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Abstract

One of the main challenges in developing machine learning (ML) applications is the lack
of labeled and balanced datasets. In the literature, different techniques tackle this problem
via augmentation, rendering, and over-sampling. Still, these methods produce datasets that
appear less natural, exhibit poor balance, and have less variation. One potential solution is
to leverage the Generative Adversarial Network (GAN) which achieves remarkable results
in the generation of high-fidelity natural images. However, expanding the ability of GANs’
to control generated image attributes with supervisory information remains a challenge.
This research aims to propose an efficient method to generate high-fidelity natural images
with total control of its main attributes. Therefore, this paper proposes a novel Multiple
Auxiliary Classifiers GAN (MAC-GAN) framework based on Auxiliary Classifier GAN
(AC-GAN), multi-conditioning, Wasserstein distance, gradient penalty, and dynamic loss.
It is therefore presented as an efficient solution for highly controllable image synthesis red
that allows to enrich and re-balance datasets beyond data augmentation. Furthermore, the
effectiveness of MAC-GAN images on a target ML application called Automatic License
Plate Recognition (ALPR) under limited resource constraints is probed. The improvement
achieved is over 5% accuracy, which is mainly due to the ability of the MAC-GAN to create
a balanced dataset with controllable synthesis and produce multiple (different) images with
the same attributes, thus increasing the variation of the dataset in a more elaborate way
than data augmentation techniques.

1 INTRODUCTION

GAN [1] based natural image generation is consistently reach-
ing new milestones. Indeed, since its introduction, the potentials
of GAN have been widely explored, and today it is often very
challenging for a human to distinguish a GAN synthesized
image (e.g. face) from a real one [2, 3]. This highlights GAN’s
ability to become one of the most useful algorithms for the
development and evaluation of different ML methods. How-
ever, to gain such a level of usability, ML practitioners should
have enough control over GAN synthesis to represent differ-
ent scene attributes. To fulfill this requirement, we proposed a
novel method, called MAC-GAN, that provided good results in
generating controllable and diverse images.

The basic idea of GAN is to simultaneously train two net-
works (generator and discriminator) based on a competitive
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learning strategy [1]. While the goal of the generator is to model
the latent space of input data distribution and synthesize realistic
samples, the discriminator aims at distinguishing the synthe-
sized samples from the real ones. One of the main purposes
of training GANs is to achieve a perfect generator that pro-
vides realistic samples. Odena et al. [4] proposed the AC-GAN
strategy to generate high-quality natural images with a single
input/condition based on a pre-defined set of class names.
This research aims to extend AC-GAN’s flexibility to generate
images with multiple conditions based on different (e.g. class
name, background) attributes. To the best of our knowledge,
multi-conditioning with AC-GAN has not yet been explored for
image synthesis.

We develop MAC-GAN by leveraging several frame-
works and optimization strategies. Its architecture exploits
AC-GAN [4] with multi-conditioning to achieve controlla-
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FIGURE 1 Architecture of the proposed MAC-GAN framework. MAC-GAN accepts as input a condition vector y (in the form of one-hot encoded labels)
and a noise vector z. In the case of license plate generation, we consider the condition vector y to be the license plate text. The generator component G synthesises
image based on the input, while the critic component D assesses image realness and its correspondence to the input condition vector. The proposed framework
allows one to gain explicit control over desirable attributes of the generated output while maintaining image quality and diversity

bility over different image attributes. Moreover, it adopts the
Progressive Growing of GANs (PG-GAN) [5] strategy to
generate high-resolution images. It incorporates Wasserstein
distance and gradient penalty to ensure the generation of
better quality images. Finally, MAC-GAN optimizes a dynamic
loss during training, that consists of a dynamic conditioning
weighting scheme for the coefficients of its multi-objectives
formulation.

This work aims at providing complete user control for GAN
based image synthesis to overcome the data scarcity challenges.
More generally, for a given ML use case, the objective is to
increase samples variability and to balance samples distribution
by generating images with selective attributes. We consider the
real-world ALPR task as the target ML application to evalu-
ate MAC-GAN’s effectiveness. Indeed, synthesizing the license
plate (LP) text images is an ideal task to evaluate MAC-GAN’s
controllability, as it provides extensive possibilities for the input
controls. For example, an LP image of length 7 with 36 possible
characters at each location can be generated from 367 possible
choices as input. This research does not consider the other ML
tasks and datasets, because they are less suitable for evaluating
image synthesis based on multiple labels. Indeed, images and
labels from them have one of the following restrictions: (a) sin-
gle attribute/image class [6, 7]; (b) multiple binary attributes [8]
and (c) unstructured inputs [9, 10].

The rapid progress of deep convolutional neural networks
(CNNs) based algorithms allows the recent ALPR systems to
achieve very high accuracy [11–13]. However, these methods
require a large number of labelled images for training. A large
training dataset ensures high sample variations and balance on
character distributions, imaging conditions and the licence plate
(LP) structures [12]. Indeed, the lack of variations harms both
training and evaluation [13–15]. Furthermore, we observe that
even a large LP dataset might suffer from imbalanced character
joint distribution as well as low appearance variation for unique
LP text images. On the other hand, currently, it is very chal-

lenging to enhance the ALPR datasets due to the restrictions
on private data storage, such as the General Data Protection Regu-

lation (GDPR) [16], which prevents data storage for more than
30 days. Therefore, the problems of data scarcity and lack of
variations are further exacerbated. An obvious solution is to
develop a framework that generates high-quality LP images with
complete control of the characters. This research is strongly
motivated by this requirement and explores MAC-GAN for
LP generation.

Existing LP generation methods [13–15] apply image-to-
image translation based GAN methods [17, 18], which exhibit
several limitations concerning image quality and sample vari-
ations. The proposed MAC-GAN aims to alleviate these
limitations. Experiments indicate that it successfully allows
to fully control the image generation (Figure 3) and helps
to achieve additional ≈5% ALPR accuracy under different
resource constraints (Figure 5a). Overall, the key contributions
of this research can be summarized as:

FIGURE 2 Evolution of the controlled generation along with training.
Each row represents the training progress of the generator for the given input
”KRY5045” when increasing the resolution (from 4x8 to 128x256) and each
column corresponds to a random latent vector used for the image generation
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FIGURE 3 Examples of controlled images generation for 2 given inputs. [17] generates only one image for a given input. Our method generates diverse LP
images for different random latent vectors feeding the generator. Real images from the dataset are provided for visual comparison, with the last character removed
for privacy purposes. LP texts on the generated images are imaginary

(a) we propose a novel GAN based method to produce high

quality and fully controllable images through multi-label con-

ditioning. The ability to generate such images helps to
construct an enhanced training dataset with more variabil-
ity and balanced distribution of its attributes, which cannot
be achieved with existing image augmentation techniques.
Moreover, MAC-GAN generated images are superior to the
state-of-the-art with respect to both quality and variability;

(b) we demonstrate the significant impact of controllable image

generation for the ALPR application under resource constraint,
which clearly shows the usefulness of the proposed method;
and

(c) we introduce new evaluation metrics for the GAN meth-
ods specialized for text generation. This will help to green
benchmark similar approaches with common metrics.

The rest of the paper is organized as follows: Section 2 is
dedicated to related work. The proposed MAC-GAN frame-
work is explained in Section 3. The experiments and results are
described in Section 4. Finally, Section 5 provides conclusions
of the study.

2 RELATED WORK

GAN based methods demonstrate remarkable results at gen-
erating high fidelity images [2, 3, 5]. However, the challenge
of fully controlling the generated images through structured
data is relatively under-explored. We study the literature
from this perspective and explore the possible approaches
and applications.

2.1 Conditional generation

Historically GANs appear in an unsupervised setting where the
goal is to generate real and natural images. In the most basic

settings , GANs use a generator to synthesize images and a dis-
criminator to classify images as real or fake. Several approaches
enhanced GANs to include supervised information.

Conditional GAN (C-GAN) [19] extended traditional GAN
to generate better images. C-GAN includes conditions on both
generator and discriminator based on additional information y.

Another approach is AC-GAN [4], which extended the origi-
nal goal of GAN to perform two tasks: (a) classify images as real
or fake and (b) predict true attribute information y. However,
unlike modeling the joint distribution (as C-GAN), AC-GAN
models the conditional distribution of the attribute y and image
x. Inspired by this strategy, generated samples can be condi-
tioned on classes information [20, 21], text [22], bounding box
[23], pose estimation [24] etc.

In [25] a problem of topology mismatch between latent
and output spaces for conditional GANs has been tack-
led. The proposed method encourages a bi-lipschitz mapping
between the latent and the output manifolds thus improv-
ing the quality of synthetic images w.r.t. image diversity and
realness.

Numerous complex architectures apply conditional genera-
tion and demonstrate good results for anime generation [26],
brain metastases synthesis [27], 3D brain images at differ-
ent stages of the Alzheimer’s disease [28] or gastritis image
generation [29].

However, these previous works take place in a single-label set-
ting, where the input consists of the label vector y and random
noise vector z . The discriminator produces two outputs, the
probability of x being real or fake, and the estimated conditional
probability p(x|y). While the use of label vector y enlightens great poten-

tial at controlling the generated output, there is no existing work, to our

knowledge, on the possibility of gaining further control within a multi-label

context. Therefore, this research aims to expand single-level AC-
GAN into a multi-level context to develop a fully controllable
image generator framework. To demonstrate its effectiveness,
we choose the licence plate (LP) text generation task to enhance
the ALPR systems.

 17519578, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12251 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [10/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



246 SHVAI ET AL.

2.2 License plate generation

In the past few years, CNN based ALPR methods [11] have
achieved great success. However, they require a massive quan-
tity of labelled data which can be costly and time-consuming to
collect. Furthermore, existing systems tend to over-fit (respec-
tively under-perform) on the over-represented (respectively
under-represented) characters. To overcome these limitations,
LP image synthesis methods have been proposed to gener-
ate new examples of labelled training data and hence improve
the ALPR systems [13–15]. Wang et al. [14] improves the
CycleGAN based model [18] that learns the mapping between
the synthetic (generated by a script) and real images. Wu
et al. [15] adopt a similar approach and improve the image-
to-image based Pix2Pix generative architecture [17]. Although
these methods demonstrated good results, they have par-
ticular limitations such as poor quality of the generated
images and no variation (i.e. single image generation) for
an input LP text. This research aims to overcome these
limitations.

In [30] Silvano et al. propose to generate large volumes of
accurate Mercosur standard LP images with template-based
synthesis. They used data augmentation that mimics real-life
conditions such as artificial shading and sloping. Such an
approach allows to obtain images with any LP text, however
it is difficult to extend as it heavily relies on a specific template
and data augmentation.

2.3 Text-to-image generation

Text-to-image generation can be considered one of the most
relevant applications of controlled image generation task. It aims
at generating realistic images that match the user given
text descriptions.

Reed et al. [31] use conditional PixelCNN to generate images
using the text descriptions and objects locations constraints.
Zhang et al. [22, 32, 33] decompose the task into several stages
from coarse to fine level. Li et al. [34] introduces a word-level
discriminator and channel-wise attention-driven generator. Park
et al. [35] defines a novel GAN based architecture that gener-
ates new images by synthesizing the background of an original
image and a new object described by the text description. Gao
et al. proposed Lightweight Dynamic Conditional GAN [36]
for text-to-image synthesis where the attention block was used
to capture multi-scale context. All of the above approaches
generate images from unstructured data. In our case, we use
multiple conditioning labels to represent the LP text structure
and generate controlled images. This is the key difference with
the previous work.

3 Multiple auxiliary classifiers GAN

Given multiple conditions encoded in y, we aim to synthesize
an image x̃, that appears realistic and respects the condi-
tions during the generation step. To achieve this, we propose

two novel components: MAC-GAN framework (Figure 1), and
dynamic loss based on conditional weights (Section 3.3) for
effective training.

3.1 Architecture

Figure 1 illustrates the overall architecture of MAC-GAN, which
consists of two neural networks, generator G and critic1 D.

Generator G generates fake images x̃ = G (z, y), where input
vector z is noise, which is a fixed-length random vector sam-
pled from a Gaussian distribution. Input y = (y1, … , yK ) is the
condition vector, where every component y j corresponds to
one independent discrete condition with a fixed number of
values. Critic D has two distinct types of outputs, raw critic
score Dr and a set of K probability vectors D j , D(x̃) =
(Dr (x̃),D1(x̃), … ,DK (x̃)). The raw critic score Dr estimates
the Wasserstein-1 distance between the distributions of the real
x and generated x̃ images [38, 39]. A set of softmax layers in the
network D estimates the probability vectors of D j . Each vec-
tor of D j associates an input condition y j , which is encoded via
one-hot encoding. We use cross-entropy to compare D j with
y j . Thus, critic D exercises control over the image realness and
image compliance to the conditions encoded via y.

3.2 Objective functions

We train the generator G and critic D alternatively by mini-
mizing both the generator loss G and critic loss D . As the
loss function , we use the Wasserstein GAN loss with gradi-
ent and epsilon penalty (WGAN-GEP) [38, 39] with additional
terms of conditional loss. These conditional loss terms enable
control over the conditions satisfaction, and each of them
is independent.

3.2.1 Generator objective

the generator loss G comprises a realness and a conditional
component. The conditional loss represents a weighted sum
of losses per condition with weights 𝜆cond ,t

j , see Equation (1).

Weights 𝜆
cond ,t
j depend on epoch t , Section 3.3.1 provides

further details.


t
G
= 

realness
G

+ 
cond
G

= 
realness
G

+

K∑
j=1

𝜆
cond ,t
j 

cond
G , j

. (1)

The realness loss improves the generation quality and makes
the synthetic images appear as real; the conditional loss penal-
izes the generated images whose labels prediction do not
match the input labels. We use the critic’s output D(x̃) =

1 The critic D is a substitute of classical GAN discriminator, for example, D in WGAN [37]
formulation. One of the main differences between the notions of discriminator and critic
is the range of output values: discriminator determines the realness probability, which lies
between 0 and 1, and critic returns a critic score, which is not bound a priori.
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(Dr (x̃),D1(x̃), … ,DK (x̃)) to compute both of these losses.
Following [37], we define the realness loss as:


realness
G

= 𝔼
x̃∼ℙg|y,y∼ℙy

r

[
−Dr (x̃)

]

= 𝔼
z∼ℙz ,y∼ℙ

y
r

[
−Dr (G (z, y))

]
,

(2)

where ℙr is real data distribution, ℙg is the distribution of the
output from G (z, y), and ℙz is the distribution of noise.

We define the conditional loss for label y j through cross-
entropy on the corresponding output of critic D, that is D j (x̃).
In order to implement this, we represent label y j as a one-hot-
encoded vector, which is compared to the probability vector
output D j (x̃).


cond
G , j

= 𝔼
x̃∼ℙg|y,y∼ℙy

r


cross (D j (x̃), y j )

= 𝔼
z∼ℙz ,y∼ℙ

y
r


cross (D j (G (z, y)), y j ),

(3)

where cross is the cross-entropy loss function.
Finally, we obtain an explicit form of the generator loss by

combining Equations (1), (2), and (3) as:


t
G
= 𝔼

z∼ℙz ,y∼ℙ
y
r

[−Dr (G (z, y))+

K∑
j=1

𝜆
cond ,t
j 

cross (D j (G (z, y)), y j )].

(4)

3.2.2 Critic objective

Following previous work on improved critic losses [4, 37, 40],
critic objective D comprises the Wasserstein loss and several
penalty terms such as gradient penalty, epsilon penalty , and
extra conditional term. This term penalizes the images whose
labels predictions do not match the input labels/conditions.


t
D
= 

W
D
+ 

cond
D

+ 
penalty

D

= 
W
D
+

K∑
j=1

𝜆t
j

cond
D, j

+
(
𝜆grad


grad

D
+ 𝜀𝜀

D

)
.

(5)

The Wasserstein loss expresses the difference between critic
scores on real and generated images. It is an approximation of
the Wasserstein distance among the real and generated images
distributions.


W
D
= 𝔼

x̃∼ℙg

[Dr (x̃)] − 𝔼
x∼ℙr

[Dr (x)]. (6)

The conditional loss allows the critic to predict the correct-
ness of label y j in both real and generated images. Similar to

the generator’s conditional loss, we define it using the cross-
entropy function. We use the same weight coefficients for the
conditional loss terms of the generator and critic.


cond
D, j

= 𝔼
x̃∼ℙg|y,y∼ℙy

r


cross (D j (x̃), y j )+

𝔼
(x,y)∼ℙ

(x,y)
r


cross (D j (x), y j )

= 𝔼
z∼ℙz ,y∼ℙ

y
r


cross (D j (G (z, y)), y j )+

𝔼
(x,y)∼ℙ

(x,y)
r


cross (D j (x), y j ).

(7)

To stabilize the training procedure [40], we penalize the critic
loss by the norm of the gradient of the critic scores with respect
to its input. The gradient penalty constrains the 1-Lipschitz
condition on the raw critic score Dr . This condition is neces-
sary to use the Wasserstein-1 distance representation obtained
through Kantorovitch-Rubinstein duality [37, 41]. Moreover, we
use an epsilon penalty term to avoid loss drifting away from
zero [38].


penalty

D
= 𝜆grad 𝔼

x̂∼ℙx̂

[(‖‖∇x̂Dr (x̂)‖‖2 − 1
)2]

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
gradient penalty term

+

𝜀 𝔼
x∼ℙr

Dr (x)2

⏟⎴⎴⏟⎴⎴⏟
epsilon penalty term

.

(8)

Here distributions ℙr and ℙg constructs ℙx̂ based on a ran-
dom (uniform) convex combination of the real x and generated
sample x̃ to construct x̂.

3.3 Learning strategy

3.3.1 Dynamic loss

As formulated in Section 3.2, the generator and critic losses
include the conditional components. The weights that one
chooses to apply on these terms impact the training as well as
the quality of the results. To tackle this problem, we dynam-
ically modify the combination of the different criteria during
the training process. We start from no constraints on the
labels correspondence. Next, we apply a stepwise increase
of the weight on this conditional loss. This ensures more
importance to the label correspondence (for generator) and
label recognition (for critic) at the subsequent epochs of the
training.

Experimentally we observe that the use of conditioning
weights 𝜆cond ,t

k
of Equation (9) outperforms the results obtained

with a fixed conditioning value. The consequence of applying
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this weighting scheme is the formulation of a dynamic loss, which
is one of the most prominent elements of MAC-GAN.

𝜆
cond ,t
k

=

⎧⎪⎨⎪⎩
0, t ⩽ 8

1, t ⩽ 16

10i, t ⩽ 8(i + 2), i = 1, … , 7

. (9)

We observe that the attributes of the generated images are
similar at the beginning of the training, due to the early stages
of generator’s objective optimization. At this step, we set the
conditional weights to 0. Once more images are available to
the generator and critic, we change the weight to 1 to affect
the training. Next, we apply a stepwise function to increase the
weight by a factor of 10. In our experiments, we use the same
schedule for all the conditions due to their complex similarity
and related nature. However, in the general case, the sched-
ules might vary to reflect the difficulty and the importance of a
specific condition, and its alignment with the image generation
learning phases.

3.3.2 Data oversampling

as a part of the multi-label learning context, data might suf-
fer from multi-label imbalance - some labels being severely
under-represented compared to others. Different techniques are
available to address the imbalance in multi-label datasets [32,
42–44]. These methods follow one of these approaches: data re-
sampling, algorithm adaptation, and cost-sensitive learning. We
point out that applying simple data oversampling through image
augmentation techniques leads to much better results for multi-
label generation as the critic learns the labels independently, and
thus is robust to inter-labels correlations in the training dataset.

3.4 Implementation

We propose a multi-conditioning framework that can adapt
to existing GAN architectures and provide their discriminator
the ability to learn multiple labels during adversarial train-
ing. To implement the MAC-GAN framework, we exploit the
state-of-the-art Progressive Growing of GANs (PG-GANs)
[5] architecture due to its excellent performance in generating
high-resolution images. In PG-GANs, image resolution is pro-
gressively increased during training as new intermediate layers
are added to the model. Karras et al. proves that the progressive
growing techniques not only speeds-up the training, but also sta-
bilize it. Training ensures that the labels are progressively learnt
by the discriminator and the generation is oriented towards
the multiple controlled inputs fed to the generator. Figure 2
illustrates the controlled generated outputs during the training
progress with PG-GANs.

MAC-GAN is built upon the official TensorFlow [45] imple-
mentation of PG-GANs, from which we inherit most of the
training details. In particular, we use the same generator and
critic networks (with required modification of the generator’s

input and the critic’s output), resolution-dependent mini-batch
sizes, Adam hyper-parameters, activation layers, pixel-wise nor-
malization, and exponential moving average of the generator.
Both networks consist of replicated 3-layer blocks that are
introduced one by one during the training phase. The detailed
architectures are available in Table 3 of Appendix A.1. The
input latent vector corresponds to a 512-dimensional normal
random noise.

4 EXPERIMENTS

We conduct extensive experiments on generating high-
resolution natural LP images, and their impact on improving
ALPR systems. To this aim, first, we collect a relevant LP image
dataset. Next, we define several metrics based on [4] to evaluate
the quality and variations of the generated images. Finally, we
perform a competitive evaluation to demonstrate MAC-GAN’s
effectiveness and impact.

4.1 Data collection

To train and evaluate, we have collected a cropped LP image
dataset of 83K images which comprises 33K unique LP texts.
These images were originally collected from different types
(RGB and infrared) of cameras located in the free-flow tolling
systems. The collected dataset ensures a large variation of the LP
images with respect to image capturing conditions and appear-
ances. We split the dataset for training and test, where the
training set comprises 75K images of 30K unique LPs and the
test set comprises 8K images of 3K unique LPs. For a fair eval-
uation, we ensure no overlap among the training and test sets,
that is, the same LP cannot co-exist in both sets.

Next, we conduct several additional experiments to exam-
ine the impact of the generated images on ALPR application.
Therefore, we prepare multiple sets of training data and a
challenging test set.

4.2 Evaluation metrics

To compare the performance of GAN based generators, one
needs to use appropriate metrics that reveal the quality of the
generated images. The Inception Score (IS) [46] is a commonly
used metric, which depends on the classification scores from the
pre-trained Inception v3 image classification model [47]. Higher
IS value indicates better quality of the generated images. We
adopt IS by replacing the Inception model with the CNN model
that classifies the characters in the LP images. Unfortunately, the
IS metric is inadequate to quantify the controllability and diver-
sity in the generated images, which are very important and main
contributions of this research. Therefore, it requires additional
metrics for an appropriate evaluation.

Besides image quality, we aim to evaluate the proposed and
competitive approaches from other aspects: (a) ability to syn-
thesize controlled image; (b) diversity of the synthesized LP text
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images, and (c) usefulness/applicability of the generated images.
Therefore, following the existing metrics proposed in [4, 14, 15],
we propose several metrics suitable for text recognition, which
we define in the following sub-sections.

4.2.1 Correct control score (CCS)

it quantifies the ability to successfully generate the controlled
image by measuring the fraction of the input conditions that the
generated images satisfy correctly. In the context of generating
images with given LP text, we compute it as the average Ham-
ming similarity score of input conditions and resulting labels of
the generated images:

CCS =
1
N

N∑
i=1

hs (yi
, ŷ

i
)), (10)

where N is a number of input conditions vectors y
i

used for
the assessment, ŷ

i
is the predicted attributes vector of the image

generated with input conditions vector y
i
:

ŷ
i
= (arg max D j (G (z, y

i
)))K

j=1. (11)

The Hamming similarity score hs calculates the share
of indices at which the corresponding labels are the
same (e.g. hs (}}ABC 123

′′
, }}ABD723

′′ ) = 0.6667 × 100% =

66.67%). Indeed, for text recognition, it is straightforward to
compute CCS either by human (manual) annotator or by using
a highly accurate character recognizer to label the synthesized
images. The CCS value indicates the percentage, where 100%
means full control green of the generated image and 0% means
no control at all.

4.2.2 Diversity of the generated images (DGI)

a common expectation from the image generator is its capability
to provide a diverse set of images for a given set of input con-
ditions. The DGI evaluation metric [4] provides an important
measure to quantify the variations of the generated images for
a fixed input condition as well as to detect the collapsed gener-
ator. For the natural images, the multi-scale structural similarity
provides a measure of DGI. To adapt this metric to our prob-
lem, we use an in-house LP matching method and compute the
DGI measure as:

DGI =
1
M

M∑
m=1

d
(
x1

m, x
2
m

)
. (12)

Here, M represents the number of given image pairs, (x1
m, x

2
m )

is a pair of images, and d (⋅) is a measure of distance between
two images. While higher DGI values indicate better diversity,
zero DGI value indicates one unique generation possible for a
given input.

TABLE 1 Evaluation of the competitive approaches with CCS and DGI
metrics.

Training configuration IS CCS DGI

Baseline 22.88 88.36% 0.227

Baseline+ OS 20.48 86.50% 0.253

Baseline+ DL 21.70 87.58% 0.158

Baseline + OS + DL 23.48 99.80% 0.248

Pix2Pix [17] 18.22 84.05% 0

4.2.3 Impact on target applications (ITA)

besides evaluating the generator, it is equally important to real-
ize its impact on the target applications. To this aim, we exploit
the MAC-GAN generated images for the ALPR application.
Therefore, following the related work [13–15], we quantify ITA
with two individual scores: Total Recognition Rate (TRR) and
Partial Recognition Rate (PRR). While TRR quantifies the accu-
racy based on complete LP text matching, PRR quantifies the
accuracy at individual character level. Therefore, ITA helps to
analyze the performance obtained with samples generated with
different strategies.

4.3 Results

This section briefly presents the results from two different
aspects: competitive evaluation of image synthesis and the use-
fulness of the synthesized images for a selected ML application.

4.3.1 Image synthesis

in order to perform a competitive evaluation2, we provide
results from different competitive approaches: (a) MAC-GAN
(Baseline): naive training of the proposed framework; (b) Base-
line trained with oversampling (OS) and dynamic loss (DL) and
(c) Pix2Pix [17]: technique used by [15] to transform a rendered
LP image into a realistic appeared image. OS improves balance
in the training data and DL improves the effectiveness of
controlled image generation. Table 1 presents the results based
on the IS, CCS and DGI metrics. We observe that the proposed
MAC-GAN provides the best results based on all evaluation
metrics when it is correctly trained with OS and DL strategies.
Particularly, it achieves significantly higher CCS to generate
controlled natural images, which satisfies the most important
objective (controllability) of this research. Besides, the DGI
values confirm its capability to generate wide variations for the
same input (control). The higher IS score from MAC-GAN
confirms that it ensures better image quality compared to
the competitive methods. Results from Pix2Pix [17] indicate
that while the CCS score is closer to the baseline, it is not

2 Unfortunately, we are not able to provide a state-of-the-art comparison due to
the unavailable implementations of original PixTextGAN [15] and CycleWGAN [14].
Ourimplementation of those methods struggle to generate satisfying results.

 17519578, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12251 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [10/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



250 SHVAI ET AL.

FIGURE 4 Illustration of controllability and diversity in the MAC-GAN synthesized images

capable to generate a variety of different appearances for
the same input. However, CCS from both baseline (86.36%)
and Pix2Pix (84.05%) indicate that they are highly unreliable
compared to the best CCS (99.80%). Therefore, MAC-
GAN trained with OS and DL significantly outperforms its
competitors.

Figure 3 illustrates the LP images from the real dataset, MAC-
GAN, and Pix2Pix methods for different controlled inputs
(text encoded into conditions). Visual comparison with the real
images indicates that MAC-GAN generated LP images are often
difficult to distinguish from the real ones. Besides, they are more
natural than the ones from Pix2Pix. Note that, unlike MAC-
GAN, Pix2Pix generates only one image for a given input. This
further emphasizes the effectiveness of the proposed method
for generating fully controllable and high-quality natural images
with large variations.

One of the key properties of MAC-GAN is the controllabil-
ity of the image attributes. To briefly analyse this, we visualize
the appearance changes of the generated LP text images with
respect to the condition vectors and a given random noise vec-
tor. Figure 4 illustrates the results, where the first column shows
the reference LP text images, and then each column provides a
different LP text synthesized image compared to the reference.
To demonstrate controllability, at each ( j + 1)th column we only
change the j th control vector or attribute (here j th character
of the LP text) with respect to the reference. The images in
Figure 4 show that MAC-GAN provides perfect controllability
and allows to generate images with any set of attributes that
follows the training distribution of attributes. Besides, each
row of the MAC-GAN generated images in Figure 3 illus-
trates different visual appearances (different random noise
vector) for the same LP text (each column), which ensures its
capacity to synthesize images with diverse appearances. These
observations clarify that the MAC-GAN framework allows
an ML practitioner to gain full control over the attributes to
generate a large number of images for the target application.
In the next sub-section, we briefly present the advantages
and impact of exploiting these properties for the ALPR
application.

Next, we perform an analysis of MAC-GAN’s performance
at different resolutions for the synthesized LP text images,
see Figure 2 for visual appearances. Table 2 provides the
results for the IS and CCS metrics, from which it is clear
that 128x256 is the optimal resolution for the LP text images.
Moreover, a decrease in resolution by half causes signifi-
cant degradation of the results. We believe that the optimal
choice of resolution should be made based on the target
application.

TABLE 2 MAC-GAN’s performance for different image resolutions

4x8 8x16 16x32 32x64 64x128 128x256

IS 0.0 0.0 2.06 10.60 10.61 23.48

CCS 0.0 0.0 0.02 0.23 0.24 99.80

4.3.2 Impact on ALPR performance

Herein, we present the scope and usefulness of the synthesized
images for ALPR, which we consider as a representative of
the real-world data-driven ML applications. Particularly, we aim
to show the best scenario to take profit from the synthesized
images, and improve the performance of the target application.
Therefore, we conduct extensive experiments to train an ALPR
model [11] with a large set of datasets consisting of different
amounts and combinations of the real and synthesized data.

We use the 30K unique LPs (Section 4.1) and create multi-
ple inclusive subsets of size 1K, 2K, 4K, 8K, 16K, and 32K3

LPs. For the evaluation, we manually select 1K unique LP that
does not already exist in the training sets, and that presents
a challenge (under-represented characters, extreme light con-
ditions etc.). We follow the same training procedure for any
given dataset, where the training begins with a learning rate of
0.001 and gradually decreases for 20 epochs. During training, we
apply (with probability 0.66) on-the-fly random data augmenta-
tion [48, 49] to modify the pixel and geometric appearance. To
ensure a fair evaluation, each training begins with the same ini-
tial parameters of the ALPR model. With these subsets of LP
texts, we consider different dataset constructions as follows:

∙ Real: considers the images from the original training dataset
(Section 4.1).

∙ Real+Syn: for each subset, it replaces 50% of the randomly
selected real images with synthesized images of the same LP
text. This helps to understand whether synthesized images
can act as an exact replacement for real data.

∙ Real+BlSyn: it aims to incorporate content/class balance into
the dataset. We replace 50% of the real LPs with a particu-
lar set of LPs that improves class balance within the training
dataset. This helps to understand whether synthesized images
can be helpful if we use them to improve the class balance.

∙ Real+BlSynVar: it aims to increase the volume of the train-
ing data by adding variations of the samples. Therefore, we
use MAC-GAN to generate 5 additional images for each

3 Originally we have 30K unique plates. Therefore, to create a 32K LP database, we
randomly choose 2K additional samples from 30K LPs.
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FIGURE 5 Illustration of the impact of using MAC-GAN synthesized
images based on the ITA evaluation: (a) Total Recognition Rate (TRR) and (b)
Partial Recognition Rate (PRR)

LP text of the Real+BlSyn. However, increasing variations
enlarges the volume of the training dataset and hence apply-
ing the same (like the previous sets) training strategy may
make the comparison unfair. Therefore, we maintain fairness
by adjusting the number of epochs.

Figure 5 presents the results obtained from the training on 24
different datasets based on TRR and PRR. From these results,
our observations are:

1. ALPR performance always increases with the amount of
training data, regardless of the dataset construction proce-
dures. Therefore, the use of image generator can be very
helpful for the ML applications. Results from TRR and PRR
evaluation show a similar trend.

2. Comparison among Real and Real+Syn shows that though
the use of real data is preferable when possible, overall,
replacing half of the real data by synthetic data with the

same attributes distribution leads to similar, albeit slightly worse
performance. Furthermore, by comparing Real+Syn to the
points of Real curve with a shift of one step back, we
observe improved performance when using additional syn-
thesized data. These observations corroborate the intuition
that (a) real data still has an advantage over synthetic data and

(b) if no (additional) real data is available, synthetic data will
be beneficial.

3. Results from Real+BlSyn demonstrate substantial improve-
ment over Real and Real+Syn. Real+BlSyn ensures that
the distribution of data attributes does not repeat the distri-
bution of real data, but complements it to obtain a dataset
with more balanced attributes. Indeed, without the attributes
control, one could expect that attributes of generated data
will, in the best case, repeat the distribution of attributes
in real data, or even simply reflect only the most repre-
sented attributes values. In such a scenario, we cannot expect
better performance than previously seen Real+Syn that
can only approximate real data presence. The control over
attributes unlocks access to the next level of performance in
the dependent multi-attribute, multi-class tasks, which often
suffer from imbalanced datasets. The latter observation
relates equally well to the test sets, since fair performance
assessment requires an adequate attributes representation.

4. Results from Real+BlSynVar show the superiority of MAC-
GAN overcompetitive methods due to its ability to generate
multiple samples with variations from the same input
conditions. The large performance gap (≈5% on average
compared to Real) highlights the importance of including
variations within the training dataset. Moreover, the compar-
ison with Real+BlSyn4 confirms that although re-balancing the
training dataset with generated data helps, variations in the
synthesized data will further enhance the performance, even
when using data augmentation.

The above observations confirm that synthesized images can
significantly (achieved ≈5% on average) boost the performance
of ML applications if the synthesizer can generate output with
large control and sufficient variations. From this aspect, the pro-
posed MAC-GAN framework shows enormous potential to be
adopted for various ML applications.

5 CONCLUSIONS

Generating high-fidelity images with controllable attributes
can provide great benefits greento data-driven ML methods,
particularly when data acquisition and data storing appear very
challenging. To overcome this, this research proposes a novel
method, called MAC-GAN, that generates high-quality images
with controllable attributes and variability. While MAC-GAN
leverages several existing frameworks (e.g. AC-GAN and
PG-GAN) to ensure high-quality images, it introduces multi-
conditioning and dynamic loss for greater control and diversity.
Comprehensive experiments with different existing and newly
proposed evaluation metrics confirm that MAC-GAN gener-
ated images are superior to the existing methods. Moreover,
the high controllability and diversity of the synthesized images
clearly demonstrate the novel dimension that MAC-GAN

4 We assume that the existing LP image generation approaches [13–15] can achieve only
up to this performance as they are unable to provide variations in the outputs for the
same input.
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pioneers for image synthesis with GANs. Different experiments
show that it helps achieve ≈5% ALPR improvement and thus
demonstrate the significance of controllable image generation
for a real-life data-driven ML application. In future work, one
can explore the extension of this framework to a wider range of
applications and to other topics, use cases, and domains. More-
over, its adaptability with different other GAN architectures
should be examined. We believe that MAC-GAN can take it to
the next level if it is successfully adapted for the generation of
images based on very few examples per class and attribute.
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APPENDIX A

A.1 CNN architecture of MAC-GAN

Table A1 presents the CNN architectures of the Generator and
Critic networks.

TABLE A1 CNN architectures of the Generator and Critic networks.

Generator Act. Output shape Params

Latent vector - 512 x 1 x 1 -

Label 1 - 10 x 1 x 1 -

Label 2 - 10 x 1 x 1 -

Label 3 - 10 x 1 x 1 -

Label 4 - 10 x 1 x 1 -

Label 5 - 10 x 1 x 1 -

Label 6 - 10 x 1 x 1 -

Label 7 - 10 x 1 x 1 -

Conv 4 x 4 LReLU 512 x 4 x 4 4.8M

Conv 3 x 3 LReLU 512 x 4 x 4 2.4M

Upsample - 512 x 8 x 8 -

Conv 3 x 3 LReLU 512 x 8 x 8 2.4M

Conv 3 x 3 LReLU 512 x 8 x 8 2.4M

Upsample - 512 x 16 x 16 -

Conv 3 x 3 LReLU 512 x 16 x 16 2.4M

Conv 3 x 3 LReLU 512 x 16 x 16 2.4M

Upsample - 512 x 32 x 32 0

Conv 3 x 3 LReLU 512 x 32 x 32 2.4M

Conv 3 x 3 LReLU 512 x 32 x 32 2.4M

Upsample - 512 x 64 x 64 0

Conv 3 x 3 LReLU 256 x 64 x 64 1.2M

Conv 3 x 3 LReLU 256 x 64 x 64 590k

Upsample - 256 x 128 x 128 0

Conv 3 x 3 LReLU 128 x 128 x 128 295k

Conv 3 x 3 LReLU 128 x 128 x 128 148k

Upsample - 128 x 256 x 256 -

Conv 3 x 3 LReLU 64 x 256 x 256 74k

Conv 3 x 3 LReLU 64 x 256 x 256 37k

Conv 1 x 1 linear 3 x 256 x 256 195

Total trainable parameters 23.6M

Critic Act. Output shape Params

Input image - 3 x 256 x 256 -

Conv 1 x 1 LReLU 64 x 256 x 256 256

Conv 3 x 3 LReLU 64 x 256 x 256 37k

Conv 3 x 3 LReLU 128 x 256 x 256 74k

Downsample - 128 x 128 x 128 -

Conv 3 x 3 LReLU 128 x 128 x 128 148k

Conv 3 x 3 LReLU 256 x 128 x 128 295k

Downsample - 256 x 64 x 64 -

Conv 3 x 3 LReLU 256 x 64 x 64 590k

Conv 3 x 3 LReLU 512 x 64 x 64 1.2M

Downsample - 512 x 32 x 32 -

Conv 3 x 3 LReLU 512 x 32 x 32 2.4M

Conv 3 x 3 LReLU 512 x 32 x 32 2.4M

Downsample - 512 x 16 x 16 -

(Continues)
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TABLE A1 (Continued)

Critic Act. Output shape Params

Conv 3 x 3 LReLU 512 x 16 x 16 2.4M

Conv 3 x 3 LReLU 512 x 16 x 16 2.4M

Downsample - 512 x 8 x 8 -

Conv 3 x 3 LReLU 512 x 8 x 8 2.4M

Conv 3 x 3 LReLU 512 x 8 x 8 2.4M

Downsample - 512 x 4 x 4 -

Minibatch stddev - 513 x 4 x 4 -

Conv 3 x 3 LReLU 512 x 4 x 4 2.4M

Conv 4 x 4 LReLU 512 x 1 x 1 4.2M

Fully-connected linear 1 x 1 x 1 36k

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Fully-connected softmax 10 x 1 x 1 -

Total trainable parameters 23.1M

A.2 LP-100K dataset

In an effort to advance the research in these areas of multi-
conditional generation and ALPR, we created an LP-100K
dataset consisting of 100K generated LP by our trained gen-
erator. We observe that most publicly available image datasets
are limited to green single-class labeling or multi-classes with
binary attributes and are not suitable for multi-label learning in
the context of adversarial generation. We hope that releasing this
dataset will both permit the legitimate comparison of ALPR sys-
tems and will advance the exploration of multi-label controlled
generation architectures.
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