Pylyavska ()., Shatohina Ju.

THE NON-REGULAR 2-GROUPS SATISFYING THE CONDITION: EACH CYCLIC SUBGROUP IS CONTAINED IN THE CENTER OR HAS A TRIVIAL INTERSECTION WITH IT

Y. Berkovich formulated the following problem: "Suppose that p-group (i satisfies the following condition: if $\left('\right.$ is a cyclic subgroup of $\left(\mathrm{i}\right.$ then either $\left({ }^{\prime} \leq Z(G)\right.$ or $C^{\prime} \cap Z(\mathcal{G})=\{1\}$. Classify all such groups.» The authors have proved that each regular p-group satisfies this condition if and only if it is either abelian or a group of exponent p.

Here we regard the non-regular 2-groups. Some necessary conditions for non-abelian 2-group in which every cyclic subgroup is contained in the center or has a trivial intersection with it are pointed. The minimal example of non-regular 2 -group with 2 generators satisfying this condition is consiructed.

1. Introduction

Let (; be a non-trivial finite p-group, $Z\left(\begin{array}{l}\text { (})\end{array}\right.$ - the center of $(9$.

In his book |1| Y. Berkovich formulated the following problem. «Suppose that p-group (i satisfies the following condition: if (' is a cyclic subgroup of G then either $\left(^{\prime} \leq Z(G)\right.$ or $C^{\prime} \cap Z(G)=\{1\}$. Classify all such groups".

The p-group which satisfies this condition we will call the Z ('-group.

The authors (|2|) have proved that a regular p group is $Z($-group if and only if it is cither the group of exponent p or an abelian group. The p-group G is called to be regular if for each $g, h \in G$ we have

$$
g^{p} h^{p}=(g h)^{p} \prod_{i} s_{i}^{p}
$$

where s_{i} is an element from the commutator subgroup $\langle g, h\rangle$ of the group generated by $g . h(|3| .|4|)$.

It is casy to scc that cach non-abclian 2-group is non-regular.

In the first part of the paper we consider the question when the non-abclian ZC -group is the direct product of some $Z C$-groups M and N. We prove that this claim holds if and only if $\operatorname{cxp} Z(M)=$ $=\exp Z(N)=p$:

In the second part of the paper we prove three theorems, which give the necessary conditions for 2-group to be the 7 ('-group.

In the third part we regard the 2-groups of class

3 and prove some necessary conditions for them to be the Z ('-group.

In the final part of this paper we use these statements to construct the minimal example of nonregular 2-group with two gencrators. which is a Z('-group.

2. The factorization of the ZC-group as a direct product of ZC -groups

We want to prove the next theorem:
Theorem 1. Let M, N are the $Z C$-groups. The non-abelian group (${ }^{(3} \quad M \times N$ is $Z C$-group if and only if $\operatorname{cxp} Z(M) \quad \operatorname{cxp} Z(N) \quad p$.

We need the next lemma for proving.
Lemma 1. Let non-abelian p-group (; be ZCgroup. Then $Z(G)$ is an elementary abelian group.

Proof. Let ${ }^{\prime}$ be a non-abclian Z('-group. We want to show that (i has an clement g of order p. which does not belong to the center, $g \notin Z(G)$. Really, consider the factor-group $l^{\prime}=(\xi / Z(G)$. Let $Z(l)$ be a center of $l, \bar{g} \in Z(l)$ - clement of order p. For cach preimage g of \bar{g} we have $g^{p} \in Z(G)$ but $g \notin Z(G)$. $\left(\dot{i}\right.$ is a $Z C^{\prime}$-group, so $g^{p}=1$.

Suppose that $\operatorname{cxp} Z(G)>p$.
Let $g \in(\xi$ be an element of exponent $p, g \notin Z(G)$. Choose the element $z_{1} \in Z\left(G_{j}\right)$ such as $\exp z_{1}=p^{m}>$ p. The element $z_{1} g$ does not belong to the center and has an exponent which is equal to the exponent of clement z_{1}. The cyclic subgroup $C^{\prime \prime}=\left\langle z_{1} g\right\rangle$ has the non-trivial subgroup (${ }^{\text {p/ }}$, which is generat-
ed by the element $\left(z_{1} g\right)^{P}=z_{1}^{P} g^{P}=z_{1}^{P} \neq 1$ and is contained in the center of G. The contradiction with the condition that G is a $Z C$-group leads to $\exp Z(G)=p$.

The Lemma is proved.
Proof of Theorem l. Let $G=M \times N$ be a nonabelian group $Z C$-group, where M, N are $Z C$ groups. If $M(N)$ is non-abelian, then from Lemma 1 we have $\exp Z(G)=p(\exp Z(N)=p)$. Suppose M is abelian. Then M is contained in the center $Z(G)$ of group G. According to Lemma I we have $\exp Z(G)=\exp M=p$

On the other hand, suppose that M, N are $Z C$ groups and $\exp Z(M)=\exp Z(N)=p$. Let C be a cyclic subgroup of $G, C=\langle g\rangle$ and let $C \not Z Z(G) . G$ is the direct product of M, N, so $g=g_{1} g_{2}$, where $g_{1} \in M . g_{2} \in N$. We may assume, without a loss of generality, that $g_{1} \notin Z\left(G_{1}\right)$ Let $\left|g_{1}\right|=p^{k}:\left|g_{2}\right|=p^{m}$. If $k \geq m$ then $|g|=\left|g_{1}\right|=p^{k}$ and for each $i \leq k$ holds $g^{p^{i}} \notin Z(G)$, so C have a trivial intersection with $Z(G)$. If $k<m$ then $\left|g_{2}\right|>p$, according Theorem 1 $g_{2} \notin Z\left(G_{2}\right)$. Similarly, we obtain $g^{P} \in Z(G)$. Thus G is a $Z C$-group. The proof of Theorem 1 is complete.

3. The sufficient conditions for 2-group to be a ZC-group

Here we will regard non-abelian 2-groups.
We will denote the second member of the upper central series by $Z_{2}(G)$ and the nilpotency class of G by $c l(G)$.

For a finite p-group G and each non-negative integer k, we define subgroups $\Omega_{k}(G)=$ $=\left\langle g \in G \mid g^{p^{k}}=1\right\rangle$ and $\mho_{k}(G)=\left\langle x^{p^{k}} \mid x \in G\right\rangle$

Theorem 2, Let non-abelian 2-group G be ZCgroup. Then

1) $Z_{3}(G)$ is an elementary abelian group;
2) each element $g \in G$ of order 2 belongs to the centralizer $Z_{3}(G)$ of in G.

Proof. Assume the non-abelian 2-group G is a ZC-group.
I) Suppose there is $y \in Z_{2}(G)$, such as $y^{2} \neq 1$. G is a $Z C$-group, so $y^{2} \notin Z(G)$. Then, there exists the element $a \in G$, such as $\left[a \cdot y^{2}\right]=z \neq 1$. where $z \in Z(G)$. For each element $y \in Z_{2}(G)$ and each $a \in G$ holds $[a, y] \in Z(G)$. On the other hand, $z=\left[a, y^{2}\right]=$ $=[a, y][a, y]^{y}=[a, y]^{2}$. So we obtain $\exp Z(G)>2$. This contradiction with Lemma 1 proves that $\exp Z_{2}(G)=2$. so $Z_{2}(G)$ is an elementary abelian 2-group
2) Let $g \in G, g^{2}=1$ and $y \in Z_{2}(G)$. Suppose $[g, y]=z \neq 1$, where $z \in Z(G)$. Then from $y^{2}=g^{2}=$ $=1$ we have $(g y)^{2}=z \in Z(G)$ According to Lemma $1 \exp Z(G)=2$, so $g \nu \nexists Z(G)$ and the cyclic
subgroup which is generated by this element has non-trivial intersection with $Z(G)$. The contradiction with the condition that G is a $Z C$-group proves the Theorem.

Next corollaries obviously follow from Theorem 2.

Corollaries. Let 2-group G be a ZC-group. Then

1) $c /(G) \geq 3$;
2) $\Omega_{1}(G)$ is contained in the centralizer of $Z_{2}(G)$.

We will denote $G_{1}=G$. For each non-negative integer $k>1$, we define the subgroups $G_{k}=\left[G, G_{k-1}\right]$.

Theorem 3. Let 2-group G be a $Z C$-group and the derived subgroup G_{2} is an elementary abelian group. If $c l(G)=l$ then $\exp G \leq 2^{l-1}$.

Proof. It is easy to see that condition $\exp G=$ $=2^{k}$ is equivalent to

$$
\begin{aligned}
& \mathbf{\sigma}_{k}(G)=\left\langle x^{p^{k}} \mid x \in G\right\rangle=1, \\
& \mathbf{\sigma}_{k-1}(G)=\left\langle x^{p^{k-1}} \mid x \in G\right\rangle \neq 1
\end{aligned}
$$

Let $c h(G)=l \geq 3$. Assume $\exp G=2^{k}$, where $k \geqslant l-1$. There is an element $a \in G$, such as $a^{2^{k-1}} \neq 1$. According to Lemma $1 a \notin Z(G)$. Since G is a $Z C$-group, then $a^{2^{k-1}} \notin Z(G)$. Thus, there exists the element $b \in G$ such as $\left[b, a^{2^{k-1}}\right] \neq 1$. Denote $d_{i}=a^{2}, c_{1}=[b, a], c_{i+1}=\left[b, d_{i}\right]$. It is easy to see $d_{i}=d_{i-1}^{2}(i=2, \ldots k-1)$ and $c_{j} \neq 1(j=1, \ldots, k)$ Since G_{2} is an elementary abelian group, then $c_{i+1}=\left[b_{i} d_{i}\right]=$ $=\left[b, d_{i-1}^{2}\right]=\left[b, d_{i-1}\right]^{2}\left[b, d_{i-1}, d_{i-1}\right]=\left[c_{r}, d_{i-1}\right]$. In this way from $c_{1} \in G_{2}$ we obtain $c_{t} \in G_{t+1}$. Therefore we have $G_{k+1} \neq 1$, where $k+1>l$. As this contradicts the assumption that $c l(G)=l$, the Theorem is proved.

4. ZC-groups with nilpotency class 3

Let 2 -group G be a $Z C$-group, and $c l(G)=3$.
Theorem 4. If 2-group G is a $Z C$-group and $c l(G)=3$ then $\Phi(G)$ is an elementary abelian group.

Proof. The condition $c /(G)=3$ implies that G_{3} is contained in the $Z(G)$ and the derived subgroup G_{2} is contained in the $Z_{2}(G)$. Therefore G_{2} is an elementary abelian group. Theorem 3 implies $\exp G \leq$ $\leq 2^{2}$. Since all groups of exponent 2 are abelian, then $\exp G=2^{2}$. In this case $\mathcal{Z}_{2}(G)=1 . \mathcal{Z}_{1}(G) \neq 1$, $\bar{\sigma}_{1}(G) \subseteq \Omega_{1}(G)$. From Corollary 2 we have $\Omega_{1}(G) \subseteq$ $\subseteq C_{G}\left(Z_{2}(G)\right)$ and so each element $\mathrm{T}_{1}(G)$ of commutes with each element of G_{2}. Note that Frattini subgroup $\Phi(G)$ of an arbitrary p-group G is generated by the derived subgroup G_{2} and $\sigma_{1}(G)$, namely $\Phi(G)=G_{2} \cdot \sigma_{1}(G)$, wherefrom $\Phi(G)$ is elementary abelian. The Theorem is proved.

Theorem 5. If 2-group G is a $Z C_{\text {-group }}$ and $c h(G)=3$ then $\Phi(G)=\mathbf{J}_{1}(G)$.

Proof. Note that the assumption of the theorem implies that $G_{2} \subseteq Z_{2}(G)$. We want to show that every commutator $c \in G_{2}$ belongs to $\bar{\sigma}_{1}(G)$. Let $c=[b, a] \neq 1$. If $b^{2}=1$, then, by the Theorem 2 , 2) the element b belongs to the centralizer of $Z_{3}(G)$ in G. Thus $(a b)^{2}=a^{2} c$ and c belongs to $\delta_{1}(G)$. If $a^{2}=d \neq 1, b^{2}=f \neq 1$ then $(a b)^{2}=a^{2} b^{2} c[c, b]$. The commutator $[c, b]$, where $c^{2}=1$, belongs to $\bar{J}_{1}(G)$ as well as given above. Summing up, we obtain $G_{2} \subseteq \bar{\sigma}_{1}(G)$, and thus $\Phi(G)=\bar{\sigma}_{1}(G)$. The Theorem is proved.

Corollary. If 2-group G is a ZC-group and $c l(G)=3$ then $\sigma_{1}(G)=A \times G_{2}$, where A is att elementary abelian group.

Lemma 2. If 2-group G is a ZC-group and $c l(G)=3$ then for each $g \in G$ and each $f \in \Phi(G)$ holds $[g, f] \in G_{3}$.

Proof. According to Theorem 5 , for each $f \in \Phi(G)$ holds $f \in \mathbb{Z}_{1}(G)$ and consequantly there exists $a \in G$ such as $f=a^{2}$. According to Theorem 4 $\Phi(G)$ is an elementary abelian group, then for each $g \in G$ we have $[g, f]=\left[g, a^{2}\right]=[g, a]^{2}[g, a, a]=$ $=[g, a, a] \in G_{3}$. Lemma 2 is proved.

5. The construction of ZC-group

The aim of this part of the paper is to construct the minimal example of ZC -group.

Suppose that the following conditions hold:

1. a 2-group G is $Z C$-group;
2. $c /(G)=3$;
3. G has two generators: $G=\langle a, b\rangle$.

According to the Theorem 3 we have $\exp (G)=$ $=2^{2}$.

It is easy to see that the conditions 2), 3) give the minimal value for the number of generators, for the class of nilpotency of G and for the exponent of G.

Proposition 1, Suppose 2-group G is a $Z C$ group with 2 generators and $c /(G)=3$. Then for each $g \in G \backslash \Phi(G)$ holds $g^{2} \neq 1$ and $g^{2} \notin Z(G)$.

Proof. Really, suppose that there exists $b \in$ $\in G \backslash \Phi(G)$ such as $b^{2}=1$. Consider the subgroup $B=\langle b, \Phi(G)\rangle$. If B is abelian, then $\exp (B)=2$. Since $\exp (G)>2$ then there is an element $a \in$ $\in G \backslash B$, such as $a^{2}=d \neq 1$. Here $d \in \Phi(G) \subset B$, so $[d, b]=1$. This being the case that G has two generators, we may consider $G=\langle a, b\rangle$. The element d commutes with a and b, so $g \in Z(G)$. We obtain the contradiction to the claim that G is a $Z C$. group.

If B is not abelian, then there exists an element $f \in \Phi(G)$, such as $[b, f]=z \neq 1$ and $z \in Z(G)$. From $b^{2}=f^{2}=\mathbf{I}$ follows that $(f b)^{2}=z \in Z(G)$.

Since $f b \notin Z(G)$, it contradicts the claim that G is a $Z C$-group. The Proposition is proved.

Proposition 2, Suppose 2-group G is a $Z C$ group with 2 generators, $G=\langle a, b\rangle$, and $c(G)=3$. Then $\mathcal{U}_{1}(G)=H \times G_{2}$, where $H=\left\langle a^{2}\right\rangle_{2} \times\left\langle b^{2}\right\rangle_{2}$.

Proof. We want to show for each $a, b \in G$, where $G=\langle a, b\rangle$, holds $a^{2}=d \neq 1, b^{2}=f \neq 1$ and $d \notin\left\langle f, G_{2}\right\rangle$.

Really, suppose $d=f g$, where $g \in G_{2}$. From $G=$ $=\langle a, b\rangle$ we have $\left.G_{2}=\langle b, a]\right\rangle \bmod G_{3}$. Denote $c=$ $=[b, a] \neq 1$. So $d=f^{\mathrm{E}_{1}} c^{\mathrm{E}_{2}} z$, where $z \in Z(G)$, $\varepsilon_{1}, \varepsilon_{2}=0,1$. If $\varepsilon_{2}=0$ then from $1=[a, d]=[a, f z]=$ $=[a, f]$ we have $f \in Z(G)$. It contradicts to the claim that G is a $Z C$-group.

If $\varepsilon_{1}=\varepsilon_{2}=1$ then

$$
(a b)^{2}=a^{2} b^{2} c[c, b]=f c z \cdot f \cdot c[c, b]
$$

where $[c, b] \in Z(G)$. According to Lemma $1 Z(G)$ is an elementary abelian group, so $(a b)^{2}=z[c, b] \in$ $\in Z(G)$. By Proposition $1(a b)^{2} \neq 1$. We have the contradiction again.

If $\varepsilon_{1}=0, \varepsilon_{2}=1$ then $d=c z$ and $[c, a]=1$. Thus $[b, d]=[b, a]^{2}[b, a, a]=c^{2}[c, a]=1$. From $G=\langle a, b\rangle$ we have $d \in Z(G)$. It contradicts to the claim that G is a $Z C$-group.

Summing up we can conclude, that $d \notin\left\langle f, G_{2}\right\rangle$ and that $\sigma_{1}(G)=H \times G_{2}$, where $H=\langle d, f\rangle$. Since $d=a^{2}, f=b^{2} \in \Phi(G)$ and $\Phi(G)$ is elementary abelian, then $H=\left\langle a^{2}\right\rangle_{2} \times\left\langle b^{2}\right\rangle_{2}$. Proposition 2 is proved.

Proposition 3. Suppose 2-group G is a $Z C$ group with 2 generators and $c /(G)=3$. Then $\left|G_{3}\right|>$ >2.

Proof. The assumption that G has two generators, $G=\langle a, b\rangle$, implies that $G_{2}=\langle[a, b]\rangle \bmod G_{3}$. Denote $[a, b]=c, c \in Z_{2}(G) \backslash Z(G) . \Phi(G)$ is elementary abelian, so

$$
G_{3}=\left\langle[c, a]_{,}[c, b]_{2}[h, a]_{-}[h, b] \mid h \in \Phi(G)\right\rangle
$$

Without a loss of generality we may assume that $[c, a] \neq 1,[c, a]=z_{1} \in Z(G)$.

We want to show that $[b, c]=z_{2} \notin\left(z_{1}\right)$. Really, $[b, c]=1$ if then $[a, f]=\left[a, b^{2}\right]=[a, b]^{2}[a, b, b]=$ $=c^{2}[c, b]=1$, where $f=b^{2}$. Therefore $f \in Z(G)$. It contradicts to the claim that G is a $Z C$-group.

If $[b, c] \neq 1,[b, c] \in\left\langle z_{1}\right\rangle$ then for $b^{\prime}=a b$ holds [$\left.b^{\prime}, c\right]=1$ and similarly we obtain $b^{2} \in Z(G)$. The contradictions obtained prove that $[b, c]=z_{2} \notin\left\langle z_{1}\right\rangle$, and, in this way, $\left|G_{3}\right|>2$. The proof of Proposition 3 is completed.

Now we want to construct the 2 -group of minimal order which is a $Z C$-group.

Suppose that G has two generators, $c l(G)=3$, $\left|G_{3}\right|=4$ and $G_{3}=Z(G)$. Thus we may assume $G=\left\langle a, b, c, d, f, z_{1}, z_{2}\right\rangle$, where $c=[b, a] \neq 1, d=a^{2}$, $h=b^{2}, z_{1}=[c, a], z_{2}=[c, b], z_{1}, z_{2} \in Z(G)$. The last relations give $[a, f]=\left[a, b^{2}\right]=[a, b]^{2}[a, b, b]$.

Since $\Phi(G)$ is an elementary abelian group, $\Phi(G)=$ $=\left\langle c, d, f, z_{1}, z_{2}\right\rangle$, then $[a, f]=[c, b]=z_{2}$. Analogous$\mathbf{l y},[b, d]=[c, a]=z_{1}$. So, we have the following relations of group G :

$$
\begin{aligned}
& G=\left\langle a, b, c, d, f, z_{1}, z_{2}\right| a^{2}=d, b^{2}=f, \\
& c^{2}=d^{2}=f^{2}=z_{1}^{2}=z_{2}^{2}=1,[b, a]=c \\
& {[c, a]=z_{1},[d, a]=1,[f, a]=z_{2},\left[z_{i}, a\right]=1,} \\
& {[c, b]=z_{2},[d, b]=z_{1},[f, b]=\left[z_{r}, b\right]=1,} \\
& {[d, c]=[f, c]=\left[z_{r}, c\right]=[f, d]=\left[z_{i}, d\right]=1,} \\
& \left.\left[z_{i}, f\right]=\left[z_{1}, z_{2}\right]=1,(f=1,2)\right\rangle
\end{aligned}
$$

Verify that this group G is a ceach $g \in G$ has the following presentation: $g=a^{\alpha} b^{\beta} c^{\gamma} d^{\delta} f^{\lambda} z_{1}^{\mu} z_{2}^{\gamma}$, where $\alpha, \beta, \gamma, \delta, \lambda, \mu, v=0,1$. Consider the cyclic subgroup $C=\langle g\rangle$. If $\alpha=\beta=\gamma=\delta=\lambda=0$ then $g \in$ $\in Z(G)$ and C is contained in the center $Z(G)$.

1. Berkovich Y. Groups of prime power order. In preparation.
2. Pylyavska O., Shatohina Ju. The p-groups satisfying the condition: each cyclic subgroup is contained in the center or has a trivial intersection with it// Науковi saписки НаУКМА.-

If $\alpha=\beta=0$ then $g \in \Phi(G)$ and $g^{2}=1$, so C has a trivial intersection with center $Z(G)$.

If $\alpha=0, \beta=1$ then $g \notin \Phi(G), g^{2}=b^{2} c^{\gamma}\left[c^{\gamma}, b\right] \times$ $\times d^{\delta}\left[d^{\delta}, b\right] c^{\gamma} d^{\delta} f^{2 \lambda}=f z$, where $z \in Z(G), f \notin Z(G)$. Thus C has a trivial intersection with center $Z(G)$.

If $\alpha=I, \beta=0-$ as given above $-C$ has a trivial intersection with center $Z(G)$.

If $\alpha=1, \beta=1$ then $g \notin \Phi(G)$, analogously $g^{2}=$ $=d f z$, where $z \in Z(G)$ by Proposition $2 d f \nexists Z(G)$. Thus C has a trivial intersection with center $Z(G)$.

Summing up, we can easily see that G is a $Z C$ group.

Acknowledgement. The authors wish to express their gratitude to Professor Zvonimir Janko and Professor Vladimir C'epuluc', who have pointed out this problem to us.
Т. 51. Фізико-математичні науки.- 2006.- С. 3-4.
3. Huppert B. Endliche Gruppen I. Springer-Verlag. Berlin-Heidelberg-New York-1967.- P. 794.
4. Үоля M. Теория групп.- М.: НЛ, 1962.

О. Пилявська, Ю. Шатохіна

НЕРЕГУЛЯРНІ 2-ГРУПИ, ЩО ЗАДОВОЛЬНЯЮТЬ УМОВУ: КОЖНА ЦИКЛІНА ПІДГРУПА МІСТИТЬСЯ В ЦЕНТРІ АБО МАЄ 3 НИМ ТРИВІАЛЬНИЙ ПЕРЕТИН

Abstract

Автори висловлюють подяку ирофесору 3. Янку та професору В. Чепулічу, які запропонували розглянути настуину проблему, поставлену Я. Берковичем: «Нехай р-груиа G задовольняє умову: Якию Z є циклічною підррупою ерчпи G, то $Z \leq Z(G)$ або $Z \cap Z(G)=\{1\}$. Класифікуєати всі такі груии. Груии, ио задоөольняють тю умоєу, назвено ZС-групами. Аоторами було доведено, ио регуяярні ZС-групи вичерпуються абелевими групами та групами експоненти p.

У даній роботі ми розглядаемо нерегулярні 2-групи. Довено деякі необхідні умови того, ио неабелева 2-група є ZС-групою. Побудовано мінімальний приклад нерегулярной 2 -груии з дєома твірними, яка є ZС-групою.

