directly or by invoking accessor methods. Few (i.e.
min value) for this metric is empirically defined as 3.
The value distribution per number of classes for ArtOfIllusion project is shown
on Figure 8.

▪ WMC – weighted method count. The sum of the statical complexity of all
methods of a class. The CYCLO metric is used to quantify the method’s
complexity.
The value distribution per number of classes for ArtOfIllusion project is shown

27

on Figure 9
▪ TCC – tight class cohesion is the relative number of method pairs of a class

that access at least one common attribute of that class. Value of this metric is
from 0 to 1, so one third equals 1/3.
The value distribution per number of classes for ArtOfIllusion project is shown
on Figure 10.

▪ NOM – Number of methods per class
The value distribution per number of classes for ArtOfIllusion project is shown
on Figure 11.

Figure 8. ATFD metric value distribution for ArtOfIllusion project classes

28

Figure 9. WMC metric value distribution for ArtOfIllusion project classes

Figure 10. TCC metric value distribution for ArtOfIllusion project classes

29

Figure 11. NOM metric value distribution for ArtOfIllusion project classes

30

Figure 12. IBM RSA Gathered metrics for ArtOfIllusion project

All described metrics were used to identify so called God classes in the ArtOfIllusion
project
God class problem is characterized in literature this way:

▪ Top-level classes in a design should share work uniformly.
▪ Beware of classes with much non-communicative behavior.
▪ Beware of classes that access directly data from other classes.

We are going to find them using the Goal–Question–Metric (GQM) model that
defines the necessary obligations for setting objectives before embarking on any
software measurement activity. Main steps are:

▪ List the major Goals for which metrics are going to be employed.
▪ From each goal derive the Questions that must be answered to determine if the

goals are met.

31

▪ Decide what Metrics must be collected to answer the questions.
So questions can be formulated like this:

▪ Is class excessively complex?
▪ Is class highly coupled?
▪ Does class accesses foreign data too much?

First question can be answered by metric WMC, second by metric TCC, third by
metric ATFD.
So, iPlasma identified 41 God and 43 classes in ArtOfIllusion project. Some of them
are.

 Table 3. God and Data Classes
God Classes Data Classes

Actor
ArtOfIllusion
Camera
Curve
CustomDistortionTr
ack
EditKeyframesDialo
g
ExprModule
ExternalObject
ImageSaver
LayoutWindow
MaterialPreviewer
MeshEditorWindow
Module
Object3D
ObjectEditorWindo
w
ObjectInfo
ObjectPropertiesPan
el
ObjectViewer
OutlineFilter
ProceduralDirection
alLight
ProceduralMaterial3
D
ProceduralPointLigh
t

AnimationPrevi
ewer
BiasModule
BMPEncoder
CosineModule
ExpModule
GainModule
GridModule
InfoBox
InterpModule
IOPort
JitterModule
KeystrokeRecor
d
Light
LogModule
Mapping3D
Marker
MaterialSpec
MeshVertex
MeshViewer
ObjectMaterial
Dialog
OPort
ParameterModu
le
PointInfo
PowerModule
ProductModule
Property

32

ProceduralPositionT
rack
ProceduralRotationT
rack
ProceduralTexture2
D
ProceduralTexture3
D
ProcedureEditor
Scene
Score
SplineMesh
SplineMeshEditorWi
ndow
SpotLight
ThemeManager
TreeList
TriangleMesh
TriMeshEditorWind
ow
Tube
UVMapping
UVMappingViewer
UVMappingWindow
ViewerCanvas

RandomModule
RatioModule
RenderingMesh
RenderingTrian
gle
RenderSetupDia
log
ResetButton
SelectionInfo
SineModule
SphericalModul
e
SqrtModule
TextureSpec
TimeAxis
Token
UVMappedTria
ngle
UVWMappedTr
iangle
WireframeMesh
WoodModule

Having analysed selected project (ArtOfIllusion) with metrics, I’ve discovered

that:
▪ Class hierarchies tend to be tall and narrow (i.e. inheritance trees tend to have

many depth-levels and base-classes with few directly derived sub-classes)
▪ Classes tend to be:

o rather large (i.e. they define many methods)
o organized in rather fine-grained packages (i.e. few classes per package)

▪ Methods tend to:
o be rather long yet having a rather simple logic (i.e. few conditional

branches)
o call several methods from few other classes (i.e. low coupling

dispersion)

33

3.4 Unit tests
Unit testing is a method of testing individual units of source code to determine

if they can be used. The device is the smallest part of the program tested. In
procedural programming, a unit can be an entire module, but more often a single
function or procedure. In object-oriented programming, a unit is often an integer
interface, e.g. B. a class, but can be a single method. Test units are created during the
development of programmers or periodic white field testers.

Ideally, each test case is independent of the others: Substitutes such as method
connectors, models, counterfeits, and test wiring harnesses can be used to test the
module in isolation. Block tests are typically written and performed by software
developers to ensure that the code conforms to the design and behaves as intended.
The implementation can range from very manual (pencil and paper) to formalization
in the context of building automation.

Unit tests for ArtOfIllusion project
/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */
package sample;

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;

/**
 ** Sample JUnit 4 test class.
 *
 * Note that it does not need to be a subclass of any particular class.
 *
 * @author nb
 */

34

public class UtilsJUnit4Test {

 public UtilsJUnit4Test() {
 }

 /**
 * Initialization method that is called only once. It is run before
 * any test method is executed. It is run even sooner than any
 * {@code @Before} method. If a test class is a test suite, its
 * {@code @BeforeClass} method is called even sooner than any of test
 * classes contained in the suite. But: If any of superclasses
 * of a test class has some {@code @BeforeClass} method, the superclass
 * {@code @BeforeClass} is called before. There may be only one method
 * annotated with the {@code @BeforeClass} annotation.
 * The name of the method is irrelevant - the only mandatory attributes are:
 * the {@code @BeforeClass} annotation,
 * the {@code public} and {@code static} modifiers
 * {@void} return type and
 * no arguments.
 */
 @BeforeClass
 public static void setUpClass() throws Exception {
 /*
 * E.g. establish connection to a database so that it does not need to
 * be established for each test separately.
 */
 System.out.println("* UtilsJUnit4Test: @BeforeClass method");
 }

 /**
 * Tear down method that is called only once. It is run after all test
 * methods and their {@code @After} methods are executed.
 * If a test class is a test suite, its {@code @AfterClass} method is called
 * even only after all test classes contained in the suite finish running.
 * But: If any of the superclasses of a test class has some
 * {@code @BeforeClass} method, the superclass {@code @BeforeClass} is

35

 * called later. There may be only one method annotated with the
 * {@code @AfterClass} annotation.
 * The name of the method is irrelevant - the only mandatory attributes are:
 * the {@code @AfterClass} annotation,
 * the {@code public} and {@code static} modifiers
 * {@void} return type and
 * no arguments.
 */
 @AfterClass
 public static void tearDownClass() throws Exception {
 /*
 * E.g. disconnect from the database - i.e. the complement to the action
 * performed in setUpClass().
 */
 System.out.println("* UtilsJUnit4Test: @AfterClass method");
 }

 /**
 * Test initialization method. It is executed before each test method
 * of this test class. There may be multiple test initialization methods
 * - in such a case, all these methods are executed before each test method
 * but order of their execution is undefined. The name of the method is
 * irrelevant - the only mandatory attributes are:
 * the {@code @Before} annotation,
 * the {@code public} access modifier
 * the {@void} return type and
 * no arguments.
 */
 @Before
 public void setUp() {
 System.out.println("* UtilsJUnit4Test: @Before method");
 }

 /**
 * Test shutdown method. It is executed after each test method
 * of this test class. There may be multiple test shutdown methods

36

 * - in such a case, all these methods are executed after each test method
 * but order of their execution is undefined. The name of the method is
 * irrelevant - the only mandatory attributes are:
 * the {@code @After} annotation,
 * the {@code public} access modifier
 * the {@void} return type and
 * no arguments.
 */
 @After
 public void tearDown() {
 System.out.println("* UtilsJUnit4Test: @After method");
 }

 /**
 * Test of concatWords method, of class Utils.
 * Simple test method. It does not need to follow any naming conventions,
 * just the {@code @Test} annotation is important.
 */
 @Test
 public void helloWorldCheck() {
 System.out.println("* UtilsJUnit4Test: test method 1 - helloWorldCheck()");
 assertEquals("Hello, world!", Utils.concatWords("Hello", ", ", "world", "!"));
 }

 /**
 * Test with timeout. If the testing routine does not finish in one second,
 * it is interrupted and the test fails. The timeout is declared by an
 * argument to the {@code @Test} annotation.
 *
 */
 @Test(timeout = 1000)
 public void testWithTimeout() {
 System.out.println("* UtilsJUnit4Test: test method 2 - testWithTimeout()");
 final int factorialOf = 1 + (int) (30000 * Math.random());
 System.out.println("computing " + factorialOf + '!');
 System.out.println(factorialOf + "! = " + Utils.computeFactorial(factorialOf));
 }

37

 /**
 * Test of expected exception. If a given exception is not thrown during the
 * tested routine, the test fails. If the exception is thrown, the test
 * passes. The expected annotation is declared by an argument to the
 * {@code @Test} annotation.
 */
 @Test(expected = IllegalArgumentException.class)
 public void checkExpectedException() {

System.out.println("* UtilsJUnit4Test: test method 3 -
checkExpectedException()");
 final int factorialOf = -5;
 System.out.println(factorialOf + "! = " + Utils.computeFactorial(factorialOf));
 }

 /**
 * Test that is temporarily disabled simply by the special {@code @Ignore}
 * annotation.
 */
 @Ignore
 @Test
 public void temporarilyDisabledTest() throws Exception {

System.out.println("* UtilsJUnit4Test: test method 4 -
checkExpectedException()");
 assertEquals("Malm\u00f6", Utils.normalizeWord("Malmo\u0308"));
 }
}

38

3.5 Continuous Code Analysis with the SonarQube
The SonarQube uses an evolved SQALE model.
Bugs, Vulnerabilities and Code Smells are main metrics to measure.

● Bugs: Code that is demonstrably wrong or highly likely to yield unexpected
behaviour.

● Vulnerabilities: Code that is potentially vulnerable to exploitation by hackers.
● Code Smells: Will confuse maintainers or give them pause. Not only ratings,

but also approximate remediation efforts.

3.5.1 Three Lines of Analysis

Figure 13. SonarQube Three Lines of Analysis

First line is a SonarLint, that runs in IDE and analyses new code and highlights

issues if any.
Second, pull request analysis. When a pull request (PR) is submitted to the

repository user comment the changed code with any new issues. After it is up to the
manual reviewer to decide if the issues are critical or accepted in the context before
merging the PR.

Finally, quality gates and leak management. If previous prevention fails, there
is an ability to set up a collection of go/no-go conditions that indicate whether or not
the project is releasable - Quality Gate. In case the project fails the Quality gate then
the tool automatically informs about it.

Security and Reliability ratings are based on the severity of the worst open
issue in that domain [24]:

● E - Blocker
● D - Critical
● C - Major
● B - Minor
● A - Info or no open issues

39

For Maintainability the rating is based on the ratio of the size of the code base
to the estimated time to fix all open Maintainability issues [24]:

● <=5% of the time that has already gone into the application, the rating is A
● between 6 to 10% the rating is a B
● between 11 to 20% the rating is a C
● between 21 to 50% the rating is a D
● anything over 50% is an E

3.5.2 SonarQube results for ArtOfIllusion project

The SonarQube provider comprehensive code analysis. The tool found 223
bugs, 125 vulnerabilities, 15 security hotspots. All this categories are marked with
rating E, with means Blocker and must be fixed before next release (Figure 14.).

Figure 14. SonarQube Overall Code Analysis Results

40

Figure 15. SonarQube Bug Analysis Results

Figure 17. SonarQube Vulnerabilities Analysis Results

Figure 18. SonarQube Security Hotspots Analysis

41

Conclusions

As a summary of techniques for software analysis, represented on Figure 1, due
to the computability barrier, no technique can provide fully automatic, robust, and
complete analyses. Testing sacrifices robustness. Assisted proving is not automatic
(even if it is often partly automated, the main proof arguments generally need to be
human provided). Model-checking approaches can achieve robustness and
completeness only with respect to finite models, and they generally give up
completeness when considering programs (the incompleteness is often introduced in
the modeling stage). Static analysis gives up completeness (though it may be
designed to be precise for large classes of interested programs). Last, bug finding is
neither robust nor complete. Another important dimension is scalability. In practice,
all approaches have limitations regarding scalability, although these limitations vary
depending on the intended applications (e.g., input programs, target properties, and
algorithms used).

The application must be analysed on all stages during the development life
cycle.

During the design phase, tools like IBM RSA one can easily find architectural
bottlenecks in the software and prevent them cheaply and quickly before the start of
development.

Already implemented code could be analysed in a continuous integration
environment by a tool like SonarQube. Property configured metrics and quality gates
provide scalability and continuous analysis that fits modern Agile development life
cycle.

42

Sources

1. Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix,
William Pugh, “Using Static Analysis to Find Bugs,” IEEE Software, vol. 25,
no. 5, pp. 22-29, Sep./Oct. 2008

2. Brian Chess, Jacob West (Fortify Software) (2007). Secure Programming
with Static Analysis. Addison-Wesley.

3. Flemming Nielson, Hanne R. Nielson, Chris Hankin (1999, corrected 2004).
Principles of Program Analysis. Springer.

4. Integrate static analysis into a software development process
http://www.embedded.com/shared/printableArticle.jhtml?articleID=1935008
30

5. Code Quality Improvement - Coding standards conformance checking (DDJ)
http://www.ddj.com/dept/debug/189401916

6. Kolawa, Adam. "When, Why, and How: Code Analysis". The Code Project.
Retrieved 19 October 2010.

7. Kaner, Dr. Cem, Software Engineer Metrics: What do they measure and how
do we know? http://www.kaner.com/pdfs/metrics2004.pdf

8. IBM Rational Software Architect family of products information centers
http://www.ibm.com/support/docview.wss?uid=swg27010908

9. Rational Software Architect Wiki on IBM developerWorks
https://www.ibm.com/developerworks/wikis/display/RSA/Home

10. Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R.
Engler. A few billion lines of code later: Using static analysis to find bugs in
the real world. Communications of the ACM, 53(2):66–75, 2010.

11. David L. Bird and Carlos Urias Munoz. Automatic generation of random
self-checking test cases. IBM Systems Journal, 22(3):229–245, 1983.

12. Proceedings of Metrics 2005, Como, 2005.
13. Introduction to UML 2 Package Diagrams by Scott W. Ambler

http://www.agilemodeling.com/artifacts/packageDiagram.htm
14. Scott W. Ambler (2009) UML 2 Class Diagrams. Webdoc 2003-2009.

Accessed Dec 2, 2009
http://www.agilemodeling.com/artifacts/classDiagram.htm

http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.ddj.com/dept/debug/189401916
http://www.kaner.com/pdfs/metrics2004.pdf
http://www.ibm.com/support/docview.wss?uid=swg27010908
https://www.ibm.com/developerworks/wikis/display/RSA/Home
http://www.agilemodeling.com/artifacts/packageDiagram.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm

43

15. David L. Bird and Carlos Urias Munoz. Automatic generation of random
self-checking test cases. IBM Systems Journal, 22(3):229–245, 1983.

16. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
automated random testing. In Conference on Programming Language Design
and Implementation (PLDI), pages 213–223. ACM Press, 2005.

17. Rival, Xavier. Introduction to Static Analysis. The MIT Press, 2020.
18. Thierry Coquand and Gerard Huet. The calculus of constructions.

Information and Computation, 76:95– 120, 1988.
19. Edmund C. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

MIT Press, 1999.
20. Patrick Cousot. Principles of Abstract Interpretation. MIT Press,

forthcoming.
21. Junghee Lim and Thomas W. Reps. A system for generating static analyzers

for machine instructions. In International Conference on Compiler
Construction (CC), pages 36–52. Springer, 2008.

22. Art of Illusion, http://www.artofillusion.org/
23. SQALE Model, https://en.wikipedia.org/wiki/SQALE
24. SonarQube Metric Definitions

https://docs.sonarqube.org/7.1/MetricDefinitions.html

http://www.artofillusion.org/
https://en.wikipedia.org/wiki/SQALE
https://docs.sonarqube.org/7.1/MetricDefinitions.html

