

Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра мережних технологій факультету інформатики

“Introducing real-time boundless data with websockets”

Текстова частина до курсової роботи

за спеціальністю „Комп’ютерні науки та інформаційні технології”-122

Керівник курсової роботи:

док.техн.наук, доц. Глибовець А.М.

(підпис)

“ ” 2020 року

Виконала: студентка КНІТ-4

Діденко В. О.

(підпис)

“ ” 2020 року

Київ 2020

1

Ministry of Education and Science of Ukraine

NATIONAL UNIVERSITY OF "KYIV-MOHYLA ACADEMY"

Network Technologies Department of the Faculty of Informatics

APPROVED

Head of the Network Technologies Department

associate professor, doctor of mathematics

_______________________ G.I. Malaschonok

 (signature)_____________________________

“____” ____________ 2019 year.

INDIVIDUAL TASK

For the course work

For 4-year Bachelor student of the Faculty of Informatics

TOPIC: Introducing real-time boundless data with websockets

Output data:

Text part content of coursework:

Individual task

Calendar plan

Abstract

Introduction

Section 1: Response time performance

Section 2: Choosing the data transfer method

Section 3: Displaying the large data set

Conclusion

References

Issue date “____” ____________ 2019 year

Supervisor ______________(signature)

Task received __________________(signature)_

2

CALENDAR PLAN

Theme: Introducing real-time boundless data with websockets

Stage Name Deadline Note

1 Acquiring course work topic 01.10.2019

2 Finding appropriate literature 10.11.2019

3 Exploring smooth navigation techniques 10.12.2019

4 Exploring Realtime 27.12.2019

5 Exploring data transfer methods 27.01.2020

6 Researching response time measurement 08.02.2020

7 Researching WebSocket performance 15.02.2020

8 Researching Long-polling performance 22.02.2020

9 Researching SSE performance 29.02.2020

10 Application implementation 27.03.2020

11 Outline of the coursework 27.03.2020

12 Coursework analysis with the Supervisor 28.03.2020

13 Coursework main section and conclusion 29.03.2020

14 Coursework analysis with the Supervisor 18.04.2020

15 Coursework improvement 18.04.2020

16 Creation of the presentation 18.04.2020

17 Handing in the coursework 19.04.2020

Student: Didenko V.O. “____” ________________

Supervisor: Glybovets A.M. “____” ________________

3

TABLE OF CONTENTS

TABLE OF FIGURES ... 4

ABSTRACT ... 5

INTRODUCTION .. 6

Section 1: Response time performance ... 8

1.1 Response time - what is the budget ... 8

1.2 Meeting the time constraint ... 11

Section 2: Choosing the data transfer method ... 14

2.1 Long Polling... 14

2.2 Server sent events .. 16

2.3 WebSockets ... 19

2.4 Implementation and performance comparison ... 21

Section 3: Displaying the large data set .. 45

3.1 Data preloading ... 46

3.2 Load balancing .. 47

3.3 Smooth rendering ... 49

CONCLUSION .. 51

RESOURCES ... 53

4

TABLE OF FIGURES

Figure 1: Calculating invoked event and repaint time ... 12

Figure 2: Calculating affordable data transfer time ... 13

Figure 3: Long Polling general flow .. 15

Figure 4: Server Sent Events general flow ... 16

Figure 5: WebSockets general flow .. 20

Figure 6: Class diagram of the server-side for data transfer method testing 23

Figure 7: Diagram of the Program class ... 24

Figure 8: Diagram of the Startup class ... 27

Figure 9: SignalR Hub concept .. 30

Figure 10: Diagram of the TestsHub class ... 31

Figure 11: Setting the data transfer method test parameters.. 41

Figure 12: Running the test for all three data transfer methods 42

Figure 13: Performance time test resuts for 100 calls .. 43

Figure 14: Performance time test resuts for 1000 calls .. 43

Figure 15: Performance time test results for 10000 calls .. 44

Figure 16: Displaying the large data set on a data table ... 45

Figure 17: Preloading data depending on scroll direction ... 46

Figure 18: Executing the processes during idle browser time....................................... 48

Figure 19: Optimized number of draws by painting the result in the next frame............ 49

Figure 20: Rendering only the elements that are in view point 50

Figure 21: Updating only the results ... 50

file:///C:/Users/misha/Downloads/Telegram%20Desktop/Coursework_Vera_Didenko.docx%23_Toc38131933

5

ABSTRACT

Loading and displaying a large data set with minimal delay has always

been a challenging task. With the increase of data set size, the loading time

before the data is displayed grows and the user experience suffers. In this

research work the aim is to load and display a large data set within the time

limit required for the user to perceive the response as instant and to provide

smooth navigation and a pleasant user experience. Based on multiple

research the required response time limit was determined to be 0.1 second.

Based on this time constraint the time that can be spent for each process

was calculated and after an empirical research the data transfer method for

loading the data and keeping it real-time was chosen to be WebSockets.

With WebSockets as the data transfer technology the large data set was

loaded and displayed on a sample data table under 100 milliseconds and a

smooth user experience was achieved.

6

INTRODUCTION

When it comes to working with large data sets, providing a swift and

pleasant user experience remains a challenge. While loading a large amount

of data is one task, displaying it quickly to the user is yet another: with the

growth of data set size, the total waiting time increases, therefore leading to

a poor user experience.

In this work the aim is to provide a smooth and pleasant user

experience while working with a large amount of real-time data: to quickly

load and show the data with minimal delay to the user, providing the feeling

that the user is working with the data in real-time. In order to solve the

problem of poor user experience, it is important to define the response time

budget, in other words the timeframe within which a user interaction should

complete in order to give the sensation to users that they are directly

manipulating elements in the UI and directly working with the data. This

includes understanding the key stages that it takes to respond to a user’s

input, setting the main focus on the data transfer stage. This course work

shows how the data transfer method that is chosen can help to achieve real

time data experience in web-applications. This course work focuses on the

performance factors of three data transfer technologies: Long Polling, Server

sent events and WebSockets, and among the three, points out the approach

which is best, from the performance and specification perspective, for the job

at hand.

The comparison of the data transfer methods is done in three stages.

At first an overview of each data transfer technology is given along with its

7

analysis in order to identify the performance factors. This is followed by an

empirical research which implies implementing each data transfer method

on a sample server to observe and compare their performance. The test

results are then gathered and compared and a conclusion is drawn as to

which technology is the most performance efficient.

The results of this work revealed that the choice of data transfer

technology does matter when it comes to response time performance.

WebSockets and Server sent events were measured to be the most

performance efficient of the compared technologies in the experimental

conditions used in this study, giving preference to WebSockets as the final

choice. With WebSockets as the selected data transfer method and by

balancing the CPU usage between data loading, calculations, and the

rendering stages, it is then demonstrated on the example of a data table how

the real-time effect is reached on a large data set by displaying the data to

the user under a tenth of a second.

8

Section 1: Response time performance

It is important to determine how fast the data needs to be displayed in

order to provide a real-time effect. The answer lies in setting the appropriate

response time limit. [1,2,3] Next, the established time frame needs to be

distributed among the tasks that take place under the hood to provide a

reaction to the user’s action in time.

1.1 Response time - what is the budget

According to multiple research and studies, when it comes to web-

based applications or any application for that matter, there are three main

time limits within which the application should respond to user input. These

response time constraints are defined as follows: 0.1 second, 1 second, and

10 seconds. An interesting point to consider is that although these guidelines

were introduced over 50 years ago, they remain accurate to this day and are

unlikely to change since they are based on human perceptive abilities alone.

[1,2,3]

The first time limit is 100 milliseconds. Based on how our eyes operate,

it is determined that any response given in this time is about the limit required

for a reaction to being perceived as instant. Remaining within this timeframe

provides the user with the sensation of directly making things happen on the

screen which is exactly the aim of real-time web-applications: users should

feel as though they are directly manipulating the data, the system responds

in a blink of an eye providing a smooth, without delay workflow. A practical

application of such can be demonstrated on the example of a data table with

multiple columns and rows. When a cell in the table is selected, the feedback

9

about its selection, such as highlighting, should be given under 100

milliseconds starting from the moment it was selected. This is also the

response time that should be aimed at when sorting values of a column in

ascending or descending order. Such a response time makes people feel

that they are highlighting elements in the table and sorting it, not that they

are ordering the computer to do it for them. [1,2,3]

The second limit is 1 second. In contrast to the fastest limit, with this

response time, people feel that the application is reacting to what they did as

opposed to feeling that they are making things happen. Although it is

possible to freely use the application, the delay is noticeable and the

instantaneous direct effect is lost. Returning to the data table example, if it is

not possible to sort the table based on the selected column within 100

milliseconds, it definitely needs to be sorted in 1000 milliseconds. Otherwise,

the user interface is perceived as being slow, taking away the flow sensation

while navigating the system. For delays over this limit, feedback should be

provided indicating that the process is in progress, for example displaying a

preloader. This leads to the last response time limit. [1,2,3]

The third response time constraint is 10 seconds and it defines the limit

until when the attention on the task can still be kept. This is how long people

can wait and still stay in the flow of the interaction while remembering what

they were in the process of doing. Nevertheless, it is without a doubt that

once it takes more than 1 second for an application to respond to an input,

people get brought down by the weight and feel they can’t use the application

freely. [1,2,3]

10

Bringing all the above together, it can be concluded that to provide the

user with the best experience when working with a large data set, the aim

should be to provide a response within a tenth of a second. In most situations

when working with large data sets, not the whole data set is loaded fully at

once into the browser, instead, the data is loaded by parts on demand during

runtime. The reason for this recommendation is because first of all, for users

to start working with the data, if there is no lazy loading implemented, they

will be required to wait for quite some time until it is all loaded and ready to

work with. Moreover, for some machines, it may be too much to handle a

large data set at one go. This could lead to lagging or even cause the browser

to crash because of the overload. On the other hand, when loading data by

parts on-demand, it is desired to load and display the data within 100

milliseconds to ensure a smooth workflow and provide the real-time effect.

[1,2,3,8,9,10,11,12]

11

1.2 Meeting the time constraint

As stated earlier, it is needed to meet the timeframe of 0.1 seconds.

The processes that need to take place to respond to an event can be pointed

out as the following: event handling, request composing, the handshake

process and connection establishment, data sending, server query,

response creation, receiving the response, displaying the result.

The processes that take place when the screen is updated and

repainted by the browser are encapsulated in a frame and the rate with which

each frame is generated is used to measure the interface responsiveness.

To maintain a responsive user interface and provide smooth interface

interactions, a high and steady frame rate must be kept. It is known that for

a user interface to be perceived as responsive, the frame rate of 60 frames

per second should be aimed for. In addition, the frames need to be kept equal

in length to ensure a steady frame rate, which in return helps to steer clear

of jaggy and rigid animations. [4,7,8,9,10,11,12]

Since the aim is to have a rate of 60 frames per second, it can be

calculated that each frame needs to take up about 16.7 milliseconds: 1000

(milliseconds) / 60 (frames per second) ≈ 16.7 (milliseconds).

[4,7,8,9,10,11,12] Taking into consideration that each frame can take up

about this much time and the goal is to provide a response within 0.1

seconds, it needs to be calculated how much milliseconds can be afforded

to spend on each process (that needs to take place to respond to the action)

while remaining within the time constraint.

12

This is portrayed in the example of what takes place when the data

table is scrolled. The invoked event takes up the first frame which

corresponds to 16.7 milliseconds. The last part is the rendering stage when

the result is shown to the user. Suppose this part takes up at most two frames

which adds up to 16.7 (milliseconds) + 16.7 (milliseconds) ≈ 33.4

(milliseconds). The first frame is for recalculations and the second frame is

requested for repainting the screen which will help to keep the frame rate

steady. Therefore, in the first frame, the requestAnimationFrame function is

called to draw the resulting elements in the next frame. [48,49,50,51] So, in

total, the time spent is 16.7 (milliseconds) + 33.4 (milliseconds) ≈ 50

(milliseconds). This leaves us with the following time span: 100

(milliseconds) - 50 (milliseconds) ≈ 50 (milliseconds). This is illustrated in

Figure 1: Calculating invoked event and repaint time.

Figure 1: Calculating invoked event and repaint time

For the processes that happen between the event frame and the

rendering stage, it can be afforded to spend 16.7x milliseconds, where x is

the number of idle frames used. [1,2,3,4] Since the remaining time is 50

13

milliseconds, it means that x has to be less than or equal to 3 frames: 16.7

(milliseconds) * 3 (frames) ≈ 50 (milliseconds). In other words, a connection

needs to be established with the server, the server needs to respond to the

request, and the received data needs to be sent back to the client within this

time.

In this work, the main focus is set on the data transfer layer. Therefore,

it is assumed that the server is a black box - it is known that there is no hold

up from the server: the server responses instantly when data is requested

from the data source and the total time spent is minimal and approaches 0

milliseconds. This leaves the connection and data transfer stages as the

main point of focus (illustrated in Figure 2: Calculating affordable data

transfer time). Therefore, it is vital to determine the data transfer method that

is most suitable for the job at hand to minimize the waiting time.

Figure 2: Calculating affordable data transfer time

14

Section 2: Choosing the data transfer method

In this work, the following data transfer methods that solve the problem

of real-time data updates from the server are selected as possible

candidates: Long Polling, Web Sockets, and Server-Sent Events.

Understanding the difference between them is essential in order to select the

technology with which performance can be gained. The next section is

dedicated to the analysis and comparison of the mentioned technologies.

Data transfer method presentation consists of: its definition and what it

implies, illustration of the general flow, protocol handshake example, and

portraying it on the task at hand. Assuming that the technology is being used,

it is identified how it affects the response time performance.

2.1 Long Polling

Long polling is considered to be one of the easiest ways to simulate a

continual connection with the server. In Long Polling, a connection is

established between the client and the server when the client sends a

request to the server and the server doesn’t close the connection until it has

data to send back. When data is available, the server responds to the request

by sending the data, which in return closes the connection, after which, the

client opens a new request. [13,14,26,27,28,29,30,31,32,33,34] This flow is

illustrated in Figure 3: Long Polling general flow.

15

Figure 3: Long Polling general flow

Although Long Polling provides a real-time data update from the

server, it is not a persistent connection, it only simulates it while in reality

there are a lot of requests to the server. Moreover, since the connection is

closed as soon as the server provides a data update, it will be required to

establish a new connection with the server with every single new request.

This affects the amount of traffic and message latency. In addition, with Long

Polling there could be an occasional timeout right after which the client

initiates a new request. It is also important to point out that Long Polling is

one way: there is no real way that the server could tell the client that new

data is available the moment it gets it, the server can only respond to an

open request. With this data transfer technology, a server push can only be

simulated: behind the scenes, there is always a request for data.

[13,14,26,27,28,29,30,31,32,33,34,35,36,37] An example implementation of

Long Polling usage on a sample server is provided in the 2.4 section of this

work.

16

2.2 Server sent events

Server sent events is a data transfer protocol that provides a way for

the server to send updates to the client, meaning that, in contrast to long

polling, it is no longer needed to open new requests to the server to check if

new data is available every time a response is received. This data transfer

method can be viewed as a subscription: the client subscribes to receive

updates from the server and the connection remains open. It is still one way

though: in contrast to long polling, where a client pull was possible, with

Server Sent Events a server push is provided instead. The described flow of

this data transfer method is illustrated on Figure 4: Server Sent Events

general flow. [13,14,15,16,17,18,25,26,27,28,29,30,31,32,33,34,35,36,37]

Figure 4: Server Sent Events general flow

This is provided by introducing two components: a new EventSource

interface in the browser and an event-stream data format. The EventSource

interface allows the client to receive real-time notifications from the server in

17

the form of DOM events and the event-stream data format’s purpose is to

deliver these updates. [14,15,16,17,18]

The Event Stream Protocol represents a streaming HTTP response

where a regular HTTP request is initiated by the client and a response is sent

from the server containing a custom “text/event-stream” content-type. Once

the connection is established, the server can stream UTF-encoded text-

based read-only event data to the client. [14,15,16,17,18] Below is an

example of the described process:

1

2

3

4

5

6

7

8

9

10

11

<= Request:

GET /tests/?id=m62tuAPjwu17ptw0lVzu6w HTTP/1.1

Host: olap.flexmonster.com:5013

Connection: keep-alive

Accept: text/event-stream

=> Response:

HTTP/1.1 200 OK

Content-Type: text/event-stream

Server: Kestrel

Transfer-Encoding: chunked

On line 2 the client connection is initiated via the EventSource interface. The

server response is provided on line 8 with the content-type specified as

“text/event-stream”. [14,15,16,17,18]

So, in comparison to Long Polling, even though there is no client pull,

the client automatically receives updates from the server and therefore time

is saved by not having to reopen the connection to receive new data every

time. [25,26,27,28,29,30,31,32,33,34,35,36,37] An example implementation

18

of Server Sent Events on a sample server is provided in the 2.4 section of

this work.

19

2.3 WebSockets

 A websocket represents a persistent connection between the client

and the server. In contrast to Server Sent Events and Long Polling which

follow HTTP, this data transfer technology introduces its own protocol for

data exchange known as the WebSocket protocol. WebSockets provide a

channel for the client and the server to communicate, which operates over

HTTP via a single TCP/IP socket connection, and is bidirectional as well as

full-duplex, enabling a two-way simultaneous data exchange that means

both the client and the server can send messages independently and at the

same time. [19,20,21,22,23,24,26,33] Figure 5: WebSockets general flow

illustrates the described method.

The WebSockets Protocol begins by the initial opening request -

handshake, after which the client and the server can start exchanging

messages. [19,20,21,22,23,24,26,33] Below is an example of how the

connection is established:

1

2

3

4

5

6

7

8

9

10

11

12

13

<= Request:

GET ws://olap.flexmonster.com:5011/tests/?id=fDdS8wO9A-UZFsMm1EaKDA

HTTP/1.1

Host: olap.flexmonster.com:5011

Connection: Upgrade

Upgrade: websocket

Origin: http://cdn.flexmonster.com

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: wLL3bL6eK/BOfLTgFGhGlA==

Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

=> Response:

HTTP/1.1 101 Switching Protocols

20

14

15

16

17

Connection: Upgrade

Server: Kestrel

Upgrade: websocket

Sec-WebSocket-Accept: /ZY8F8M6BcswYnOkE4Bfl5HOlLU=

So, in comparison to Server Sent Events, with WebSockets not only is

there a server push, but also the client can send messages to the server,

without having to establish a new connection. Moreover, both the server and

the client can send messages to each other at the same time.

[25,26,27,28,29,30,31,32,33,34,35,36,37] An example implementation of

WebSockets on a sample server is provided in the 2.4 section of this work.

Figure 5: WebSockets general flow

21

2.4 Implementation and performance comparison

An application was created using .NET Core and SignalR for testing

and visually comparing the performance of Long Polling, WebSockets, and

Server Sent Events to discover which data transfer approach is the most

performance efficient of the three. SignalR is an open-source library which

is aimed at making real-time web functionality simpler to implement. [38,39]

To ensure clarity, transparency and validity in the way the data transfer

technologies’ performance time is compared, the following precautions were

made. To start, on the implemented server three separate servers are started

for each data transfer method, each running on a separate port. Moreover,

each server uses the same implementation: the same controller and the

same request processor. In return, the client streams equally sized requests

and the application is written in such a way that it is either possible to stream

the requests to all three ports simultaneously, allowing to compare the

performance time for all data transfer methods at once, or to a specific one,

enabling to test a certain data transfer technology alone. The user interface

allows setting the size of the request and how many of them will be made for

a particular test. The performance time for each data transfer technology is

calculated starting from the command for establishing connection for the first

request and ending when the last request is received. To ensure fairness

during the performance test when the performance time for all three data

transfer methods is compared, each data transfer method gets the same

randomly generated data block of type string for the corresponding call,

meaning the current data block that needs to be transferred during a specific

call is the same for Server Sent Events, Long Polling, and WebSockets, if

22

the test is run for all three methods at once. In addition, no caching is used.

Keeping this in mind, in the next paragraphs of this section, the application’s

structure and implementation is described in more detail.

The application for testing the data transfer methods has the following

structure, where the client-side is provided in the client folder and the server-

side is represented by the Hubs folder, Program.cs and Startup.cs files:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.

├── client

│ ├── dist

│ │ └── browser

│ │ ├── signalr.js

│ │ └── signalr.min.js

│ ├── index.html

│ ├── style.css

│ └── tests.js

├── Hubs

│ ├── TestRequest.cs

│ ├── TestResponse.cs

│ └── TestsHub.cs

├── Program.cs

└── Startup.cs

Below is a class diagram of the server-side structure which consists of the

Program, Startup, TestsHub, TestRequest, and TestResponse classes (see

Figure 6: Class diagram of the server-side for data transfer method testing):

23

Figure 6: Class diagram of the server-side for data transfer method testing

The Program.cs file contains the Program class which is responsible

for configuring the application’s infrastructure and is the entry point of the

application. A close up view of the Program class part of the diagram is

illustrated in Figure 7: Diagram of the Program class. The Program class has

the DEFAULTS and ARGS_MAPPING private properties and contains the

public Main and the private CreateHostBuilder methods.

24

Figure 7: Diagram of the Program class

The DEFAULTS property defines the default input parameters for

starting the server: if no parameters are specified in the start server

command, by default the server will choose websockets as the data transfer

method which will run on port 5000. Below is a code snippet of the described

property:

1

2

3

4

5

6

7

private static readonly Dictionary<string, string> DEFAULTS =

new Dictionary<string, string>

{

 { "transport", "websockets"},

 { "port", "5000"}

};

The ARGS_MAPPING property maps the server start command’s

input parameters to the corresponding variables. The -t command parameter

stands for the data transfer type and the -port parameter represents the port

on which the server using the specified data transfer protocol will be run. In

the code snippet below it is shown how the ARGS_MAPPING property is

defined:

25

1

2

3

4

5

6

private static readonly Dictionary<string, string> ARGS_MAPPING =

new Dictionary<string, string>

{

 { "-t", "transport" },

 { "-port", "port" }

};

The Main method is responsible for configuring, building and running

the host, which is an object that encapsulates all of the app’s resources.

Organizing the app’s interdependent resources in a single host object

provides better application lifetime management. On line 3, in the code

snippet of the Main method’s implementation which is provided below, the

CreateHostBuilder method is called which creates the host builder and

provides the configurations to it, afterwards the Build method builds the host

object based on the provided builder and configurations, and then the host

is run by the Run method:

1

2

3

4

5

public static void Main(string[] args)

{

 CreateHostBuilder(args).Build().Run();

 System.Threading.Thread.Sleep(-1);

}

The next code snippet corresponds to the CreateHostBuilder method which

entails the configuration set up and build (lines 3-6), the port set up (line 7),

and the creation of the host object builder named hostBuilder (line 8) where

the built configurations are applied (line 12) and the defined port is used (line

18). The startup type containing the startup methods of the application to be

26

used by the host is specified to be of the Startup class type and is shown on

line 17. The created host object builder is then returned to be built and run

in the Main method [38,39,40,41,42]:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

public static IHostBuilder CreateHostBuilder(string[] args)

{

 var configBuilder = new ConfigurationBuilder()

 .AddInMemoryCollection(DEFAULTS)

 .AddCommandLine(args, Program.ARGS_MAPPING);

 var configuration = configBuilder.Build();

 var port = configuration.GetValue<string>("port");

 var hostBuilder = Host.CreateDefaultBuilder(args)

 .ConfigureAppConfiguration(

 (hostingContext, configBuilder)=>

 {

 configBuilder.AddConfiguration(configuration);

 }

)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>()

 .UseUrls("http://0.0.0.0:" + port);

 }

);

 return hostBuilder;

 }

The Startup class defined in the Startup.cs file contains the startup

methods for the application. A close up view of the Startup class part of the

diagram is illustrated in Figure 8: Diagram of the Startup class. The Startup

class has the Configuration public property and Startup constructor and

contains the following public methods: ConfigureServices and Configure.

27

Figure 8: Diagram of the Startup class

Upon initialization, the configurations containing the data transfer type along

with other application configurations are set via the defined constructor

below:

1

2

3

4

5

public Startup(IConfiguration configuration)

{

 Configuration = configuration;

}

public IConfiguration Configuration { get; }

The request pipeline which is responsible for handling all the incoming

requests is configured in the ConfigureServices method shown in the code

snippet below where cross-origin resource sharing is configured for the

application:

1

2

3

4

5

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(options =>{

 options.AddPolicy("CorsPolicy",

 builder => builder

28

6

7

8

9

10

11

12

13

14

 .AllowAnyMethod()

 .AllowAnyHeader()

 .AllowCredentials()

 .SetIsOriginAllowed((host) => true));

 });

 services.AddSignalR(hubOptions =>{

 hubOptions.EnableDetailedErrors = true;

 });

}

In the Configure method the services defined in ConfigureServices are

applied. In addition, as shown in the Configure method’s code snippet below,

the data transport type is set based on the provided configurations. On lines

1-2 the transport type value is retrieved from the configurations. Since the

application supports default input parameters if none were specified in the

start command and the default transport type is set to websockets, on the

third line the transportOptions variable is initialized as WebSockets. The

HttpTransportType enumeration type provides several flag attributes that

define which data transport type is used, those being the following:

LongPolling, None, ServerSentEvents, and WebSockets. [38,39] On lines 4-

18 the transport type that is in the configurations is checked via the switch

case approach and the transportOptions variable’s value is updated if

needed.

29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

string transportType =

this.Configuration.GetValue<string>("transport");

HttpTransportType transportOptions =HttpTransportType.WebSockets;

switch (transportType.ToLower())

{ case "websockets":

 case "ws":

 transportOptions = HttpTransportType.WebSockets;

 break;

 case "longpolling":

 case "lp":

 transportOptions = HttpTransportType.LongPolling;

 break;

 case "serversentevents":

 case "sse":

 transportOptions = HttpTransportType.ServerSentEvents;

 break;

}

Next, the application’s endpoints are configured via the UseEndpoints

method. In the created application only one endpoint is needed - the page

displaying the performance tests input parameters and results, and this

endpoint is defined as /tests. This is demonstrated in the code snippet below:

1

2

3

app.UseEndpoints(endpoints =>{

 endpoints.MapHub<TestsHub>("/tests", options =>

 {options.Transports = transportOptions;});});

The SignalR library uses a high-level pipeline to enable the client and

the server to call methods on each other and this pipeline is called a hub.

[38,39,40,41,42] This concept is illustrated on the diagram in Figure 9:

SignalR Hub concept below:

30

Figure 9: SignalR Hub concept

A hub is created by declaring a class which inherits from Hub - the

base class for a SignalR hub. The created hub class can then have its own

methods and the methods that are defined as public can be called by the

client. [38,39,40,41,42] In the created application the hubs are kept in the

Hubs folder. This folder contains the TestsHub.cs, TestRequest.cs, and

TestResponse.cs files, with the TestsHub.cs being the one where the

TestsHub class is defined inheriting from Hub. The TestsHub class is

responsible for processing requests and contains the private random

property together with the following public methods: runTest and generate.

A close up view of the application’s class diagram part that contains the

TestsHub class is shown in Figure 10: Diagram of the TestsHub class below:

31

Figure 10: Diagram of the TestsHub class

The runTest method accepts the request from the client, based on the

request’s parameters generates the data block, creates the response and

returns it back to the client. This method is invoked by the client during the

performance tests. Below is a code snippet demonstrating the described

method’s implementation:

1

2

3

4

5

6

public TestResponse runTest(TestRequest request)

{

 TestResponse response = new TestResponse();

 response.data = this.generate(request.blockSize);

 return response;

}

The request and response objects are defined as instances of the

TestRequest and TestResponse classes respectively. These classes are

defined in the TestRequest.cs and TestResponse.cs files and they are

created for handling more complex requests easier and applying necessary

32

changes more swiftly. As shown in the code snippet below, the

TestResponse class contains the data string property which corresponds to

the string data block which is sent back to the client:

1

2

3

4

public class TestResponse

{

 public string data { get; set; }

}

The string data is generated by the TestsHub’s generate method:

1

2

3

4

5

6

7

8

9

private static Random random = new Random();

public string generate(int blockSize)

{

 const string chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

 string result = new string(Enumerable.Repeat(

 chars,

 blockSize).Select(s => s[random.Next(s.Length)]).ToArray());

 return result;

}

To ensure that each returned block size is the same, the blockSize property

is passed to the generate method. This property is defined in the request

sent by the client, which is represented by the TestRequest class. The

implementation is provided in the code snippet below:

1

2

3

4

public class TestRequest

{

 public int blockSize { get; set; }

}

33

The client folder contains the page structure (index.html) and style

(style.css) as well as the logic for displaying and updating the performance

test results (tests.js).

The tests.js logic is organized in the following sections. First the urls

mapping for each of the data transfer types and the corresponding URL is

defined as shown in the code snippet below:

1

2

3

4

5

const urls = {

 "websockets": "http://olap.flexmonster.com:5011/tests/",

 "longpolling": "http://olap.flexmonster.com:5012/tests/",

 "serversentevents": "http://olap.flexmonster.com:5013/tests/"

}

Every test has its own index for identification and the first test is initially given

the value zero:

1 var testIndex = 0;

The performance test itself is represented by the Test class, this means that

with each new test a new instance of the Test class is created and then the

performance test is started. The window.requestIdleCallback() method

ensures that the start function, responsible for starting the test, is called

during the browser's idle periods, which in return helps to prevent impacting

latency-critical events such as animation and input response.

[43,44,45,46,47]

34

1

2

3

4

5

6

var test = new Test(testIndex++,

 transport,

 numberOfCalls,

 blockSize

);

window.requestIdleCallback(() => {test.start();})

The Test class constructor’s implementation is provided in the next code

snippet and it sets the following properties: the index represents the

identification of the corresponding test; the transport specifies the data

transfer type; the blockSize defines the size of the data block that will be

transferred during the performance test; the numberOfCalls stands for the

amount of requests that will be streamed by the client during the test; the

responseSize property displays the number of bytes loaded during the test;

the callNum property is used for keeping track of how many requests have

already been made during the test; the timeSpent property represents the

total time spent during the performance test; the connection property is

responsible for creating and starting the connection with the hub to call the

needed hub methods from the client. In this case the hub that is connected

to is the one defined by the TestsHub class described earlier in this section.

The above description is provided in the code snippet below:

35

1

2

3

4

5

6

7

8

9

10

11

constructor(index, transport, numberOfCalls, blockSize) {

 this.index = index;

 this.transport = transport;

 this.blockSize = blockSize;

 this.numberOfCalls = numberOfCalls;

 this.responseSize = 0;

 this.callNum = 0;

 this.timeSpent = 0;

 this.connection = new signalR.HubConnectionBuilder()

 .withUrl(urls[this.transport]).build();

}

The start method is responsible for starting the performance test. On line 4

the time calculation is started and on lines 5-9 the corresponding hub method

is called by the _invoke function:

1

2

3

4

5

6

7

8

9

10

start() {

 document.getElementById("btnRun").disabled = true;

 this._addNewLine();

 this.startTime = Date.now();

 this.connection.start().then(() => {

 this._invoke();

 }).catch(error => {

 this.addError(error);

 });

}

On line 2 the runTest public method, which was defined in the TestsHub

class on the server-side, is called from the client. The invoke method accepts

the following parameters: the name of the hub method to be called and the

required arguments that are defined in the corresponding hub method.

36

[38,39,40,41,42] In this case, the runTest hub method is called and the

needed block size is passed to the hub method to specify the size of the data

block that needs to be generated on the server and returned to the client.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

_invoke() {

 this.connection.invoke("runTest", {

 blockSize: parseInt(this.blockSize)

 }).then(response => {

 this.addResponse(response);

 this.draw();

 if (this.callNum < this.numberOfCalls)

 this._invoke();

 else

 this.stop();

 }).catch(error => {

 this.addError(error);

 });

}

When the response is received, the number of loaded bytes is added to the

responseSize variable via the addResponse method (line 5), the result is

rendered in the draw method (line 6), and the hub method is called again if

the number of currently made requests is below the total one specified in the

input parameters of the test. If the set number of calls is reached, the method

invocation is stopped and this means the performance test is finished. The

addResponse method’s implementation is provided below:

37

1

2

3

4

5

addResponse(response) {

 this.responseSize += JSON.stringify(response).length;

 this.timeSpent = Date.now() - this.startTime;

 this.callNum++;

}

On line 3, in the addResponse method’s implementation, the total spent time

is updated and on line 4 the number of made calls is incremented. When the

performance test is completed, the button to start a new performance test is

enabled allowing the user to run another test:

1

2

3

stop() {

 document.getElementById("btnRun").disabled = false;

}

Returning to the start method, when the test is started the test object is

displayed to the user with the test parameter values via the _addNewLine

method. The implementation is provided in the code snippet below:

1

2

3

4

5

6

7

8

9

10

11

12

_addNewLine() {

 let rowHtml = `

 <div class="output" id="output${this.index}">

 <div class="label">${this.transport}</div>

 <div class="label">${this.blockSize}</div>

 <div class="label">${this.callNum}</div>

 <div class="label">${this.responseSize}</div>

 <div class="label">${this.timeSpent} ms</div>

 <div class="label"></div>

 </div>

 <div class="delimiter"></div>`;

 window.requestAnimationFrame(

38

13

14

15

16

17

 () => {

 document.getElementById("output").innerHTML += rowHtml;

 }

);

}

The test parameters’ display is updated via the draw method shown in the

code snippet below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

draw() {

 const percent = Math.round(

 10000 * this.callNum / this.numberOfCalls) / 100;

 let testHtml = `

 <div class="label">${this.transport}</div>

 <div class="label">${this.blockSize}</div>

 <div class="label">${this.callNum}</div>

 <div class="label">${this.responseSize}</div>

 <div class="label">${this.timeSpent} ms</div>

 <div class="label">

 <div class="progress"

 style="width:${percent * 3}px"/>${percent}%

 </div>`;

 window.requestAnimationFrame(

 () => {

 document.getElementById("output" + this.index)

 .innerHTML = testHtml;

 }

);

}

In case of an error, the error object will be displayed to the user notifying that

an error occurred and the performance test will be terminated. This is

demonstrated in the code snippet below:

39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

addError(error) {

 this.error = error;

 this.drawError();

 this.stop();

 }

drawError() {

 let errorHtml = `

 <div class="label error">error</div>

 <div class="label error">error</div>

 <div class="label error">error</div>

 <div class="label error">error</div>

 <div class="label error">error</div>

 <div class="label"></div>`;

 window.requestAnimationFrame(

 () => {

 document.getElementById("output" + this.index)

 .innerHTML = errorHtml;

 }

);

}

The dist/browser folder contains the signalr.js file together with its

corresponding minified version signalr.min.js, which represents the

ASP.NET Core SignalR JavaScript client library enabling the server-side hub

code to be called. The SignalR client is available as an npm package or

through CDN. [41] For the application the npm package way was chosen.

Below is the sequence of commands how to get the SignalR client library:

1

2

npm init -y

npm install @microsoft/signalr

40

At first a default package.json file is created on line 1, and on line 2 the

SignalR client library package is installed. For the application only the

signalr.js file was used out of @microsoft/signalr contents. According to the

SignalR official documentation, the signalr.js file can be copied to the needed

location in the application. [38,41] Then the signalr.js file is included in the

page as shown in the code snippet below:

1 <script src="./dist/browser/signalr.js"></script>

Each data transfer method is run on a separate port and in

consequence the server for testing all of the mentioned data transfer

approaches is started by running each of the commands below:

1

2

3

dotnet run -t ws -port 5011

dotnet run -t lp -port 5012

dotnet run -t sse -port 5013

The first command is responsible for starting the server with WebSockets on

port 5011, the second command starts the server with Long Polling on port

5012, and the third command runs the server with Server Sent Events on

port 5013.

The created application is deployed and available by the following link:

http://cdn.flexmonster.com/vera/tests/index.html. In Figure 11: Setting the

data transfer method test parameters and Figure 12: Running the test for all

data transfer methods the resulting performance tester application is shown.

Upon initial visit the user is greeted by a simple interface providing several

http://cdn.flexmonster.com/vera/tests/index.html

41

input fields for setting the parameters’ values for running the performance

comparison tests. As shown on the screenshot in Figure 11: Setting the data

transfer method test parameters, the input fields are initially displayed with

default values for convenience but they can be adjusted if desired.

Figure 11: Setting the data transfer method test parameters

The performance tests can be run for WebSockets, Long Polling, and

Server Sent Events individually, or run for all three methods at the same time

for a better visual comparison. In Figure 12: Running the test for all data

transfer methods it is shown how the performance tests are run for all three

technologies at one go. As a result, the input data is displayed for each data

transfer method along with the number of bytes loaded and the time it took

to complete the task. While the tests are running, a progress bar is shown

both helping to estimate the waiting time as well as providing a visual

comparison of the methods’ performance.

42

Figure 12: Running the test for all three data transfer methods

After running several tests for all of the methods at once, while

increasing the number of calls each time, the test results were gathered in

JSON format and fed to a chart library. On Figure 13: Performance time test

results for 100 calls the comparison of the test results when 100 calls were

made is illustrated on a bar chart type. It is clearly seen that of all the data

transfer methods, WebSockets came forth as the most performance efficient.

Long Polling took last place after Server Sent Events. Next, to these results,

the outcome when 1000 calls were made is added. Again, WebSockets took

first place, followed by Server Sent Events, leaving Long Polling far behind

(see Figure 14: Performance time test results for 1000 calls). For 10000 calls

the test results have the same outcome: first WebSockets, then Server Sent

Events, and Long Polling taking the longest to complete (see Figure 15:

Performance time test results for 10000 calls). The reasons why Long

Polling’s performance is drastically different is given in section 2.1 of this

course work.

43

Figure 13: Performance time test resuts for 100 calls

Figure 14: Performance time test resuts for 1000 calls

44

Figure 15: Performance time test results for 10000 calls

From the experiment results, the conclusion can be derived that

WebSockets work best for the task at hand, coming forth as the most

performance efficient data transfer technology in the simulated scenarios.

45

Section 3: Displaying the large data set

As stated throughout this course work, the goal is to load and display

a large data set to the user with minimal delay. As for the visualization part,

the aim is to achieve smooth navigation on a large dataset, so that the

display is not choppy, jerky or uneven and without sudden jolts. The data

transfer protocol that is chosen is WebSockets as they came out to be the

most performance efficient based on theory and backed up by the

performance test results provided in 2.4 section of this work. For the

visualization part, a simple data table was created. The screenshot of the

result is provided below (see Figure 16: Displaying the large data set on a

data table):

Figure 16: Displaying the large data set on a data table

The resulting project is deployed to a server and is available by the

following link: http://cdn.flexmonster.com/vera/demo/index.html. As a result,

the smooth navigation effect was reached using the following techniques:

data preloading, load balancing, and smooth rendering, in other words

balancing the CPU usage.

http://cdn.flexmonster.com/vera/demo/index.html

46

3.1 Data preloading

When working with large datasets, the acceptable approach is to load

the data by parts: in most cases it is not affordable to load the whole dataset

into the browser at once as most user machines won’t handle such an

overload, causing the user interface to lag or freeze, leading to a potential

browser crash. Therefore, in the data table, the data is loaded by parts.

Aside from initially loading the data that is currently in the view point, data

preloading is implemented while the user interacts with the data table

depending on the scroll direction, thus forming a data “cushion” (please see

Figure 17: Preloading data depending on scroll direction). The data “cushion”

moves together with the scroll depending on the scroll direction making sure

that data is always available to be shown within a certain range of the current

view point. Hence, on scroll, the data loading process is not noticeable or

visible to the user because data is preloaded on the go in advance. With this

technique, on scroll, the user should not encounter empty rows, where the

data portion has not been loaded yet, thus providing a more pleasant user

experience. [52,53,54,55,56,57,58]

Figure 17: Preloading data depending on scroll direction

47

3.2 Load balancing

In addition to data preloading depending on scroll, load balancing is a

must. Avoiding big chunks when the data is being transferred to the client

helps to achieve high throughput as well as improve the network bandwidth

utilization. Invoking the data transfer and loading background processes

during the browser’s idle states is necessary in order to avoid impacting the

visual representation such as animation and input response, which are

latency-critical events that have a direct influence on the overall user

experience. [43,44,45,46,47] During the data preloading process, large data

blocks must be divided into a sequence of chunks to transfer the needed

data portions in a non-blocking manner. It is also important to implement

prioritized loading in order to ensure that the data that is about to be

displayed to the user is loaded in time. [52,53,54,55,56,57,58]

Taking these three factors into consideration: avoiding big chunks,

prioritized loading, and idle browser time usage, in the designed data table

for displaying the large dataset to the user, in data transfer implementation

a maximum data size block constraint is set to define the maximum data size

portion that can be transferred at a time. In consequence, on scroll when the

data needs to be preloaded in order to maintain the appropriate data

“cushion” length, the data is transferred in blocks with the size under the

maximum size limit. The data preloading is prioritized, meaning that the data

that is closest to the user's view point is given the highest priority and hence

loaded first. To invoke the data loading processes during the browser idle

state, the browser idle time is detected using the requestIdleCallback

method. The requestIdleCallback method is an elegant way to identify the

48

moment most appropriate for executing under the hood tasks, as well as

predict how much time is left until the idle stage changes, therefore making

it possible to estimate whether a certain process can be afforded to be

completed at the given moment thence carrying out the procedures explicitly

during the idle times. [43,44,45,46,47,48,49,50,51] Below the idle callback

usage is illustrated on Figure 18: Executing the processes during idle

browser time:

Figure 18: Executing the processes during idle browser time

49

3.3 Smooth rendering

In addition to data preloading and load balancing during the data

transfer process, the requestAnimationFrame method was used for

rendering the result to ensure one drawing per frame. [48,49,50,51] For

reaching the smooth navigation, such as scrolling, effect the result needs to

be rendered in a smooth and even fashion and as explained in section 1.2

of this course work, for the display to be graceful a steady frame rate must

be kept, therefore requiring to maintain each frame’s length alike. [3,4,5,6]

So, in the designed data table the requestIdleCallback method was used for

executing background tasks such as data loading during idle browser times

and the requestAnimationFrame method was used to execute the rendering

code on the next available screen repaint to avoid possible reflows caused

by recalculation of previously rendered elements. [52,53,54,55,56,57,58]

This means the drawing process is executed when changes are ready to be

made, thus providing a more efficient repaint, resulting in a smoother and

more pleasant user interaction (see Figure 19: Optimized number of draws

by painting the result in the next frame. [48,49,50,51]

Figure 19: Optimized number of draws by painting the result in the next frame

50

Furthermore, in the resulting data table the scroll content is dynamic -

not all elements are rendered at once, only the ones that are in the viewpoint.

On Figure it is shown how at first load only the data table rows which are in

the viewpoint are rendered:

Figure 20: Rendering only the elements that are in view point

After scrolling further down in the data table and inspecting the page the

amount of row elements didn’t increase, instead the content changed to

update the view. This is shown on Figure 21: Updating only the results below:

Figure 21: Updating only the results

51

CONCLUSION

The goal of this research work was inspired by the desire to improve

the user’s experience when working with large data sets. To provide the best

experience it was determined that the response time when the user interacts

with the interface should be not more than a tenth of a second. Such a time

limit was derived from the way the human brain works and how our eyes

perceive information. Based on the 100 milliseconds constraint it was

calculated how much time is affordable to spend for each process and the

appropriate data transfer method was chosen to be WebSockets for loading

the data and keeping it up to date. As a result of this work the goal was

reached: a large data set was loaded and displayed in a datatable within a

tenth of a second, and on scroll the display is even, smooth, without any

choppiness or sudden jerks.

The smooth user experience was achieved by correctly balancing the

CPU usage between data loading, calculations, and the rendering stages.

By preloading data within the set range of the view point depending on scroll

direction, as well as implementing prioritized data loading, it was ensured

that data will always be available in time when it is needed to be displayed

to the user, therefore, providing the instantaneous effect. The overall load

was balanced by setting the maximum data portion size that can be

transferred at a time, therefore avoiding big data chunks which in return also

improved the throughput and the network bandwidth utilization. In addition,

the processes were executed during idle browser times by using the

requestIdleCallback method, thus preventing the user interaction to be

blocked by background ongoing tasks. The rendering stage was organized

52

to have one drawing per frame when changes are ready to be made, thus

avoiding unnecessary repaints, keeping the frame length alike, and

maintaining a steady frame rate.

53

RESOURCES

1. https://developers.google.com/web/fundamentals/performance/rail

2. https://www.nngroup.com/articles/response-times-3-important-limits/

3. http://news.mit.edu/2014/in-the-blink-of-an-eye-0116

4. https://developer.mozilla.org/en-

US/docs/Tools/Performance/Frame_rate

5. https://developer.mozilla.org/en-

US/docs/Web/Performance/Animation_performance_and_frame_rate

6. http://designingforperformance.com/basics-of-page-speed/

7. https://www.linkedin.com/pulse/20141119181300-142790335-site-

speed-mobile-usability-and-seo/

8. https://aerotwist.com/blog/the-anatomy-of-a-frame/

9. https://medium.com/platform-engineer/web-api-design-35df8167460

10. https://wolfcrow.com/notes-by-dr-optoglass-motion-and-the-frame-

rate-of-the-human-eye/

11. http://amo.net/NT/02-21-01FPS.html

12. https://en.wikipedia.org/wiki/Flicker_fusion_threshold

13. https://learn.javascript.ru/long-polling

14. https://learn.javascript.ru/server-sent-events

15. https://www.filamentgroup.com/lab/weight-wait.html

16. https://hpbn.co/server-sent-events-sse/#eventsource-api

17. https://hpbn.co/server-sent-events-sse/#event-stream-protocol

18. https://hpbn.co/server-sent-events-sse/#sse-use-cases-and-

performance

19. https://stackoverflow.blog/2019/12/18/websockets-for-fun-and-profit/

20. https://hpbn.co/websocket/#websocket-api

https://developers.google.com/web/fundamentals/performance/rail
https://www.nngroup.com/articles/response-times-3-important-limits/
http://news.mit.edu/2014/in-the-blink-of-an-eye-0116
https://developer.mozilla.org/en-US/docs/Tools/Performance/Frame_rate
https://developer.mozilla.org/en-US/docs/Tools/Performance/Frame_rate
https://developer.mozilla.org/en-US/docs/Web/Performance/Animation_performance_and_frame_rate
https://developer.mozilla.org/en-US/docs/Web/Performance/Animation_performance_and_frame_rate
http://designingforperformance.com/basics-of-page-speed/
https://www.linkedin.com/pulse/20141119181300-142790335-site-speed-mobile-usability-and-seo/
https://www.linkedin.com/pulse/20141119181300-142790335-site-speed-mobile-usability-and-seo/
https://aerotwist.com/blog/the-anatomy-of-a-frame/
https://medium.com/platform-engineer/web-api-design-35df8167460
https://wolfcrow.com/notes-by-dr-optoglass-motion-and-the-frame-rate-of-the-human-eye/
https://wolfcrow.com/notes-by-dr-optoglass-motion-and-the-frame-rate-of-the-human-eye/
http://amo.net/NT/02-21-01FPS.html
https://en.wikipedia.org/wiki/Flicker_fusion_threshold
https://learn.javascript.ru/long-polling
https://learn.javascript.ru/server-sent-events
https://www.filamentgroup.com/lab/weight-wait.html
https://hpbn.co/server-sent-events-sse/#eventsource-api
https://hpbn.co/server-sent-events-sse/#event-stream-protocol
https://hpbn.co/server-sent-events-sse/#sse-use-cases-and-performance
https://hpbn.co/server-sent-events-sse/#sse-use-cases-and-performance
https://stackoverflow.blog/2019/12/18/websockets-for-fun-and-profit/
https://hpbn.co/websocket/#websocket-api

54

21. https://hpbn.co/websocket/#websocket-use-cases-and-performance

22. https://hpbn.co/websocket/#performance-checklist

23. https://pusher.com/websockets

24. https://hpbn.co/websocket/#websocket-protocol

25. https://www.internet-technologies.ru/articles/ispolzovanie-sse-

vmesto-websockets.html

26. https://sookocheff.com/post/networking/how-do-websockets-work/

27. https://www.smashingmagazine.com/2018/02/sse-websockets-data-

flow-http2/

28. https://medium.com/dailyjs/a-comparison-between-websockets-

server-sent-events-and-polling-7a27c98cb1e3

29. https://blog.feathersjs.com/http-vs-websockets-a-performance-

comparison-da2533f13a77

30. https://codeburst.io/polling-vs-sse-vs-websocket-how-to-choose-the-

right-one-1859e4e13bd9

31. https://aquil.io/articles/a-comparison-between-websockets-server-

sent-events-and-polling

32. https://dzone.com/articles/websockets-vs-long-polling

33. https://www.ably.io/concepts/websockets

34. https://browsee.io/blog/websocket-vs-http-calls-performance-study/

35. https://medium.com/system-design-blog/long-polling-vs-websockets-

vs-server-sent-events-c43ba96df7c1

36. https://www.ably.io/blog/websockets-vs-long-polling/

37. https://www.smashingmagazine.com/2018/02/sse-websockets-data-

flow-http2/

38. https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-

started/introduction-to-signalr

https://hpbn.co/websocket/#websocket-use-cases-and-performance
https://hpbn.co/websocket/#performance-checklist
https://pusher.com/websockets
https://hpbn.co/websocket/#websocket-protocol
https://www.internet-technologies.ru/articles/ispolzovanie-sse-vmesto-websockets.html
https://www.internet-technologies.ru/articles/ispolzovanie-sse-vmesto-websockets.html
https://sookocheff.com/post/networking/how-do-websockets-work/
https://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/
https://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/
https://medium.com/dailyjs/a-comparison-between-websockets-server-sent-events-and-polling-7a27c98cb1e3
https://medium.com/dailyjs/a-comparison-between-websockets-server-sent-events-and-polling-7a27c98cb1e3
https://blog.feathersjs.com/http-vs-websockets-a-performance-comparison-da2533f13a77
https://blog.feathersjs.com/http-vs-websockets-a-performance-comparison-da2533f13a77
https://codeburst.io/polling-vs-sse-vs-websocket-how-to-choose-the-right-one-1859e4e13bd9
https://codeburst.io/polling-vs-sse-vs-websocket-how-to-choose-the-right-one-1859e4e13bd9
https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling
https://aquil.io/articles/a-comparison-between-websockets-server-sent-events-and-polling
https://dzone.com/articles/websockets-vs-long-polling
https://www.ably.io/concepts/websockets
https://browsee.io/blog/websocket-vs-http-calls-performance-study/
https://medium.com/system-design-blog/long-polling-vs-websockets-vs-server-sent-events-c43ba96df7c1
https://medium.com/system-design-blog/long-polling-vs-websockets-vs-server-sent-events-c43ba96df7c1
https://www.ably.io/blog/websockets-vs-long-polling/
https://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/
https://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

55

39. https://docs.microsoft.com/en-

us/aspnet/core/signalr/introduction?view=aspnetcore-3.1

40. https://docs.microsoft.com/en-

us/aspnet/core/signalr/hubs?view=aspnetcore-3.1

41. https://docs.microsoft.com/en-us/aspnet/core/signalr/javascript-

client?view=aspnetcore-3.1

42. https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/host/generic-host?view=aspnetcore-3.1

43. https://developers.google.com/web/updates/2015/08/using-

requestidlecallback

44. https://developer.mozilla.org/en-

US/docs/Web/API/Window/requestIdleCallback

45. https://www.dnsstuff.com/network-throughput-bandwidth

46. https://www.w3.org/TR/requestidlecallback/

47. https://developers.google.com/web/updates/2015/08/using-

requestidlecallback

48. http://www.javascriptkit.com/javatutors/requestanimationframe.shtml

49. https://dev.opera.com/articles/better-performance-with-

requestanimationframe/

50. https://developers.google.com/web/fundamentals/performance/render

ing

51. https://developers.google.com/web/tools/chrome-devtools/evaluate-

performance

52. https://medium.com/javascript-in-plain-english/better-understanding-

of-timers-in-javascript-settimeout-vs-requestanimationframe-

bf7f99b9ff9b

53. http://creativejs.com/resources/requestanimationframe/index.html

https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/signalr/hubs?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/signalr/hubs?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/signalr/javascript-client?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/signalr/javascript-client?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host?view=aspnetcore-3.1
https://developers.google.com/web/updates/2015/08/using-requestidlecallback
https://developers.google.com/web/updates/2015/08/using-requestidlecallback
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback
https://www.dnsstuff.com/network-throughput-bandwidth
https://www.w3.org/TR/requestidlecallback/
https://developers.google.com/web/updates/2015/08/using-requestidlecallback
https://developers.google.com/web/updates/2015/08/using-requestidlecallback
http://www.javascriptkit.com/javatutors/requestanimationframe.shtml
https://dev.opera.com/articles/better-performance-with-requestanimationframe/
https://dev.opera.com/articles/better-performance-with-requestanimationframe/
https://developers.google.com/web/fundamentals/performance/rendering
https://developers.google.com/web/fundamentals/performance/rendering
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance
https://medium.com/javascript-in-plain-english/better-understanding-of-timers-in-javascript-settimeout-vs-requestanimationframe-bf7f99b9ff9b
https://medium.com/javascript-in-plain-english/better-understanding-of-timers-in-javascript-settimeout-vs-requestanimationframe-bf7f99b9ff9b
https://medium.com/javascript-in-plain-english/better-understanding-of-timers-in-javascript-settimeout-vs-requestanimationframe-bf7f99b9ff9b
http://creativejs.com/resources/requestanimationframe/index.html

56

54. https://www.udacity.com/course/browser-rendering-optimization--

ud860

55. http://shop.oreilly.com/product/0636920028048.do

56. http://scienceadvantage.net/wp-content/uploads/2020/03/JavaScript-

High-Performance-Build-Faster-Web-APPs-2020-Year-.pdf

57. https://dev.to/canastro/javascript-long-running-tasks-use-cpu-s-idle-

periods-58g2

58. https://www.luigicolella.it/blog/how-to-use-js-background-tasks-api

https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.udacity.com/course/browser-rendering-optimization--ud860
http://shop.oreilly.com/product/0636920028048.do
http://scienceadvantage.net/wp-content/uploads/2020/03/JavaScript-High-Performance-Build-Faster-Web-APPs-2020-Year-.pdf
http://scienceadvantage.net/wp-content/uploads/2020/03/JavaScript-High-Performance-Build-Faster-Web-APPs-2020-Year-.pdf
https://dev.to/canastro/javascript-long-running-tasks-use-cpu-s-idle-periods-58g2
https://dev.to/canastro/javascript-long-running-tasks-use-cpu-s-idle-periods-58g2
https://www.luigicolella.it/blog/how-to-use-js-background-tasks-api

