MiHICTEpPCTBO OCBITH 1 HAYKH YKpaiHU
HALIOHAJIBHUM YHIBEPCUTET «KUEBO-MOTUJISTHCHKA AKAJIEMISI»

Kadenpa indhopmaruku Gaxynsrety iHHOpPMATUKH

Cepsic anonimMizanii Tpan3akuiii B 0;10k4eiiHi Substrate nuiaxom
Kpunrorpagivynoro mnudpyBaHHs BXOAIB i BUX0AiB MiK1Iepa
TekcToBa yacTHHA 10 KBaJipiKaliiiHOI podoTH

3a cneniaabHicTIO « KoM’ oTepHi Haykn» - 122

KepiBHuk kBaJjigikaniiiHoi podoTn
Crapummii BUKJI1a1a4
T'opoxoscrkuii K.C.
(ITigmuc)
“ 2023 poky

BuxkoHaB cTyaeHT
KH-4 Muxaiinenko O.I.
“ o7 2023 poky

Kwuis 2023

MiHICTEPCTBO OCBITH 1 HAYKH YKpaiHU
HALIOHAJIBHUM YHIBEPCUTET «KUEBO-MOTUJISTHCBKA AKAJIEMISI»
Kadenpa indopmaruku dakynsreTy iHHOpMATHKU
3ATBEP/IKYIO
Crapmmuii BUKJIa1a4
T'opoxoscekuii K.C.

) » 2022 p.

IHAMBIAVYAJIBHE 3ABJIAHHA
Ha KBaniikaiiiay poooTy
cTyneHTy Muxainenky Onekcanapy IropoBuuy
dbakynsrety iHpopMaTuku 4 Kypcy 06akanaBpChbKoi MporpaMu
TEMA: Cepsic anoHimMi3anii TpaH3akuii B Oj0k4eiiHi Substrate

HUIAXOM Kpunrorpadgiynoro mu¢pyBaHHs BXOAiIB | BUX0AIB MiKLIepa

3wmict TY no kBamidikamiifHoi poOoTH:

InnuBinyanbHe 3aBIaHHS

Beryn

Po3min 1. JlocnimkeHHs Ta aHasi3 mpeaMeTHOI 00acTi

Po3ain 2. AHani3 TeXHIYHOTO 3aBIaHHS

Po3nin 3. Po3poOka 3acToCcyHKy

BucHoBku

Crnucok niteparypu

Jlonatku (3a HEOOX1THICTIO)

Jlara Bmpaui ,, 7 2022 p.

KepiBuuk

(mianuc)

3aBaHHsI OTPUMAB

(mmiamuc)

Kanenaapumii njiaH BUKOHAHHSI po00TH

Ha3zBa erany TepmiH BUKOHAHHA IpumiTka
KBaJi(ikaniiiHoi podoTu eramny
OTpumaHHs 3aBJlaHHA Ha 01.10.2022

KkBaTi(iKaIiiHy poooTy

Orysig niTeparypu 3a TEMOIO 01.11.2022

poboTtu

[TpoBeneHHs 10CIiKEHHS 01.12.2022
Hanucanns nporpaMHOro 01.01.2023
3aCTOCYHKY

Hammcanus tekcroBoi yactuau | 04.04.2023

3axuct KBamiQikauiiHoi 30.05.2023

poboTtu

CryneHr
KepiBuuk “ ” 2022

3MicT
KajieHgapHuil JIAH BUKOHAHHS POOOTH...cccerceesereecsssssssrecssssssssssessssnsssssssssene 3
BMEC T uueeeeeneeeeeeeeeeessssssssssssssssssssssssessnnne 4
AHOTAII S vvveesensseseeeeecss 5
ADSEEACK . ccciieienriiiiinnriisssnniesssnricsssssnessssssiessssssessssssssssssssesssssssessssssssssssssssssssssssssnss 6
OUr CONLIIDULION. . .ccciiiiirrcrrrrnnennneriitieicsssssssssssssssssssssssscssssssssssssssssssssssssssssssssssnse 7
The technICal IdeA.....ccvvivvvvvvrnnnneriiiiiiiccsissssssssssssssssneeteescssssssssssssssssssssssssssssssssss 7
SUDSIEALE..c.cccciiiiiiieiiiiiiinnsssssssssassetttteecssnse 9
PIONKoaaaaeeiiiiiiiiiiiiiinnnnnssssssnssnsssseeseccsssassssssssssssssssssnse 10
T LT 11 10
Slushie (SMArt CONEIACE)..aeeeeeeiiiiiiciiisissssssssnssnsssssescecssssssssssssssssssssssssssssssssssssnne 12
PIONK PrOVer...cciiciiirvniiiccssssnnieccsssssansiecssssssnsssesssssssnssesssssssssssssssssssssssssssssssassssss 13
COMMUEIMENES.uviiiiieeeiiieee e ettt e e et e e e eette e e e e eeetaeeeeeeeeaareeeeeeeeasreeeens 13
HaASRETS. ..oeiiiieeeee e e 14
JavaScript BINAINGS.......ccooiiiiieiie e e 16
N 2 SRR 17
Proof generation & proof verification...........cccceeevveieriiiiieeciiee e 18
IMETKIE TICES. . eeeieeeiiiieee ettt e e et e e e e et e e e e e ataaeaaeas 23
Merkle tree With hiStory........oocviiiiiiiiiiieiieceee e 24
Flat MErKIe tree.......uvviiiiiiiieeee e e e 25
PIonK Prover CLL....cccoiimmiiiiiiiiicccssssssssssssssssssssessssssssssssssssssssssssssssssssssssss 26
The CLI StIUCKUIE.....ccoiiiiiiceiiie ettt e e e eera e e eeneeas 27
The COMMANAS.......c..vviiiiiiiiiii e et 27
| 2) N 28
A note on the implementation of the relayer.............ccoccvvieeiiiiecciiecieees 28

L O01) 1 16 11 13 11 1 FO N 29

AHorars

PoGota mnpucBsdyeThCs AOCTIIKEHHIO BUKOPUCTAHHS JI0OKa3iB 3 HYIHOBUM
pO3TOJIONIEHHSIM Yy ONMOKYelH 3acTocyHkax. [l posB’s3aHHs mpoOieMu
MPUBATHOCTI ~ TEpPEeKa3iB KPUNTOBAIIOTH KOPUCTyBadaMW BHKOPHCTaHA
610mi0TeKa A reHepainii Ta Bepudikailii J0Kka3iB 3 HYJTbOBUM PO3TOJIOIICHHSIM

"7

Plonk, moBa Rust Ta domain-specific language “ink!”, a Takox moBa Typescript
JUTSI HATUCAHHS CEPBEPA peie.

Po3po0neHo HOBHMII CMapT KOHTPAKT, SKUH MOXE pO3ropTarucs Ha
Onmok4yeiH-Mepexax, MNoOyJoBaHUX 3a J0MoMororw (¢peilMBopky Substrate.
Takox po3pobiiena 6i6mioreka “plonk prover”, B Akiifi IMIUIEMEHTOBaHA CXeMa
JUTSl TeHepallii J0Ka3iB 3 HyJIbOBHUM PO3TOJIOMICHHSIM Ta JTOMOMiIXKHI (QYHKIT JJIs
po0OTH 3 HUMH, PO3pOOJICHI CTPYKTYPH JAaHUX, YTWIITH AJisg KoMOuasmii Rust
koxy B JavaScript Koz, cepBep pelie JJis MPUBATHOTO BIAMPABICHHS TPAaH3aKIIIM
BHUBOJY KOIUTIB 31 CMapT KOHTPAKTY, 1 YTUJIITa KOMAaHAHOTO psjiKa 1Uisi poOOTH 3
616mi0oTexoro “plonk prover”.

TekcTtoBa yacThHa KBamidikamiiiHoi pPoOOTH MICTUTh OIHUC JOCIIHKEHHS
MOXJIMBOCTI BukopucTtanHsi Plonk y WebAssembly cmapt koHTpakrax Ta
IMIJIEMEHTAIlI0 KpunTorpadiyHOro MiKiepa KOIITiB. TEeKCTOoBa YacTHHA

KBaT(piKaLiiHOI poOOTH TAaKOX OINUCYE HEOOXI1JHI TEOPETHUYHI BIAOMOCTI IPO

BUKOPHCTaH1 IHCTPYMEHTH Ta TEXHOJIOT1.

KittouoBi cioBa: 05ok4eitH, cMapT KOHTpakT, Plonk, noka3s 3 HynboBUM

posronomeHHsM, WebAssembly, Substrate, Rust, Typescript

A zero-knowledge proof-based token

mixer in Substrate

Keywords: blockchain, smart contract, Plonk, zero-knowledge proof,

WebAssembly, Substrate, Rust, Typescript

Abstract

In this work, we explore the possibility of implementing a cryptocurrency mixer
specifically in the form of a smart contract that can be deployed to any
Substrate-compatible chain.

Zero-knowledge-proof technology has become increasingly popular in
anonymity services. They possess the power to hide or obfuscate secret
information while still being able to provide means of public verification of this
information. Zero-knowledge proofs are fit for the use case described here - we
will be able to detach the monetary transaction origin from the transaction
target, circumventing the transparency by which most public general-purpose
blockchains function.

Please note that a cryptocurrency mixer is not a new idea. The project we drew
inspiration from is Tornado.Cash. Consequently, the logic of constructing the
proofs will be similar to the zk-SNARK circuits of Tornado.Cash. However,
since blockchain technology is abundant, as evidenced by the existence of many
blockchains, such as Ethereum, Substrate, Solana, NEAR, and many others,
developers need to create potentially different implementations of similar logic
in smart contract formats that are specific to those blockchains. Substrate
specifically had unfinished implementations of cryptocurrency mixers but in the

form of Substrate pallets, which are different from smart contracts.

Our contribution

In this work, we explored how to implement a cryptocurrency mixer for use in
Substrate-compatible chains like the parachains of Polkadot and Kusama. It is
different from the original blockchain used to support Tornado.Cash [1],
Ethereum, in that it uses WebAssembly as the binary format for smart contracts
and a custom-developed WebAssembly execution environment for smart
contract execution. Mainly, we used ink!/ as the smart contract language of
choice to produce WebAssembly code and smart contract application binary
interface, Plonk [2] as the ZK-SNARK of choice, and Poseidon [3] as the family
of hash functions. To add to that, we unify client-side and blockchain-side
operations to produce and verify proofs in one library that supports
cross-compiling into different targets. We successfully built an ink/-based

cryptocurrency mixer called Slushze.

The technical idea

Blockchain technology allowed users to transfer cryptocurrency and interact
with programs in a decentralized manner. Since blockchains typically use user
public keys or some derivatives of them, like hashes of the said private keys,
some tend to think that it makes the technology anonymous. However, it
requires significant efforts to achieve anonymity in blockchains due to the
abundance of communication points.

Let’s use Ethereum for our next example. Suppose an address A would like to
send X ETH to address B. As Dr. Gavin Wood explains [4, p.4], the

transaction, among other fields, contains the to field, which is described as

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BA%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BB%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bto%7D#0

“...the 160-bit address of the message call’s recipient...”, and fields r, s, which
are “...used to determine the sender of the transaction...”. To paraphrase, we can
simplify the aforementioned definitions and say that each transaction in
Ethereum contains sufficient information about the sender and the receiver of
said transaction. In this specific definition, by sufficient we mean that we know
how to identify both the sender and the receiver of the transaction. We can
recover the public key of the sender from the signature of the transaction:
publicKey = ECDSARECOV ER(e,r,5) [4, p.26].

Public keys themselves do not tell any information about the user. However,
providers of public RPC endpoints, which accept user transaction requests, can
connect the IP address of the sender of the transaction to their public key. Even
though they do not know the public key of the destination, once the account
with the destination address is used, its public key can be recovered, too.
Considering the above, we can say that the privacy of the sending and the
receiving party is limited to the networking layer. This makes public
blockchains like Ethereum pseudo-anonymous — RPC endpoint providers know
about the relationship between the sender’s public key and their IP address.
Tornado.Cash [1] developed a solution that greatly increases the privacy of the
users by decoupling the sender origin from the receiver by mixing the funds
being sent in a smart contract.

Let's define what the term "mixer" means. In this work, the term mixer means a
smart contract that defines two state-mutable messages, a d€Posit message,
and a withdraw message, and uses zero-knowledge proofs to convince the
smart contract about the authenticity of the claim to withdraw funds for a
specific deposit. The depPosit transaction will be responsible for transferring
some predefined token value to the smart contract account, while the
withdraw transaction will accept some public information about the deposit,
verify that information, and transfer the same predefined token value to the

caller account.

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Br%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bs%7D#0
https://www.codecogs.com/eqnedit.php?latex=publicKey%20%3D%20ECDSARECOVER(e%2C%20r%2C%20s)#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0

The above was implemented by [1] in [5]. In the scope of this work, we
implement the same idea expressed by Pertsev et. al. using a different
blockchain technology, Substrate, and make improvements to the project by
reusing exactly the same code for producing and verifying proofs across the

on-chain side and the off-chain side.

Substrate

Substrate is a framework for building Layer 1 blockchains, which provides the
developers with pluggable modules, pallets, and various consensus algorithms,
which include both block production and finalization algorithms and more
customizable components. Blockchains built with this framework are highly
configurable w.r.t block production time, block finalization time, block length,
maximum block weight (an analog for gas in other blockchains), and weight
usage per second.

There are some important decisions as to why we use Substrate:

1. Substrate implements its smart contract functionality in a pluggable
module, called pallet-contracts. 1t allows any blockchain built with
Substrate to include this module at genesis or at runtime without hard
forks.

2. pallet-contracts 1s a Substrate pallet, which defines a set of callable
transactions that manage the execution of smart contract calls, uploading
of the smart contract WebAssembly code, instantiation of the code, and
removal of the code. The smart contracts deployed with pallet-contracts
must conform to its metadata format, which is an analog of ABI in other
blockchains. The WebAssembly format is not specified, though, enabling
developers to use languages like ink! and AssemblyScript to compile to

pallet-contracts-conformat format.

10

3. Since zero-knowledge proof verification is a computation-intensive
operation, we make use of the fact that Substrate allows almost arbitrarily
changing the maximum block production time. Instead of processing
transactions that would outweigh any block on a production Substrate
parachain, we drastically increase the maximum block weight to ensure
the withdraw transaction will not outweigh the block.

4. ink! is an eDSL (embedded DSL) that is highly interoperable with
Substrate. We use ink! to build Slushie because ink! is Rust-based,
statically typed, has extensive documentation, and supports generating

WebAssembly code and pallet-contracts-conformant metadata.

Plonk

Plonk [2] is a universal fully-succinct zk-SNARK, by which we shall mean a
system that allows one to construct zero-knowledge proofs and verify them. We
choose Plonk over other zero-knowledge proof systems because it has
implementations [6] in Rust that can compile to WebAssembly bytecode. In
using WebAssembly as the compilation target of choice, we achieve two things:
the ability to reuse the code in client-side environments (by using JavaScript
wrappers over WebAssembly code) and the ability to use the proof verification

logic in the ink!/ smart contract.

Slushie

Slushie 1s a smart contract that allows users to carry out private transfers. It
draws heavy inspiration from Tornado.Cash, but it does have some notable
differences.

First, we use a different blockchain (Substrate-based chain instead of

EVM-based). Second, instead of checking a pairing as the verification process,

https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0

11

we directly import the verification function for our circuit that uses Plonk. We
can do that since both Plonk and Slushie can compile to WASM. Generally
speaking, to construct proofs with Plonk for any quadratic arithmetic program,
we need to go through 2 steps: generate an SRS (structured reference string) and
model the circuit by writing appropriate code in Rust. While we recommend
always using a trusted setup ceremony for initializing an SRS, we omit this step
in the scope of our work.

Slushie is a Rust-based project which consists of four core crates: the relayer
server, the prover, the prover CLI, and the smart contract. Other two additional
components are Typescript-based integration tests and a Rust crate with shared
type definitions and utility functions. Let us go through the components one by
one and explain the role of each one.

The relayer server is a Typescript application that starts an HTTP server with
one endpoint that allows submitting withdraw transactions without revealing
the sender’s identity. It serves as the off-chain communication layer between the
end user and the smart contract, creating blockchain transactions from the single
relayer account with the specified parameters, supplied in the POST request
body. It decouples the sender's IP address from the blockchain transaction (the
relayer does not collect any information about users' IP addresses in our
implementation) by delegating the transaction signing to some static public key
pair, which is securely held within the relayer. It cannot steal the funds of the
users as the recipient is supplied as a public input to the proof verification
procedure, meaning that if the relayer supplies some different recipient address
instead of the address that was originally used to construct the proof, the
transaction will fail.

The prover is a Rust crate that defines the proof construction logic (the circuit),
the proof verification logic, commitment generation utilities, prover & verifier

data generation utilities, Merkle tree implementation, hasher-related code (our

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0

12

Merkle trees can use different hashers), and JavaScript bindings for relevant
functions.

The plonk prover CLI (plonk-prover-tool) is a wrapper over the prover, which
allows us to conveniently generate relevant data (commitments, prover/verifier
data, opening keys, etc.) by invoking CLI subcommands.

Slushie 1s an ink!/-based smart contract deployed to pallet-contracts-compatible
networks. It also holds the other Merkle tree implementation, which we'll talk

about later in detail.

Slushie (smart contract)

Slushie 1s a smart contract built with ink/ eDSL. It has two callable

state-mutable messages, deposit and withdraw, and one query,

get_root_hash

The deposit method accepts the user's generated commitment as the only
input. Essentially, depositing funds to Slushie happens both on the off-chain
user side (front-end or CLI) and the on-chain side (smart contract transactions).
On the off-chain side, the user generates their commitment by randomly
selecting two numbers, the nullifier £ and the randomness 7, and hashing them

together using a ZK-friendly hash (in our case, Poseidon):

h = Poseidon252(k||r). On the on-chain side, the user calls the smart
contract transaction with the data generated on the off-chain side.

Generally, smart contracts consist of storage and callable messages. On top of
having storage and callable transactions, Slushie also defines the contract error
type and the events, which we use to communicate notable state changes in the
contract. For example, one deposit call completely changes the underlying

Merkle tree in the storage, motivating us to communicate this state change via

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=get%5C_root%5C_hash#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=h%20%3D%20Poseidon252(k%20%7C%7C%20r)#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0

13

an event. The contract error enumeration is merely a collection of all errors that

can happen in the contract's transactions.

Plonk prover

Plonk prover consists of the following logical parts: proof generation, proof
verification, zk-SNARK circuit definition, commitment generation (not to be
mistaken with commitments in ZKP context), the flat Merkle tree
implementation, the hashers, javascript bindings, the Merkle implementation
with root history, public parameters setup utilities, and general utilities.

Arguably, the two most important parts of the crate are the Merkle trees and the
circuit. The reason for having two different implementations of the Merkle tree
is that the flat Merkle tree is used for gathering the openings, meaning the
values of the sister nodes on the way from leaf [to the root [?, while the
Merkle tree with history makes sure that we can verify the proof by checking
that the root R is valid, and thus the Merkle tree can be recreated. The circuit,
on the other hand, describes the logic by which we generate and verify the
proofs. Similarly to [1], our quadratic arithmetic program [7, p.42] consists of
two general parts: verifying that the nullifier hash h, supplied as a public input,
is equal to the result of hashing the nullifier k, supplied as a private input, and
that the root I, supplied as a public input, is equal to the root computed by
reconstructing the Merkle tree from the commitment ¢, the path P and the

openings o and taking its root.

Commitments

A commitment in the context of this work is a 32-byte result of applying hash
H to the nullifier £ and the randomness 7 (both are non-negative 32-bit

integers). The commitments are used to uniquely identify deposits in the system.

https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=p#0
https://www.codecogs.com/eqnedit.php?latex=o#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0

14

In order to make a deposit to Slushie, the user of the system must first
generate the commitment using a cryptographically secure pseudorandom
number generator (abbreviated as C'SPRNG). In the course of this work, we
will assume that the native operation system randomness source is a
CSPRNG.

As for the implementation, the commitment generation is handled by the

dusk poseidon [6] crate.

// Compute commitment

let commitment :Scalar =
dusk_poseidon: :sponge: :hash(messages: &[(nullifier as u64).into(), (randomness as u64).into()]);

Fig. 1, commitment generation

As a convenience, we also provide the generated nullifier, and nullifier hash
together with the commitment, since all those values must be used in order to
both generate a proof and provide public inputs for the contract to verify the

supplied proof.

pub struct GeneratedCommitment {
pub nullifier: u32,
pub randomness: u32,

pub commitment_bytes: PoseidonHash,

pub nullifier_hash_bytes: PoseidonHash,

Fig. 2, generated commitment structure

Hashers

Slushie aims to be hasher-agnostic, meaning that we can use different hashers

with the contract and the proof system. For this, we have created a Rust trait,

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0

15

called MerkleTreeHasher, which is the interface for all hashers that our
Merkle tree can use.

In our implementation, we defined three copies of the same trait with slightly

different trait bounds on the OQutput associated type due to the requirement for
our crates to compile to the WebAssembly binary format. Since the hashers are
structs that are stored in the contract storage, they need to implement some traits
that are only available in std compilation mode which cancels our ability to

compile the code to WebAssembly.

The trait definition that we use in our contract for generating contract metadata
(ABI):

#[cfg(all(feature = "std", feature = "ink-and-scale"))]

pub trait MerkleTreeHasher: scale::Encode + scale::Decode + StoragelLayout {

type OQutput: 'static
scale: :Encode
scale: :Decode
StoragelLayout
scale_info::TypeInfo
Clone
Copy
PartialEq
Default:

///Array with zero elements for a MerkleTree
const ZEROS: [Self::Output; MAX_DEPTH];

/// Calculate hash for provided left and right subtrees
fn hash_left_right(left: Self::0Qutput, right: Self::0utput) — Self::0utput;

Fig. 3.1, std version of MerkleTreeHasher

The trait definition that we use in WebAssembly but not in the contract:

https://www.codecogs.com/eqnedit.php?latex=MerkleTreeHasher#0
https://www.codecogs.com/eqnedit.php?latex=Output#0

16

pub trait MerkleTreeHasher {

type Output: Clone + Copy + PartialEq + Default;

///Array with zero elements for a MerkleTree
const ZEROS: [Self::0Qutput; MAX_DEPTH];

/// Calculate hash for provided left and right subtrees
fn hash_left_right(left: Self::0Qutput, right: Self::0utput) —> Self::Output;

Fig. 3.2, no_std version of MerkleTreeHasher

The trait definition that we use in our contract for compiling the contract to
WebAssembly:

pub trait MerkleTreeHasher: scale::Encode + scale::Decode {

type Output: scale::Encode + scale::Decode + Clone + Copy + PartialEq + Default;

///Array with zero elements for a MerkleTree

const ZEROS: [Self::OQutput; MAX_DEPTHI;

/// Calculate hash for provided left and right subtrees
fn hash_left_right(left: Self::Qutput, right: Self::OQutput) —> Self::Output;

Fig. 3.3, no_std version of MerkleTreeHasher with SCALE encoding support

As for the trait implementations, currently Slushie supports two hashers: a

Poseidon-based hasher and a Blake2-based hasher.

JavaScript bindings

Since plonk prover can be directly compiled to WebAssembly, it is feasible to
reuse the same functions used by plonk prover cli in JavaScript packages that
import WebAssembly modules. This approach produces less code and increases
the overall implementation security of the project.

These JavaScript packages can be later used on the front-end side to generate

and verify proofs.

https://www.codecogs.com/eqnedit.php?latex=Slushie#0

17

To generate JavaScript bindings, we depend on the wasm-bindgen and js-sys
crates. wasm-bindgen together with js-sys allow developers to create
JavaScript-compatible WebAssembly code, and with wasm-pack we can

package this WebAssembly code into JavaScript files that look similar to this

onc:

const wasmModule = new WebAssembly.Module(bytes);
const wasmInstance = new WebAssembly.Instance(wasmModule, imports);
wasm = wasmInstance.exports;

le.exports.__wasm = wasm;

Fig. 4.1, the JavaScript package generated by wasm-pack

Lastly, to use it in any JavaScript package, we depend on the generated package

in package.json of the target package:

Fig. 4.2, import of Slushie WebAssembly code, wrapped in a JavaScript package

SRS

As Benarroch states in the ZKProof Community Reference [8, p.58], ZKP
schemes require a URS (uniform reference string) or SRS (structured reference
string) for their soundness and/or ZK properties. Since Plonk requires an SRS to
be used in both proof generation and proof verification processes in some way,
we have created utilities that aid in creating the SRS, prover data (the prover

key Pk, used to construct a zero-knowledge proof, and the commit key ck, used

https://www.codecogs.com/eqnedit.php?latex=SRS#0
https://www.codecogs.com/eqnedit.php?latex=pk#0
https://www.codecogs.com/eqnedit.php?latex=ck#0

18

for Plonk's KZG10 commitments), and the verifier data (verifier key, public

input indices w.r.t witness positions, and the opening key).

pub fn generate_test_public_parameters() —> Result<Vec<u8>, Error> {
PublicParameters: :setup(max_degree: CIRCUIT_SIZE, rng: &mut OsRng).map(|pp :PublicParameters | pp.to_var_bytes())
}

fn generate_verifier_data(pp: &[u8]) —> Result<(Vec<u8>, [u8; OpeningKey::SIZE]), Error> {

let pp :PublicParameters = PublicParameters::from_slice(bytes: pp)?;

let mut circuit :SlushieCircuit<20> = SlushieCircuit::<DEFAULT_DEPTH>::default();
let (_, vd :VerifierData) = circuit.compile(pub_params: &pp)?;
Ok((vd.to_var_bytes(), pp.opening_key().to_bytes()))

fn generate_prover_data(pp: &[u8]) —> Result<(Vec<u8>, Vec<u8>), Error> {

let pp :PublicParameters = PublicParameters::from_slice(bytes: pp)?;

let mut circuit :SlushieCircuit<20> = SlushieCircuit::<DEFAULT_DEPTH=>::default();

let (pd :ProverKey , _) = circuit.compile(pub_params: &pp)7;

Ok((pd.to_var_bytes(), pp.commit_key().to_var_bytes()))

Fig. 5, functions that generate SRS for the zk-SNARK

Proof generation & proof verification

In the implementation of Slushie, we provide utilities, used for constructing
the proofs and verifying the proofs.

In general, the proof generation process consists of four parts. Given a circuit
called SlushieCircuit, public parameters PP, leaf index [, root IR, tree
openings o, nullifier k, randomness 7, recipient address A, relayer address ¢,
and fee F', we:

1. Deserialize public parameters PP into PublicParameters struct

2. Compile an empty circuit with given public parameters to obtain the prover
key

3. Create an instance of the circuit with provided public and private inputs

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=SlushieCircuit#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=o#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=PublicParameters#0

19

4. Generate the proof using public parameters PP, prover key PK, transcript

initializer TRANSCRIPT_INIT ,anda CSPRNG source.

//Read public parameters

let pp :PublicParameters = PublicParameters::from_slice(bytes: pp)7;

//Compile circuit
let mut circuit :SlushieCircuit<DEPTH> = SlushieCircuit: :<DEPTH>: :default();
let (pk :Proverkey , _vd) = circuit.compile(pub_params: &pp)?;

//Create circuit
let mut circuit = SlushieCircuit::<DEPTH> {
R: BlsScalar(bytes_to_u64(bytes: R)),
: (r as u64).into(),
: (k as u64).into(),
: sponge::hash(messages: &[(k as u64).into()1),
: BlsScalar::from_raw(val: bytes_to_u64(bytes: A)),
: BlsScalar::from_raw(val: bytes_to_u64(bytes: t)),
: f.into(),
: Array(o),
: Array(index_to_path(index: 1).map_err(|_| Error::ProofVerificationError)?),
+;

//Generate proof
circuit

.prove(pub_params: &pp, prover_key: &pk, transcript_init: TRANSCRIPT_INIT, rng: &mut OsRng) :Result<Proof, Error>

.map(|proof :Proof | proof.to_bytes())

Fig. 6.1, generation of the zero-knowledge proof with SRS setup

The proof verification process consists of four parts. Given a circuit called
SlushieCircuit, public parameters PP, root I, nullifier hash h, recipient
address A, relayer address ¢, fee S , and the proof proof

1. Deserialize public parameters PP into PublicParameters struct

2. Compile an empty circuit with given public parameters to obtain the verifier

data

3. Deserialize proof proof into the Proof struct

4. Create a vector of public inputs R, h, A, t, | to be passed to the verifying

function

https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=pk#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0
https://www.codecogs.com/eqnedit.php?latex=SlushieCircuit#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=PublicParameters#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=Proof#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=f#0

20

5. Verify proof with provided public parameters PP, verifier data obtained in

step 2, proof proof , the vector of public inputs from step 4, and the
TRANSCRIPT_INIT transcript initializer

//Read public parameters

let pp :PublicParameters = PublicParameters::from_slice(bytes: pp)?;
//Compile circuit
let mut circuit :SlushieCircuit<DEPTH> = SlushieCircuit::<DEPTH>::default();

let (_pk, vd :VerifierData) = circuit.compile(pub_params: &pp)7?;

// Proof deserialization
let proof :Proof = Proof::from_bytes(buf: proof)?;

// Create public inputs

let public_inputs: Vec<PublicInputValue> = vec!|
BlsScalar(bytes_to_u64(bytes: R)).into(),
BlsScalar(bytes_to_u64(bytes: h)).into(),
BlsScalar: : from_raw(val: bytes_to_u64(bytes: A)).into(),

BlsScalar::from_raw(val: bytes_to_u64(bytes: t)).into(),
BlsScalar::from(val: f).into(),
1;

// Verify proof using public inputs
SlushieCircuit::<DEPTH>::verify(pub_params: &pp, verifier_data: &vd, &proof, &public_inputs, transcript_init: TRANSCRIPT_INIT)

Fig. 6.2, verification of the zero-knowledge proof with SRS setup

However, due to computational constraints for the prover, we may want to omit
the operations of deserializing and constructing the public parameters when
generating or verifying proofs. For this reason, we add two functions that don't
require passing and deserializing the public parameters, which can exceed
3M B for a circuit of size 2'° gates. Instead, they use prover data for proof
generation and verifier data for proof verification. The motivation for using
these variants of proof generation and proof verification is:

1. For proof generation, generating public parameters can be slow, making the
already long proof generation process even longer

2. For proof verification, public parameters of size around 3M B can be too
large to pass to a smart contract, and deserializing them would consume a lot of

gas.

https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=3%20MB#0
https://www.codecogs.com/eqnedit.php?latex=2%5E%7B15%7D#0
https://www.codecogs.com/eqnedit.php?latex=3%20MB#0

21

Considering the above reasons, we define the following functions for proof
generation and proof verification, where both of them accept prover and verifier

data as arguments respectively.

For proof generation, we create the following modification of the proving
function, which consists of six parts:

1. Deserialize prover data Pd into ProverKey struct,

deserialize commit key ck into Commit Key struct

2. Create a new prover Instance with transcript initializer
TRANSCRIPT_INIT

3. Create a new circuit instance with appropriate public and private inputs

4. Fill the allocated witnesses for the prover

5. Insert the prover key Pd into the prover

6. Generate the proof using the deserialized commit key ck anda CSPRNG

source.

https://www.codecogs.com/eqnedit.php?latex=pd#0
https://www.codecogs.com/eqnedit.php?latex=ProverKey#0
https://www.codecogs.com/eqnedit.php?latex=ck#0
https://www.codecogs.com/eqnedit.php?latex=CommitKey#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=pd#0
https://www.codecogs.com/eqnedit.php?latex=ck#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0

22

//Read prover data and commit key
let pd :Proverkey = ProverKey::from_slice(bytes: pd)?;
let ck :Commitkey = CommitKey::from_slice(bytes: ck)?;

// New Prover instance
let mut prover :Prover = Prover::new(label: TRANSCRIPT_INIT);

//Create circuit
let mut circuit = SlushieCircuit::<DEFAULT_DEPTH> {

R: BlsScalar(bytes_to_u64(bytes: R)),
(r as u64).into(),
(k as u64).into(),
sponge: :hash(messages: &[(k as u64).into()1),
BlsScalar::from_raw(val: bytes_to_u64(bytes: A)),
BlsScalar::from_raw(val: bytes_to_u64(bytes: t)),
f.into(),
Array(o),

[
k:
h:
A:
Lk
i
o:
p:

Array(index_to_path(index: 1).map_err(|_| Error::ProofVerificationError)?),
};

// Fill witnesses for Prover
circuit.gadget(composer: prover.composer_mut())?;

// Add prover data to Prover
prover.prover_key = Some(pd);
prover.prove(commit_key: &ck, rng: &mut OsRng).map(|proof :Proof | proof.to_bytes())

Fig. 6.3, generation of the zero-knowledge proof without SRS setup

For proof verification, we create the following modification of the verifying

function, which consists of five parts:

1. Deserialize the verifier data vd into Verifier Data struct, deserialize the
opening key opening_key into OpeningKey struct

2. Deserialize the supplied proof proof into the Proof struct

3. Create a new verifier instance and replace the verifier key with deserialized

verifier data vd from step 1

4. Construct the public input vector with the supplied parameters

https://www.codecogs.com/eqnedit.php?latex=vd#0
https://www.codecogs.com/eqnedit.php?latex=VerifierData#0
https://www.codecogs.com/eqnedit.php?latex=opening%5C_key#0
https://www.codecogs.com/eqnedit.php?latex=OpeningKey#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=Proof#0
https://www.codecogs.com/eqnedit.php?latex=vd#0

23

5. Verify the proof proof using the opening key opening_key against the

public input vector from step 4.

// Verifier data deserialization

let vd :VerifierData = VerifierData::from_slice(buf: vd)?;

//0pening key deserialization

let opening_key :Openingkey = OpeningKey::from_bytes(buf: opening_key)?;

// Proof deserialization

let proof :Proof = Proof::from_bytes(buf: proof)?;

// Setup for verifier
let mut verifier :Verifier = Verifier::new(label: TRANSCRIPT INIT);
verifier.verifier_key.replace(value: xvd.key());

let pi_indexes :&[usize] = vd.public_inputs_indexes();
let public_inputs :[Scalar;8] = [
BlsScalar::zero(),
BlsScalar::zero(),
BlsScalar::zero(),
-BlsScalar(bytes_to_u64(bytes: R)),
-BlsScalar(bytes_to_u64(bytes: h)),
-BlsScalar::from_raw(val: bytes_to_u64(bytes: A)),
-BlsScalar::from_raw(val: bytes_to_u64(bytes: t)),
-BlsScalar: : from(val: f),

1;

verifier.verify(&proof, &opening_key, &public_inputs, pi_indexes)

Fig. 6.4, verification of the zero-knowledge proof without SRS setup

Merkle trees

As we noted before, in plonk prover we define two implementations of the

Merkle trees.

https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=opening%5C_key#0

24

Merkle tree with history

In general, Merkle trees are used to store some important "state" of the system.
With Slushie, Merkle trees are used to store the information about users'
commitments to deposits, to construct proofs for any given commitment and
root, and to verify the supplied proofs when the withdraw transaction is
called.

Pertsev et al. proposed a modification to the original Merkle tree, which they
called a Merkle tree with history. In essence, instead of storing all nodes of the
tree, the Merkle tree with history stores the current root index, the next root
index, the last filled subtrees on every level, and an array of roots of size
ROOT_HISTORY SIZFE. These modifications make the Merkle tree
efficient enough storage-wise to store in a smart contract, yet in conjunction
with blockchain events that emit stored commitments, which are inserted into
the Merkle tree, one can recreate the Merkle tree fully at each point in time. Our
implementation of the Merkle tree is a direct port from Solidity, though it
contains some different Rust-specific abstractions. These include specifying the

DEPTH and ROOT_HISTORY _SIZFE parameters as constant generics,

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=ROOT%5C_HISTORY%5C_SIZE#0
https://www.codecogs.com/eqnedit.php?latex=DEPTH#0
https://www.codecogs.com/eqnedit.php?latex=ROOT%5C_HISTORY%5C_SIZE#0

25

while also parametrizing over the Hash type (the hashers).

pub struct MerkleTreeWithHistory<
const DEPTH: usize,
const ROOT_HISTORY_SIZE: usize,

Hash: MerkleTreeHasher,

///Current root index in the history
pub current_root_index: u64,
/// Next leaf index

pub next_index: u64,

///Hashes last filled subtrees on every level

pub filled_subtrees: Array<Hash::0utput, DEPTH>,
/// Merkle tree roots history

pub roots: Array<Hash::Qutput, ROOT_HISTORY_SIZE>,

Fig. 7.1, Merkle tree with history structure

Flat Merkle tree

The "flat" Merkle tree is a different implementation of the Merkle tree. As
opposed to the Merkle tree with history, the flat Merkle tree stores all nodes of
the Merkle tree. It is primarily used to get the openings of the Merkle tree:

26

pub fn get_opening(&self, leaf_index: usize) —> Result<[Hash::Qutput; DEPTH], MerkleTreeError> {

let mut result :[<..>:Output;?] = [Default::default(); DEPTH];
let mut current_index :usize = leaf_index;

for (i :usize , elem :&mut <Hash as MerkleTreeHasher>:Output) in result.iter_mut().enumerate().take(n: DEPTH) {
if current_index % 2 == 0@ {
*elem = xself.layers[il
.get(index: current_index + 1) :Option<&<..>:Output>
.ok_or(err: MerkleTreeError: :WrongLeafIndex)?;
} else {
xelem = xself.layers[i]
.get(index: current_index — 1) :Option<&<..>:Output>
.ok_or(err: MerkleTreeError: :WronglLeafIndex)?;

current_index >>= 1;

Ok(result)

Fig. 7.2, opening generation function

Plonk Prover CLI

The Plonk Prover CLI is a crate for off-chain operations with commitments and
proofs. It uses the Plonk prover internally, compiles to native target code, and
ensures the usage of exactly the same commitment generation, proof generation,
and verification logic on the users' local machines and in the smart contract. It is
worth noting that the CLI is an essential part of the whole workflow of
depositing funds into Slushie and withdrawing them. However, as we possess
the ability to cross-compile our core logic in plonk prover to JavaScript +
WebAssembly, the inclusion of this CLI logic into a front-end library would be
beneficial for the overall user experience. We consider it as a future

improvement to our work.

https://www.codecogs.com/eqnedit.php?latex=Slushie#0

27

The CLI structure

We use clap as the CLI library. The library allows us to define statically typed

command types in the commands.rs file, to which we add the implementations

in the actions.rs file. Other than that, since this crate is a binary crate, we define

the CLI startup logic in the main.rs file, and define any useful utilities in the

utils.rs file.

The commands

The CLI supports the following commands:

1.

GenerateCommitment — allows the user of the CLI to generate a new
random commitment that consists of the nullifier, the randomness, and the
commitment itself (commitment generation described in the Slushie
(smart contract) section).

GeneratelestPublicParameters — generates an SRS for producing proofs,
prover data, and verifier data.

GenerateVerifierData — generates the verifier data from the SRS,
producing the serialized verifier data and the opening key for KZG10
commitments.

GenerateProverData — generates the prover data from the SRS,
producing the serialized prover data and the commit key for KZG10
commitments.

GenerateProof — generates the proof from a set of inputs described in the

Proof generation & proof verification section.

For bigger files, like tree openings or the SRS, we allow providing a local path

to those files.

28

Relayer

The relayer 1s a Typescript application that contains an implementation of an
HTTP server with one endpoint, “/withdraw”. This endpoint accepts
JSON-formatted data, relevant to the withdraw transaction. This includes the
nullifier hash, the Merkle tree root, the serialized proof, the relayer fee, the

recipient address, the relayer address, and the Slushie contract address.

export interface WithdrawInputs {

nullifierHash: Uint8Array;
root: Uint8Array;

proof: Uint8Array;

fee: bigint;

recipient: string;
relayer: string;
contractAddress: string;

Fig. 8, WithdrawInputs request payload structure

As a future improvement, the request payload must be constructed on the
front-end. However, in the scope of this work, this is done manually, and the

request is sent using cURL.

A note on the implementation of the relayer

Initially, we planned to implement the relayer as a Rust-based JSON-RPC
server. However, after performing a critical dependency update, one vital library

that was used to submit transactions to the Substrate-based chains broke the

https://www.codecogs.com/eqnedit.php?latex=withdraw#0

29

process of generating signed extrinsics, which we use to perform withdrawals.
After a thorough, yet unsuccessful investigation, it became evident that this
issue cannot be fixed without creating a local clone of that library.

Instead, we implemented the relayer using Typescript and a Typescript-based
library for working with Substrate-based chains. The development proved to be
much quicker, measuring in hours and not days. To add to that, this
implementation turned out to be more reliable due to the relevant libraries being

actively maintained.

Conclusion

In this work, we explored the possibility of implementing a zero-knowledge
proof-based cryptocurrency mixer in the Substrate ecosystem. As a result, we
successfully built an ink!/ smart contract and some necessary tooling around it.
Other than implementing a copy of on-chain logic from [5], we have also
improved the logical integrity of the tooling, reusing exactly the same code for
working with zero-knowledge proofs in the smart contract and in the offchain
prover CLI.

Although implementing this mixer turned out to be successful, Substrate still
lacks some features that would make Slushie ready for production use. The
main problem which limited our ability to only work with one commitment at a
time was the lack of an equivalent of eth getLogs RPC in Substrate nodes. We
need it to construct the openings of the Merkle tree for proof generation, which
is not possible with the current Substrate implementation.

We achieved a proof of concept level of readiness with this project. In the
future, we will implement the improvements listed in this work, and Slushie will

contribute to the privacy of users in pallet-contracts-compatible networks.

30

References

[1] Pertsev, A., Semenov, R., & Storm, R. (2019, December 17). Tornado Cash
Privacy Solution Version 1.4. Tornado Cash Privacy Solution Version 1.4.
Retrieved April 19, 2023, from
https://berkeley-defi.github.io/assets/material/ Tornado%20Cash%20Whit
epaper.pdf

[2] Gabizon, A., Williamson, Z. J., & Ciobotaru, O. (2022, August 17). PlonK:
Permutations over Lagrange-bases for QOecumenical Noninteractive
arguments of Knowledge[0.72cm]. Cryptology ePrint Archive. Retrieved
April 19, 2023, from https://eprint.iacr.org/2019/953.pdf

[3] Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., & Schofnegger, M.
(n.d.). POSEIDON: A New Hash Function for Zero-Knowledge Proof
Systems (Updated Version). Cryptology ePrint Archive. Retrieved April
19, 2023, from https://eprint.iacr.org/2019/458.pdf

[4] Wood, G. (2022, October 24). ETHEREUM: A SECURE DECENTRALISED
GENERALISED TRANSACTION LEDGER. GitHub Pages. Retrieved
April 24, 2023, from https://ethereum.github.io/yellowpaper/paper.pdf

[5] Tornado.Cash. (n.d.). tornado-core.
https://github.com/tornado-repositories/tornado-core. Retrieved April 19,
2023, from
https://github.com/tornado-repositories/tornado-core/tree/master

[6] Dusk Network B.V. (n.d.). Pure Rust implementation of the PLONK
ZKProof System done by the Dusk-Network team. GitHub. Retrieved
April 19, 2023, from https://github.com/dusk-network/plonk

https://github.com/dusk-network/plonk

31

[7] Gennaro, R., Gentry, C., Parno, B., & Raykova, M. (2012). Quadratic Span
Programs and Succinct NIZKs without PCPs. Cryptology ePrint Archive.
Retrieved April 19, 2023, from https://eprint.iacr.org/2012/215.pdf

[8] Benarroch, D. (2022, July 17). ZKProof Community Reference. ZKProof

Resources. Retrieved April 19, 2023, from

https://docs.zkproof.org/pages/reference/reference.pdf

https://docs.zkproof.org/pages/reference/reference.pdf

