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Анотація

Робота присвячується дослідженню використання доказів з нульовим

розголошенням у блокчейн застосунках. Для розвʼязання проблеми

приватності переказів криптовалюти користувачами використана

бібліотека для генерації та верифікації доказів з нульовим розголошенням

Plonk, мова Rust та domain-specific language “ink!”, а також мова Typescript

для написання сервера реле.

Розроблено новий смарт контракт, який може розгортатися на

блокчейн-мережах, побудованих за допомогою фреймворку Substrate.

Також розроблена бібліотека “plonk prover”, в якій імплементована схема

для генерації доказів з нульовим розголошенням та допоміжні функції для

роботи з ними, розроблені структури даних, утиліти для компіляції Rust

коду в JavaScript код, сервер реле для приватного відправлення транзакцій

виводу коштів зі смарт контракту, і утиліта командного рядка для роботи з

бібліотекою “plonk prover”.

Текстова частина кваліфікаційної роботи містить опис дослідження

можливості використання Plonk у WebAssembly смарт контрактах та

імплементацію криптографічного мікшера коштів. Текстова частина

кваліфікаційної роботи також описує необхідні теоретичні відомості про

використані інструменти та технології.

Ключові слова: блокчейн, смарт контракт, Plonk, доказ з нульовим

розголошенням, WebAssembly, Substrate, Rust, Typescript
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A zero-knowledge proof-based token

mixer in Substrate

Keywords: blockchain, smart contract, Plonk, zero-knowledge proof,

WebAssembly, Substrate, Rust, Typescript

Abstract

In this work, we explore the possibility of implementing a cryptocurrency mixer

specifically in the form of a smart contract that can be deployed to any

Substrate-compatible chain.

Zero-knowledge-proof technology has become increasingly popular in

anonymity services. They possess the power to hide or obfuscate secret

information while still being able to provide means of public verification of this

information. Zero-knowledge proofs are fit for the use case described here - we

will be able to detach the monetary transaction origin from the transaction

target, circumventing the transparency by which most public general-purpose

blockchains function.

Please note that a cryptocurrency mixer is not a new idea. The project we drew

inspiration from is Tornado.Cash. Consequently, the logic of constructing the

proofs will be similar to the zk-SNARK circuits of Tornado.Cash. However,

since blockchain technology is abundant, as evidenced by the existence of many

blockchains, such as Ethereum, Substrate, Solana, NEAR, and many others,

developers need to create potentially different implementations of similar logic

in smart contract formats that are specific to those blockchains. Substrate

specifically had unfinished implementations of cryptocurrency mixers but in the

form of Substrate pallets, which are different from smart contracts.
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Our contribution

In this work, we explored how to implement a cryptocurrency mixer for use in

Substrate-compatible chains like the parachains of Polkadot and Kusama. It is

different from the original blockchain used to support Tornado.Cash [1],

Ethereum, in that it uses WebAssembly as the binary format for smart contracts

and a custom-developed WebAssembly execution environment for smart

contract execution. Mainly, we used ink! as the smart contract language of

choice to produce WebAssembly code and smart contract application binary

interface, Plonk [2] as the ZK-SNARK of choice, and Poseidon [3] as the family

of hash functions. To add to that, we unify client-side and blockchain-side

operations to produce and verify proofs in one library that supports

cross-compiling into different targets. We successfully built an ink!-based

cryptocurrency mixer called .

The technical idea

Blockchain technology allowed users to transfer cryptocurrency and interact

with programs in a decentralized manner. Since blockchains typically use user

public keys or some derivatives of them, like hashes of the said private keys,

some tend to think that it makes the technology anonymous. However, it

requires significant efforts to achieve anonymity in blockchains due to the

abundance of communication points.

Let’s use Ethereum for our next example. Suppose an address would like to

send ETH to address . As Dr. Gavin Wood explains [4, p.4], the

transaction, among other fields, contains the field, which is described as

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BA%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BX%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BB%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bto%7D#0
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“...the 160-bit address of the message call’s recipient…”, and fields , , which

are “...used to determine the sender of the transaction…”. To paraphrase, we can

simplify the aforementioned definitions and say that each transaction in

Ethereum contains sufficient information about the sender and the receiver of

said transaction. In this specific definition, by sufficient we mean that we know

how to identify both the sender and the receiver of the transaction. We can

recover the public key of the sender from the signature of the transaction:

[4, p.26].

Public keys themselves do not tell any information about the user. However,

providers of public RPC endpoints, which accept user transaction requests, can

connect the IP address of the sender of the transaction to their public key. Even

though they do not know the public key of the destination, once the account

with the destination address is used, its public key can be recovered, too.

Considering the above, we can say that the privacy of the sending and the

receiving party is limited to the networking layer. This makes public

blockchains like Ethereum pseudo-anonymous – RPC endpoint providers know

about the relationship between the sender’s public key and their IP address.

Tornado.Cash [1] developed a solution that greatly increases the privacy of the

users by decoupling the sender origin from the receiver by mixing the funds

being sent in a smart contract.

Let's define what the term "mixer" means. In this work, the term mixer means a

smart contract that defines two state-mutable messages, a message,

and a message, and uses zero-knowledge proofs to convince the

smart contract about the authenticity of the claim to withdraw funds for a

specific deposit. The transaction will be responsible for transferring

some predefined token value to the smart contract account, while the

transaction will accept some public information about the deposit,

verify that information, and transfer the same predefined token value to the

caller account.

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Br%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bs%7D#0
https://www.codecogs.com/eqnedit.php?latex=publicKey%20%3D%20ECDSARECOVER(e%2C%20r%2C%20s)#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
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The above was implemented by [1] in [5]. In the scope of this work, we

implement the same idea expressed by Pertsev et. al. using a different

blockchain technology, Substrate, and make improvements to the project by

reusing exactly the same code for producing and verifying proofs across the

on-chain side and the off-chain side.

Substrate

Substrate is a framework for building Layer 1 blockchains, which provides the

developers with pluggable modules, pallets, and various consensus algorithms,

which include both block production and finalization algorithms and more

customizable components. Blockchains built with this framework are highly

configurable w.r.t block production time, block finalization time, block length,

maximum block weight (an analog for gas in other blockchains), and weight

usage per second.

There are some important decisions as to why we use Substrate:

1. Substrate implements its smart contract functionality in a pluggable

module, called pallet-contracts. It allows any blockchain built with

Substrate to include this module at genesis or at runtime without hard

forks.

2. pallet-contracts is a Substrate pallet, which defines a set of callable

transactions that manage the execution of smart contract calls, uploading

of the smart contract WebAssembly code, instantiation of the code, and

removal of the code. The smart contracts deployed with pallet-contracts

must conform to its metadata format, which is an analog of ABI in other

blockchains. The WebAssembly format is not specified, though, enabling

developers to use languages like ink! and AssemblyScript to compile to

pallet-contracts-conformat format.
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3. Since zero-knowledge proof verification is a computation-intensive

operation, we make use of the fact that Substrate allows almost arbitrarily

changing the maximum block production time. Instead of processing

transactions that would outweigh any block on a production Substrate

parachain, we drastically increase the maximum block weight to ensure

the transaction will not outweigh the block.

4. ink! is an eDSL (embedded DSL) that is highly interoperable with

Substrate. We use ink! to build because ink! is Rust-based,

statically typed, has extensive documentation, and supports generating

WebAssembly code and pallet-contracts-conformant metadata.

Plonk

Plonk [2] is a universal fully-succinct zk-SNARK, by which we shall mean a

system that allows one to construct zero-knowledge proofs and verify them. We

choose Plonk over other zero-knowledge proof systems because it has

implementations [6] in Rust that can compile to WebAssembly bytecode. In

using WebAssembly as the compilation target of choice, we achieve two things:

the ability to reuse the code in client-side environments (by using JavaScript

wrappers over WebAssembly code) and the ability to use the proof verification

logic in the ink! smart contract.

Slushie

is a smart contract that allows users to carry out private transfers. It

draws heavy inspiration from Tornado.Cash, but it does have some notable

differences.

First, we use a different blockchain (Substrate-based chain instead of

EVM-based). Second, instead of checking a pairing as the verification process,

https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
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we directly import the verification function for our circuit that uses Plonk. We

can do that since both Plonk and Slushie can compile to WASM. Generally

speaking, to construct proofs with Plonk for any quadratic arithmetic program,

we need to go through 2 steps: generate an SRS (structured reference string) and

model the circuit by writing appropriate code in Rust. While we recommend

always using a trusted setup ceremony for initializing an SRS, we omit this step

in the scope of our work.

is a Rust-based project which consists of four core crates: the relayer

server, the prover, the prover CLI, and the smart contract. Other two additional

components are Typescript-based integration tests and a Rust crate with shared

type definitions and utility functions. Let us go through the components one by

one and explain the role of each one.

The relayer server is a Typescript application that starts an HTTP server with

one endpoint that allows submitting transactions without revealing

the sender’s identity. It serves as the off-chain communication layer between the

end user and the smart contract, creating blockchain transactions from the single

relayer account with the specified parameters, supplied in the POST request

body. It decouples the sender's IP address from the blockchain transaction (the

relayer does not collect any information about users' IP addresses in our

implementation) by delegating the transaction signing to some static public key

pair, which is securely held within the relayer. It cannot steal the funds of the

users as the recipient is supplied as a public input to the proof verification

procedure, meaning that if the relayer supplies some different recipient address

instead of the address that was originally used to construct the proof, the

transaction will fail.

The prover is a Rust crate that defines the proof construction logic (the circuit),

the proof verification logic, commitment generation utilities, prover & verifier

data generation utilities, Merkle tree implementation, hasher-related code (our

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
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Merkle trees can use different hashers), and JavaScript bindings for relevant

functions.

The plonk prover CLI (plonk-prover-tool) is a wrapper over the prover, which

allows us to conveniently generate relevant data (commitments, prover/verifier

data, opening keys, etc.) by invoking CLI subcommands.

is an ink!-based smart contract deployed to pallet-contracts-compatible

networks. It also holds the other Merkle tree implementation, which we'll talk

about later in detail.

Slushie (smart contract)

is a smart contract built with ink! eDSL. It has two callable

state-mutable messages, and , and one query,

.

The method accepts the user's generated commitment as the only

input. Essentially, depositing funds to happens both on the off-chain

user side (front-end or CLI) and the on-chain side (smart contract transactions).

On the off-chain side, the user generates their commitment by randomly

selecting two numbers, the nullifier and the randomness , and hashing them

together using a ZK-friendly hash (in our case, Poseidon):

. On the on-chain side, the user calls the smart

contract transaction with the data generated on the off-chain side.

Generally, smart contracts consist of storage and callable messages. On top of

having storage and callable transactions, also defines the contract error

type and the events, which we use to communicate notable state changes in the

contract. For example, one deposit call completely changes the underlying

Merkle tree in the storage, motivating us to communicate this state change via

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=get%5C_root%5C_hash#0
https://www.codecogs.com/eqnedit.php?latex=deposit#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=h%20%3D%20Poseidon252(k%20%7C%7C%20r)#0
https://www.codecogs.com/eqnedit.php?latex=Slushie#0
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an event. The contract error enumeration is merely a collection of all errors that

can happen in the contract's transactions.

Plonk prover

Plonk prover consists of the following logical parts: proof generation, proof

verification, zk-SNARK circuit definition, commitment generation (not to be

mistaken with commitments in ZKP context), the flat Merkle tree

implementation, the hashers, javascript bindings, the Merkle implementation

with root history, public parameters setup utilities, and general utilities.

Arguably, the two most important parts of the crate are the Merkle trees and the

circuit. The reason for having two different implementations of the Merkle tree

is that the flat Merkle tree is used for gathering the openings, meaning the

values of the sister nodes on the way from leaf to the root , while the

Merkle tree with history makes sure that we can verify the proof by checking

that the root is valid, and thus the Merkle tree can be recreated. The circuit,

on the other hand, describes the logic by which we generate and verify the

proofs. Similarly to [1], our quadratic arithmetic program [7, p.42] consists of

two general parts: verifying that the nullifier hash , supplied as a public input,

is equal to the result of hashing the nullifier , supplied as a private input, and

that the root , supplied as a public input, is equal to the root computed by

reconstructing the Merkle tree from the commitment , the path and the

openings and taking its root.

Commitments

A commitment in the context of this work is a 32-byte result of applying hash

to the nullifier and the randomness (both are non-negative 32-bit

integers). The commitments are used to uniquely identify deposits in the system.

https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=p#0
https://www.codecogs.com/eqnedit.php?latex=o#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0
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In order to make a deposit to , the user of the system must first

generate the commitment using a cryptographically secure pseudorandom

number generator (abbreviated as ). In the course of this work, we

will assume that the native operation system randomness source is a

.

As for the implementation, the commitment generation is handled by the

dusk_poseidon [6] crate.

Fig. 1, commitment generation

As a convenience, we also provide the generated nullifier, and nullifier hash

together with the commitment, since all those values must be used in order to

both generate a proof and provide public inputs for the contract to verify the

supplied proof.

Fig. 2, generated commitment structure

Hashers

Slushie aims to be hasher-agnostic, meaning that we can use different hashers

with the contract and the proof system. For this, we have created a Rust trait,

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0
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called , which is the interface for all hashers that our

Merkle tree can use.

In our implementation, we defined three copies of the same trait with slightly

different trait bounds on the associated type due to the requirement for

our crates to compile to the WebAssembly binary format. Since the hashers are

structs that are stored in the contract storage, they need to implement some traits

that are only available in std compilation mode which cancels our ability to

compile the code to WebAssembly.

The trait definition that we use in our contract for generating contract metadata

(ABI):

Fig. 3.1, std version of MerkleTreeHasher

The trait definition that we use in WebAssembly but not in the contract:

https://www.codecogs.com/eqnedit.php?latex=MerkleTreeHasher#0
https://www.codecogs.com/eqnedit.php?latex=Output#0
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Fig. 3.2, no_std version of MerkleTreeHasher

The trait definition that we use in our contract for compiling the contract to

WebAssembly:

Fig. 3.3, no_std version of MerkleTreeHasher with SCALE encoding support

As for the trait implementations, currently supports two hashers: a

Poseidon-based hasher and a Blake2-based hasher.

JavaScript bindings

Since plonk_prover can be directly compiled to WebAssembly, it is feasible to

reuse the same functions used by plonk_prover_cli in JavaScript packages that

import WebAssembly modules. This approach produces less code and increases

the overall implementation security of the project.

These JavaScript packages can be later used on the front-end side to generate

and verify proofs.

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
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To generate JavaScript bindings, we depend on the wasm-bindgen and js-sys

crates. wasm-bindgen together with js-sys allow developers to create

JavaScript-compatible WebAssembly code, and with wasm-pack we can

package this WebAssembly code into JavaScript files that look similar to this

one:

Fig. 4.1, the JavaScript package generated by wasm-pack

Lastly, to use it in any JavaScript package, we depend on the generated package

in package.json of the target package:

Fig. 4.2, import of Slushie WebAssembly code, wrapped in a JavaScript package

SRS

As Benarroch states in the ZKProof Community Reference [8, p.58], ZKP

schemes require a URS (uniform reference string) or SRS (structured reference

string) for their soundness and/or ZK properties. Since Plonk requires an SRS to

be used in both proof generation and proof verification processes in some way,

we have created utilities that aid in creating the , prover data (the prover

key , used to construct a zero-knowledge proof, and the commit key , used

https://www.codecogs.com/eqnedit.php?latex=SRS#0
https://www.codecogs.com/eqnedit.php?latex=pk#0
https://www.codecogs.com/eqnedit.php?latex=ck#0
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for Plonk's KZG10 commitments), and the verifier data (verifier key, public

input indices w.r.t witness positions, and the opening key).

Fig. 5, functions that generate SRS for the zk-SNARK

Proof generation & proof verification

In the implementation of , we provide utilities, used for constructing

the proofs and verifying the proofs.

In general, the proof generation process consists of four parts. Given a circuit

called , public parameters , leaf index , root , tree

openings , nullifier , randomness , recipient address , relayer address ,

and fee , we:

1. Deserialize public parameters into struct

2. Compile an empty circuit with given public parameters to obtain the prover

key

3. Create an instance of the circuit with provided public and private inputs

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=SlushieCircuit#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=o#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=PublicParameters#0


19

4. Generate the proof using public parameters , prover key , transcript

initializer , and a source.

Fig. 6.1, generation of the zero-knowledge proof with SRS setup

The proof verification process consists of four parts. Given a circuit called

, public parameters , root , nullifier hash , recipient

address , relayer address , fee , and the proof

1. Deserialize public parameters into struct

2. Compile an empty circuit with given public parameters to obtain the verifier

data

3. Deserialize proof into the struct

4. Create a vector of public inputs , , , , to be passed to the verifying

function

https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=pk#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0
https://www.codecogs.com/eqnedit.php?latex=SlushieCircuit#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=PublicParameters#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=Proof#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=f#0
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5. Verify proof with provided public parameters , verifier data obtained in

step 2, proof , the vector of public inputs from step 4, and the

transcript initializer

Fig. 6.2, verification of the zero-knowledge proof with SRS setup

However, due to computational constraints for the prover, we may want to omit

the operations of deserializing and constructing the public parameters when

generating or verifying proofs. For this reason, we add two functions that don't

require passing and deserializing the public parameters, which can exceed

for a circuit of size gates. Instead, they use prover data for proof

generation and verifier data for proof verification. The motivation for using

these variants of proof generation and proof verification is:

1. For proof generation, generating public parameters can be slow, making the

already long proof generation process even longer

2. For proof verification, public parameters of size around can be too

large to pass to a smart contract, and deserializing them would consume a lot of

gas.

https://www.codecogs.com/eqnedit.php?latex=pp#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=3%20MB#0
https://www.codecogs.com/eqnedit.php?latex=2%5E%7B15%7D#0
https://www.codecogs.com/eqnedit.php?latex=3%20MB#0
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Considering the above reasons, we define the following functions for proof

generation and proof verification, where both of them accept prover and verifier

data as arguments respectively.

For proof generation, we create the following modification of the proving

function, which consists of six parts:

1. Deserialize prover data into struct,

deserialize commit key into struct

2. Create a new prover instance with transcript initializer

3. Create a new circuit instance with appropriate public and private inputs

4. Fill the allocated witnesses for the prover

5. Insert the prover key into the prover

6. Generate the proof using the deserialized commit key and a

source.

https://www.codecogs.com/eqnedit.php?latex=pd#0
https://www.codecogs.com/eqnedit.php?latex=ProverKey#0
https://www.codecogs.com/eqnedit.php?latex=ck#0
https://www.codecogs.com/eqnedit.php?latex=CommitKey#0
https://www.codecogs.com/eqnedit.php?latex=TRANSCRIPT%5C_INIT#0
https://www.codecogs.com/eqnedit.php?latex=pd#0
https://www.codecogs.com/eqnedit.php?latex=ck#0
https://www.codecogs.com/eqnedit.php?latex=CSPRNG#0


22

Fig. 6.3, generation of the zero-knowledge proof without SRS setup

For proof verification, we create the following modification of the verifying

function, which consists of five parts:

1. Deserialize the verifier data into struct, deserialize the

opening key into struct

2. Deserialize the supplied proof into the struct

3. Create a new verifier instance and replace the verifier key with deserialized

verifier data from step 1

4. Construct the public input vector with the supplied parameters

https://www.codecogs.com/eqnedit.php?latex=vd#0
https://www.codecogs.com/eqnedit.php?latex=VerifierData#0
https://www.codecogs.com/eqnedit.php?latex=opening%5C_key#0
https://www.codecogs.com/eqnedit.php?latex=OpeningKey#0
https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=Proof#0
https://www.codecogs.com/eqnedit.php?latex=vd#0
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5. Verify the proof using the opening key against the

public input vector from step 4.

Fig. 6.4, verification of the zero-knowledge proof without SRS setup

Merkle trees

As we noted before, in plonk_prover we define two implementations of the

Merkle trees.

https://www.codecogs.com/eqnedit.php?latex=proof#0
https://www.codecogs.com/eqnedit.php?latex=opening%5C_key#0
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Merkle tree with history

In general, Merkle trees are used to store some important "state" of the system.

With , Merkle trees are used to store the information about users'

commitments to deposits, to construct proofs for any given commitment and

root, and to verify the supplied proofs when the transaction is

called.

Pertsev et al. proposed a modification to the original Merkle tree, which they

called a Merkle tree with history. In essence, instead of storing all nodes of the

tree, the Merkle tree with history stores the current root index, the next root

index, the last filled subtrees on every level, and an array of roots of size

. These modifications make the Merkle tree

efficient enough storage-wise to store in a smart contract, yet in conjunction

with blockchain events that emit stored commitments, which are inserted into

the Merkle tree, one can recreate the Merkle tree fully at each point in time. Our

implementation of the Merkle tree is a direct port from Solidity, though it

contains some different Rust-specific abstractions. These include specifying the

and parameters as constant generics,

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
https://www.codecogs.com/eqnedit.php?latex=withdraw#0
https://www.codecogs.com/eqnedit.php?latex=ROOT%5C_HISTORY%5C_SIZE#0
https://www.codecogs.com/eqnedit.php?latex=DEPTH#0
https://www.codecogs.com/eqnedit.php?latex=ROOT%5C_HISTORY%5C_SIZE#0
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while also parametrizing over the Hash type (the hashers).

Fig. 7.1, Merkle tree with history structure

Flat Merkle tree

The "flat" Merkle tree is a different implementation of the Merkle tree. As

opposed to the Merkle tree with history, the flat Merkle tree stores all nodes of

the Merkle tree. It is primarily used to get the openings of the Merkle tree:
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Fig. 7.2, opening generation function

Plonk Prover CLI

The Plonk Prover CLI is a crate for off-chain operations with commitments and

proofs. It uses the Plonk prover internally, compiles to native target code, and

ensures the usage of exactly the same commitment generation, proof generation,

and verification logic on the users' local machines and in the smart contract. It is

worth noting that the CLI is an essential part of the whole workflow of

depositing funds into and withdrawing them. However, as we possess

the ability to cross-compile our core logic in plonk prover to JavaScript +

WebAssembly, the inclusion of this CLI logic into a front-end library would be

beneficial for the overall user experience. We consider it as a future

improvement to our work.

https://www.codecogs.com/eqnedit.php?latex=Slushie#0
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The CLI structure

We use clap as the CLI library. The library allows us to define statically typed

command types in the commands.rs file, to which we add the implementations

in the actions.rs file. Other than that, since this crate is a binary crate, we define

the CLI startup logic in the main.rs file, and define any useful utilities in the

utils.rs file.

The commands

The CLI supports the following commands:

1. GenerateCommitment – allows the user of the CLI to generate a new

random commitment that consists of the nullifier, the randomness, and the

commitment itself (commitment generation described in the Slushie

(smart contract) section).

2. GenerateTestPublicParameters – generates an SRS for producing proofs,

prover data, and verifier data.

3. GenerateVerifierData – generates the verifier data from the SRS,

producing the serialized verifier data and the opening key for KZG10

commitments.

4. GenerateProverData – generates the prover data from the SRS,

producing the serialized prover data and the commit key for KZG10

commitments.

5. GenerateProof – generates the proof from a set of inputs described in the

Proof generation & proof verification section.

For bigger files, like tree openings or the SRS, we allow providing a local path

to those files.
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Relayer

The relayer is a Typescript application that contains an implementation of an

HTTP server with one endpoint, “/withdraw”. This endpoint accepts

JSON-formatted data, relevant to the transaction. This includes the

nullifier hash, the Merkle tree root, the serialized proof, the relayer fee, the

recipient address, the relayer address, and the Slushie contract address.

Fig. 8, WithdrawInputs request payload structure

As a future improvement, the request payload must be constructed on the

front-end. However, in the scope of this work, this is done manually, and the

request is sent using cURL.

A note on the implementation of the relayer

Initially, we planned to implement the relayer as a Rust-based JSON-RPC

server. However, after performing a critical dependency update, one vital library

that was used to submit transactions to the Substrate-based chains broke the

https://www.codecogs.com/eqnedit.php?latex=withdraw#0
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process of generating signed extrinsics, which we use to perform withdrawals.

After a thorough, yet unsuccessful investigation, it became evident that this

issue cannot be fixed without creating a local clone of that library.

Instead, we implemented the relayer using Typescript and a Typescript-based

library for working with Substrate-based chains. The development proved to be

much quicker, measuring in hours and not days. To add to that, this

implementation turned out to be more reliable due to the relevant libraries being

actively maintained.

Conclusion

In this work, we explored the possibility of implementing a zero-knowledge

proof-based cryptocurrency mixer in the Substrate ecosystem. As a result, we

successfully built an ink! smart contract and some necessary tooling around it.

Other than implementing a copy of on-chain logic from [5], we have also

improved the logical integrity of the tooling, reusing exactly the same code for

working with zero-knowledge proofs in the smart contract and in the offchain

prover CLI.

Although implementing this mixer turned out to be successful, Substrate still

lacks some features that would make Slushie ready for production use. The

main problem which limited our ability to only work with one commitment at a

time was the lack of an equivalent of eth_getLogs RPC in Substrate nodes. We

need it to construct the openings of the Merkle tree for proof generation, which

is not possible with the current Substrate implementation.

We achieved a proof of concept level of readiness with this project. In the

future, we will implement the improvements listed in this work, and Slushie will

contribute to the privacy of users in pallet-contracts-compatible networks.
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