МАТЕМАТИКА

УДК 712.544

Pylyavska O., Shatohina Ju.

THE NON-REGULAR 2-GROUPS SATISFYING THE CONDITION: EACH CYCLIC SUBGROUP IS CONTAINED IN THE CENTER OR HAS A TRIVIAL INTERSECTION WITH IT

Y. Berkovich formulated the following problem: «Suppose that p-group G satisfies the following condition: if C is a cyclic subgroup of G then either $C \le Z(G)$ or $C \cap Z(G) = \{1\}$. Classify all such groups.» The authors have proved that each regular p-group satisfies this condition if and only if it is either abelian or a group of exponent p.

Here we regard the non-regular 2-groups. Some necessary conditions for non-abelian 2-group in which every cyclic subgroup is contained in the center or has a trivial intersection with it are pointed. The minimal example of non-regular 2-group with 2 generators satisfying this condition is constructed.

1. Introduction

Let G be a non-trivial finite p-group, Z(G) – the center of G.

In his book [1] Y. Berkovich formulated the following problem. «Suppose that *p*-group G satisfies the following condition: if C is a cyclic subgroup of G then either $C \le Z(G)$ or $C \cap Z(G) = \{1\}$. Classify all such groups».

The *p*-group which satisfies this condition we will call the *ZC*-group.

The authors ([2]) have proved that a regular *p*group is ZC-group if and only if it is either the group of exponent *p* or an abelian group. The *p*-group *G* is called to be *regular* if for each $g,h \in G$ we have

$$g^p h^p = (gh)^p \prod s_i^p,$$

where s_t is an element from the commutator subgroup $\langle g, h \rangle$ of the group generated by g. h ([3],[4]).

It is easy to see that each non-abelian 2-group is non-regular.

In the first part of the paper we consider the question when the non-abelian ZC-group is the direct product of some ZC-groups M and N. We prove that this claim holds if and only if $\exp Z(M) = = \exp Z(N) = p$:

In the second part of the paper we prove three theorems, which give the necessary conditions for 2-group to be the ZC-group.

In the third part we regard the 2-groups of class

3 and prove some necessary conditions for them to be the ZC-group.

In the final part of this paper we use these statements to construct the minimal example of nonregular 2-group with two generators, which is a ZC-group.

2. The factorization of the ZC-group as a direct product of ZC-groups

We want to prove the next theorem:

Theorem 1. Let M, N are the ZC-groups. The non-abelian group G $M \times N$ is ZC-group if and only if $\exp Z(M) = \exp Z(N) = p$.

We need the next lemma for proving.

Lemma 1. Let non-abelian p-group G be ZCgroup. Then Z(G) is an elementary abelian group.

Proof. Let G be a non-abelian ZC-group. We want to show that G has an element g of order p, which does not belong to the center, $g \notin Z(G)$. Really, consider the factor-group F = G/Z(G). Let Z(F) be a center of F, $\overline{g} \in Z(F)$ – element of order p. For each preimage g of \overline{g} we have $g^p \in Z(G)$ but $g \notin Z(G)$. G is a ZC-group, so $g^p = 1$.

Suppose that $\exp Z(G) > p$.

Let $g \in G$ be an element of exponent $p, g \notin Z(G)$. Choose the element $z_1 \in Z(G)$ such as $\exp z_1 = p^m > p$. The element z_1g does not belong to the center and has an exponent which is equal to the exponent of element z_1 . The cyclic subgroup $C = \langle z_1g \rangle$ has the non-trivial subgroup C^p , which is generated by the element $(z_1g)^p = z_1^p g^p = z_1^p \neq 1$ and is contained in the center of G. The contradiction with the condition that G is a ZC-group leads to $\exp Z(G) = p$.

The Lemma is proved.

Proof of Theorem 1. Let $G = M \times N$ be a nonabelian group ZC-group, where M, N are ZCgroups. If M(N) is non-abelian, then from Lemma 1 we have $\exp Z(G) = p$ ($\exp Z(N) = p$). Suppose M is abelian. Then M is contained in the center Z(G) of group G. According to Lemma 1 we have $\exp Z(G) = \exp M = p$.

On the other hand, suppose that M, N are ZCgroups and $\exp Z(M) = \exp Z(N) = p$. Let C be a cyclic subgroup of G, $C = \langle g \rangle$ and let $C \not\subset Z(G)$. G is the direct product of M, N, so $g = g_1g_2$, where $g_1 \in M, g_2 \in N$. We may assume, without a loss of generality, that $g_1 \notin Z(G_1)$. Let $|g_1| = p^k$, $|g_2| = p^m$. If $k \ge m$ then $|g| = |g_1| = p^k$ and for each $i \le k$ holds $g^{p'} \notin Z(G)$, so C have a trivial intersection with Z(G). If k < m then $|g_2| > p$, according Theorem 1 $g_2 \notin Z(G_2)$. Similarly, we obtain $g^{p'} \notin Z(G)$. Thus G is a ZC-group. The proof of Theorem 1 is complete.

3. The sufficient conditions for 2-group to be a ZC-group

Here we will regard non-abelian 2-groups.

We will denote the second member of the upper central series by $Z_2(G)$ and the nilpotency class of G by cl(G).

For a finite p-group G and each non-negative integer k, we define subgroups $\Omega_k(G) =$

$$= \left\langle g \in G \, | \, g^{p^k} = 1 \right\rangle \text{ and } \boldsymbol{\nabla}_k(G) = \left\langle x^{p^k} \, | \, x \in G \right\rangle.$$

Theorem 2. Let non-abelian 2-group G be ZCgroup. Then

1) $Z_2(G)$ is an elementary abelian group;

2) each element $g \in G$ of order 2 belongs to the centralizer $Z_2(G)$ of in G.

Proof. Assume the non-abelian 2-group G is a ZC-group.

1) Suppose there is $y \in Z_2(G)$, such as $y^2 \neq 1$. *G* is a ZC-group, so $y^2 \notin Z(G)$. Then, there exists the element $a \in G$, such as $[a, y^2] = z \neq 1$, where $z \in Z(G)$. For each element $y \in Z_2(G)$ and each $a \in G$ holds $[a, y] \in Z(G)$. On the other hand, $z = [a, y^2] =$ $= [a, y] [a, y]^y = [a, y]^2$. So we obtain $\exp Z(G) > 2$. This contradiction with Lemma 1 proves that $\exp Z_2(G) = 2$, so $Z_2(G)$ is an elementary abelian 2-group.

2) Let $g \in G$, $g^2 = 1$ and $y \in Z_2(G)$. Suppose $[g, y] = z \neq 1$, where $z \in Z(G)$. Then from $y^2 = g^2 =$ = 1 we have $(gy)^2 = z \in Z(G)$. According to Lemma 1 expZ(G) = 2, so $gy \notin Z(G)$ and the cyclic subgroup which is generated by this element has non-trivial intersection with Z(G). The contradiction with the condition that G is a ZC-group proves the Theorem.

Next corollaries obviously follow from Theorem 2.

Corollaries. Let 2-group G be a ZC-group. Then

1) $cl(G) \ge 3;$

2) $\Omega_1(G)$ is contained in the centralizer of $Z_2(G)$.

We will denote $G_1 = G$. For each non-negative integer $k \ge 1$, we define the subgroups $G_k = [G, G_{k-1}]$.

Theorem 3. Let 2-group G be a ZC-group and the derived subgroup G_2 is an elementary abelian group. If cl(G) = l then $exp \ G \le 2^{l-1}$.

Proof. It is easy to see that condition $exp G = 2^k$ is equivalent to

$$\mathfrak{O}_{k}(G) = \left\langle x^{p^{k}} \mid x \in G \right\rangle = 1,$$

$$\mathfrak{O}_{k-1}(G) = \left\langle x^{p^{k-1}} \mid x \in G \right\rangle \neq 1$$

Let $cl(G) = l \ge 3$. Assume $\exp G = 2^k$, where k > l - 1. There is an element $a \in G$, such as $a^{2^{k-1}} \ne 1$. According to Lemma 1 $a \notin Z(G)$. Since G is a ZC-group, then $a^{2^{k-1}} \notin Z(G)$. Thus, there exists the element $b \in G$ such as $[b, a^{2^{k-1}}] \ne 1$. Denote $d_i = a^{2^i}, c_1 = [b, a], c_{i+1} = [b, d_i]$. It is easy to see $d_i = d_{i-1}^2$ (i = 2, ..., k - 1) and $c_j \ne 1$ (j = 1, ..., k). Since G_2 is an elementary abelian group, then $c_{i+1} = [b, d_i] = [b, d_{i-1}^2] = [b, d_{i-1}]^2 [b, d_{i-1}, d_{i-1}] = [c_i, d_{i-1}]$. In this way from $c_1 \in G_2$ we obtain $c_i \in G_{i+1}$. Therefore we have $G_{k+1} \ne 1$, where k + 1 > l. As this contradicts the assumption that cl(G) = l, the Theorem is proved.

4. ZC-groups with nilpotency class 3

Let 2-group G be a ZC-group, and cl(G) = 3.

Theorem 4. If 2-group G is a ZC-group and cl(G) = 3 then $\Phi(G)$ is an elementary abelian group.

Proof. The condition cl(G) = 3 implies that G_3 is contained in the Z(G) and the derived subgroup G_2 is contained in the $Z_2(G)$. Therefore G_2 is an elementary abelian group. Theorem 3 implies $\exp G \le 2^2$. Since all groups of exponent 2 are abelian, then $\exp G = 2^2$. In this case $\mathfrak{V}_2(G) = 1$, $\mathfrak{V}_1(G) \ne 1$, $\mathfrak{V}_1(G) \subseteq \Omega_1(G)$. From Corollary 2 we have $\Omega_1(G) \subseteq \subseteq C_G(Z_2(G))$ and so each element $\mathfrak{V}_1(G)$ of commutes with each element of G_2 . Note that Frattini subgroup $\Phi(G)$ of an arbitrary *p*-group *G* is generated by the derived subgroup G_2 and $\mathfrak{V}_1(G)$, namely $\Phi(G) = G_2 \cdot \mathfrak{V}_1(G)$, wherefrom $\Phi(G)$ is elementary abelian. The Theorem is proved.

Theorem 5. If 2-group G is a ZC-group and cl(G) = 3 then $\Phi(G) = \mathfrak{V}_1(G)$.

Proof. Note that the assumption of the theorem implies that $G_2 \subseteq Z_2(G)$. We want to show that every commutator $c \in G_2$ belongs to $\mathfrak{V}_1(G)$. Let $c = [b, a] \neq 1$. If $b^2 = 1$, then, by the Theorem 2, 2) the element b belongs to the centralizer of $Z_2(G)$ in G. Thus $(ab)^2 = a^2c$ and c belongs to $\mathfrak{V}_1(G)$. If $a^2 = d \neq 1, b^2 = f \neq 1$ then $(ab)^2 = a^2b^2c[c,b]$. The commutator [c, b], where $c^2 = 1$, belongs to $\mathfrak{V}_1(G)$ as well as given above. Summing up, we obtain $G_2 \subseteq \mathfrak{V}_1(G)$, and thus $\Phi(G) = \mathfrak{V}_1(G)$. The Theorem is proved.

Corollary. If 2-group G is a ZC-group and cl(G) = 3 then $\mathfrak{V}_1(G) = A \times G_2$, where A is an elementary abelian group.

Lemma 2. If 2-group G is a ZC-group and cl(G) = 3 then for each $g \in G$ and each $f \in \Phi(G)$ holds $[g, f] \in G_3$.

Proof. According to Theorem 5, for each $f \in \Phi(G)$ holds $f \in \mathfrak{V}_1(G)$ and consequantly there exists $a \in G$ such as $f = a^2$. According to Theorem 4 $\Phi(G)$ is an elementary abelian group, then for each $g \in G$ we have $[g, f] = [g, a^2] = [g, a]^2 [g, a, a] =$ $= [g, a, a] \in G_3$. Lemma 2 is proved.

5. The construction of ZC-group

The aim of this part of the paper is to construct the minimal example of ZC-group.

Suppose that the following conditions hold:

1. a 2-group G is ZC-group;

2. cl(G) = 3;

3. G has two generators: $G = \langle a, b \rangle$.

According to the Theorem 3 we have $\exp(G) = 2^2$.

It is easy to see that the conditions 2), 3) give the minimal value for the number of generators, for the class of nilpotency of G and for the exponent of G.

Proposition 1. Suppose 2-group G is a ZCgroup with 2 generators and cl(G) = 3. Then for each $g \in G \setminus \Phi(G)$ holds $g^2 \neq 1$ and $g^2 \notin Z(G)$.

Proof. Really, suppose that there exists $b \in G \setminus \Phi(G)$ such as $b^2 = 1$. Consider the subgroup $B = \langle b, \Phi(G) \rangle$. If B is abelian, then $\exp(B) = 2$. Since $\exp(G) > 2$ then there is an element $a \in G \setminus B$, such as $a^2 = d \neq 1$. Here $d \in \Phi(G) \subset B$, so [d,b]=1. This being the case that G has two generators, we may consider $G = \langle a, b \rangle$. The element d commutes with a and b, so $g \in Z(G)$. We obtain the contradiction to the claim that G is a ZC-group.

If B is not abelian, then there exists an element $f \in \Phi(G)$, such as $[b, f] = z \neq 1$ and $z \in Z(G)$. From $b^2 = f^2 = 1$ follows that $(fb)^2 = z \in Z(G)$. Since $fb \notin Z(G)$, it contradicts the claim that G is a ZC-group. The Proposition is proved.

Proposition 2. Suppose 2-group G is a ZCgroup with 2 generators, $G = \langle a, b \rangle$, and cl(G) = 3. Then $\mho_1(G) = H \times G_2$, where $H = \langle a^2 \rangle_2 \times \langle b^2 \rangle_2$.

Proof. We want to show for each $a,b \in G$, where $G = \langle a,b \rangle$, holds $a^2 = d \neq 1, b^2 = f \neq 1$ and $d \notin \langle f, G_2 \rangle$.

Really, suppose d = fg, where $g \in G_2$. From $G = = \langle a, b \rangle$ we have $G_2 = \langle [b, a] \rangle \mod G_3$. Denote $c = [b, a] \neq 1$. So $d = f^{\epsilon_1} c^{\epsilon_2} z$, where $z \in Z(G)$, $\epsilon_1, \epsilon_2 = 0, 1$. If $\epsilon_2 = 0$ then from 1 = [a, d] = [a, fz] = = [a, f] we have $f \in Z(G)$. It contradicts to the claim that G is a ZC-group.

If
$$\varepsilon_1 = \varepsilon_2 = 1$$
 then

 $(ab)^2 = a^2b^2c[c,b] = fcz \cdot f \cdot c[c,b],$ where $[c,b] \in Z(G)$. According to Lemma 1 Z(G)is an elementary abelian group, so $(ab)^2 = z[c,b] \in C(G)$. By Proposition 1 $(ab)^2 \neq 1$. We have the contradiction again.

If $\varepsilon_1 = 0$, $\varepsilon_2 = 1$ then d = cz and [c, a] = 1. Thus $[b,d] = [b,a]^2 [b,a,a] = c^2 [c,a] = 1$. From $G = \langle a,b \rangle$ we have $d \in Z(G)$. It contradicts to the claim that G is a ZC-group.

Summing up we can conclude, that $d \notin \langle f, G_2 \rangle$ and that $\mathfrak{O}_1(G) = H \times G_2$, where $H = \langle d, f \rangle$. Since $d = a^2, f = b^2 \in \Phi(G)$ and $\Phi(G)$ is elementary abelian, then $H = \langle a^2 \rangle_2 \times \langle b^2 \rangle_2$. Proposition 2 is proved.

Proposition 3. Suppose 2-group G is a ZCgroup with 2 generators and cl(G) = 3. Then $|G_3| > 2$.

Proof. The assumption that G has two generators, $G = \langle a, b \rangle$, implies that $G_2 = \langle [a,b] \rangle \mod G_3$. Denote $[a,b] = c, c \in Z_2(G) \setminus Z(G)$. $\Phi(G)$ is elementary abelian, so

 $G_3 = \langle [c,a], [c,b], [h,a], [h,b] | h \in \Phi(G) \rangle.$

Without a loss of generality we may assume that $[c,a] \neq 1, [c,a] = z_1 \in Z(G)$.

We want to show that $[b,c] = z_2 \notin \langle z_1 \rangle$. Really, [b,c] = 1 if then $[a, f] = [a, b^2] = [a,b]^2 [a,b,b] = c^2 [c,b] = 1$, where $f = b^2$. Therefore $f \in Z(G)$. It contradicts to the claim that G is a ZC-group.

If $[b,c] \neq 1$, $[b,c] \in \langle z_1 \rangle$ then for b' = ab holds [b',c] = 1 and similarly we obtain $b'^2 \in Z(G)$. The contradictions obtained prove that $[b,c] = z_2 \notin \langle z_1 \rangle$, and, in this way, $|G_3| > 2$. The proof of Proposition 3 is completed.

Now we want to construct the 2-group of minimal order which is a ZC-group.

Suppose that G has two generators, cl(G) = 3, $|G_3| = 4$ and $G_3 = Z(G)$. Thus we may assume $G = \langle a, b, c, d, f, z_1, z_2 \rangle$, where $c = [b, a] \neq 1$, $d = a^2$, $h = b^2$, $z_1 = [c, a]$, $z_2 = [c, b]$, $z_1 \cdot z_2 \in Z(G)$. The last relations give $[a, f] = [a, b^2] = [a, b]^2 [a, b, b]$. Since $\Phi(G)$ is an elementary abelian group, $\Phi(G) = = \langle c, d, f, z_1, z_2 \rangle$, then $[a, f] = [c, b] = z_2$. Analogously, $[b, d] = [c, a] = z_1$. So, we have the following relations of group G:

$$G = \langle a, b, c, d, f, z_1, z_2 | a^2 = d, b^2 = f,$$

$$c^2 = d^2 = f^2 = z_1^2 = z_2^2 = \mathbf{1}, [b, a] = c,$$

$$[c, a] = z_1, [d, a] = \mathbf{1}, [f, a] = z_2, [z_i, a] = \mathbf{1},$$

$$[c, b] = z_2, [d, b] = z_1, [f, b] = [z_i, b] = \mathbf{1},$$

$$[d, c] = [f, c] = [z_i, c] = [f, d] = [z_i, d] = \mathbf{1},$$

$$[z_i, f] = [z_1, z_2] = \mathbf{1}, (i = \mathbf{1}, 2) \rangle$$

Verify that this group G is a ceach $g \in G$ has the following presentation: $g = a^{\alpha}b^{\beta}c^{\gamma}d^{\delta}f^{\lambda}z_{1}^{\mu}z_{2}^{\nu}$, where $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu = 0, 1$. Consider the cyclic subgroup $C = \langle g \rangle$. If $\alpha = \beta = \gamma = \delta = \lambda = 0$ then $g \in \in Z(G)$ and C is contained in the center Z(G).

1. Berkovich Y. Groups of prime power order. In preparation.

2. Pylyavska O., Shatohina Ju. The p-groups satisfying the

condition: each cyclic subgroup is contained in the center or has

a trivial intersection with it // Наукові записки НаУКМА.-

If $\alpha = \beta = 0$ then $g \in \Phi(G)$ and $g^2 = 1$, so C has a trivial intersection with center Z(G).

If $\alpha = 0, \beta = 1$ then $g \notin \Phi(G), g^2 = b^2 c^{\gamma}[c^{\gamma}, b] \times d^{\delta}[d^{\delta}, b]c^{\gamma}d^{\delta}f^{2\lambda} = fz$, where $z \in Z(G), f \notin Z(G)$. Thus C has a trivial intersection with center Z(G).

If $\alpha = 1, \beta = 0$ – as given above – C has a trivial intersection with center Z(G).

If $\alpha = 1, \beta = 1$ then $g \notin \Phi(G)$, analogously $g^2 = dfz$, where $z \in Z(G)$ by Proposition 2 $df \notin Z(G)$. Thus C has a trivial intersection with center Z(G).

Summing up, we can easily see that G is a ZC-group.

Acknowledgement. The authors wish to express their gratitude to Professor Zvonimir Janko and Professor Vladimir C'epuluc', who have pointed out this problem to us.

Т. 51. Фізико-математичні науки.- 2006.- С. 3-4.

- 3. Huppert B. Endliche Gruppen 1. Springer-Verlag, Berlin-Heidelberg-New York.- 1967.- P. 794.
- 4. Холл М. Теория групп.- М.: ИЛ, 1962.

О. Пилявська, Ю. Шатохіна

НЕРЕГУЛЯРНІ 2-ГРУПИ, ЩО ЗАДОВОЛЬНЯЮТЬ УМОВУ: КОЖНА ЦИКЛІЧНА ПІДГРУПА МІСТИТЬСЯ В ЦЕНТРІ АБО МАЄ З НИМ ТРИВІАЛЬНИЙ ПЕРЕТИН

Автори висловлюють подяку професору 3. Янку та професору В. Чепулічу, які запропонували розглянути наступну проблему, поставлену Я. Берковичем: «Нехай р-група G задовольняє умову: Якщо Z є циклічною підгрупою групи G, то $Z \leq Z(G)$ або $Z \cap Z(G) = \{1\}$. Класифікувати всі такі групи». Групи, що задовольняють цю умову, назвемо ZC-групами. Авторами було доведено, що регулярні ZC-групи вичерпуються абелевими групами та групами експоненти р.

У даній роботі ми розглядаємо нерегулярні 2-групи. Довено деякі необхідні умови того, що неабелева 2-група є ZC-групою. Побудовано мінімальний приклад нерегулярної 2-групи з двома твірними, яка є ZC-групою.