
Organization and control of 
continuous code delivery

Made by student
Ivanov O.A



Introduction

• This course work were created to show how important CI/CD system 

and present modern strategies together with fundamental knowledge 



Task formulation

• Provide definition of Continuous Integration.

• Describe approaches for Continuous Integration implementation.

• Describe common mistakes during implementation of CI.

• Uncover difference between Continuous delivery and deployment.

• Provide overview of release strategies. Uncover IaC principles. 

• Design Zero-downtime approach using one of cloud providers.



The Problem of Delivering Software

Every time that you start project you

should know the release date (the point in

time then end user will be able to use your

product). A lot of estimation, planning and

other activities could be done before, but

this date will be delayed due to bugs or

undetected defects in software.



Common antipatterns

• Deploying Software Manually

• Deploying to a Production-like Environment Only after Development 

Is Complete

• Manual Configuration Management of Production Environments



CI

• Continuous integration was first written about in Kent Beck’s 
book Extreme Programming Explained (first published in 1999). 

• Continuous integration (CI) is the process of integrating new code 
written by developers with a mainline or “master” branch frequently 
throughout the day



CI benefits 

• Early Bug Detection

• Reduces Bug Count

• Automating the Process

• The Process Becomes Transparent

• Cost-Effective Process



Continuous Integration best practices by 
Martin Fowler 
• Maintain a Single Source Repository
• Automate the Build 
• Make the Build Self-Testing 
• Everyone Commits to the Baseline Every Day
• Every Commit (to Baseline) Should be Built
• Keep the Build Fast 
• Test in a Clone of the Production Environment 
• Make It Easy to Get the Latest Deliverables
• Everyone Can See the Results of the Latest Build
• Automate Deployment



Branching strategies



Continuous Deployment & Delivery



Release strategies



Infrastructure as a Code key points

• Systems Can Be Easily Reproduced

• Systems Are Disposable

• Systems Are Consistent

• Processes Are Repeatable

• Design Is Always Changing.



The general approach, that was used in real 
life project



Thank you 


