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THE NONSTANDARD q-DEFORMATION OF ENVELOPING 

ALGEBRA U(son) RELATED TO QUANTUM GRAVITY 

We describe properties of the nonstandard q-deformation U'q(son) of the universal enveloping algebra U(son) of the 
Lie algebra son which is related to 2+1 quantum gravity on Riemannian surfaces. This algebra does not coincide with the 
Drinfeld-Jimbo quantum algebra Uq(son). Many unsolved problems are formulated. 

1. The g-deformed algebra U'q(son ) 

We consider a g-deformation U'q(son) of the 

universal enveloping algebra U(son) of the Lie 

algebra son which does not coincide with the 

Drinfeld-Jimbo quantum algebra Uq(son). The 

algebra U'q(son) is constructed without using the 

Cartan subalgebra and roots. This algebra has no root 

elements. 

Existence of the g-deformation U'q(son) is 

explained by the following reason. The Lie algebra 

son of the rotation group SO(n) has two different 

structures related to two bases of the algebra son. The 

first structure is related to the basis consisting of a 

basis of the Cartan subalgebra and root elements. A 

g-deformation of this structure leads to the Drinfeld-

Jimbo quantum algebra Uq(son) which contains root 

elements (see, for example, [1]). The second structure 

is related to the basis of son consisting of skew-

symmetric matrices The m a t r i c e s . , 

are defined as , where is the 

matrix with entries . The universal 

enveloping algebra U(son) is generated by a part of 

the basis elements , namely, by the elements 

It is directly verified that these 

elements satisfy the relations 

The following Serre type theorem is a starting point 

for obtaining the algebra U'q(son ). 

Theorem 1. The universal enveloping algebra 

U(son) is isomorphic to the complex associative 
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This algebra was introduced by us in [2] and is denoted 

by U'q(son ). 

The main motivation for studying this algebra is 

that the algebra of observables in 2+1 quantum gravity 

is isomorphic to the algebra U'q(son ) or to its quotient 

algebra [3,4]. A q-analogue of the theory of harmonic 

polynomials (g-harmonic polynomials) on quantum 

vector space is also constructed by using the algebra 

U'q(son ) (see [5]). The q-Laplace operator , by 

means of which g-harmonic polynomials are defined, 

is invariant with respect to this algebra [6]. 

In U'q(son) we can determine [7] elements 

analogous to the matrices of the Lie algebra 

son. In order to give them we use the notation 

. Then for к > l+ 1 we define 

recursively the elements 

(Note that similar sets of elements of U'q(son) are also 

introduced in [6]). The elements satisfy 

algebra (with a unit element) generated by elements 
satisfying the above relations. 

We make the q-deformation of these relations by 

. As a 

result, we obtain the complex associative algebra (with 

a unit) generated by elements . 

satisfying the relations 

(1) 

(2) 

(3) 
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the commutation relations 

(3) 

(4) 

(5) 

For к > l, the commutation relations are 

obtained by replacing by and q by 

When q = 1, then these commutation relations 

coincide with the corresponding relations for the 

matrices of the Lie algebra son. 

The algebra Uq(son) can be defined as the 

associative algebra generated by the elements 

і > j, satisfying the defining relations (4)-(6). That 

is, the algebra U'q(son ) can be defined by means of 

quadratic defining relations. 

Using the diamond lemma, it is proved [8] 

the Poincare-Birkhoff-Witt theorem for the algebra 

U'q(son ): 

Theorem 2. The elements 

form a basis of the algebra U'q(son). This assertion 

is true if are replaced by the corresponding 

elements 

2. Center of U'q(son) 

In order to describe central elements of the algebra 

U'(son) we form the elements 

(7) 

of the algebra U'(son) (see [9]), where 

and summation runs over all 

permutations s of indices such that 

where 

{n/2} ({a} means the integral part of a), are Casimir 

elements of U'q(son ), that is, they belong to the center 

of this algebra. If η is even, then 

and also belong to the center of 

U'q(son ). 

If q is a root of unity, then (as in the case 

of Drinfeld-Jimbo quantum algebras) there exist 

additional central elements of U'q(son) which are given 

by the following theorem: 

Theorem 4. [10, 11]. 

Then the elements 

(9) 

where is the integral part of k/2, belong to the 

center of U'q(son ). 

Conjecture 1. For q not a root of unity the set of 

central elements 

and the element (if n is even) generates the 

center of the algebra Uq(son). If q = 1 (that is, in 

the case of the enveloping algebra U(son)), then this 

conjecture is true, that is, these elements generate the 

center of U'q(son ). 

Conjecture 2. For q a root of unity, the central 

elements of Theorems 3 and 4 generate the center of 

the algebra U'q(son). The central elements of Theorem 

3 algebraically depend on those of Theorem 4. 

3. The embedding U'q(son) -> Uq(sln) 

An important property of the algebra U'q(son ) 

is that it can be embedded into the Drinfeld-Jimbo 

quantum algebra Uq(sln) (see [12]). This quantum 

algebra is generated by the elements = 

= satisfying the relations 

and 

Theorem 3. [6, 9]. The elements 

(8) 

The symbol stands for the q-

analogue of Levi-Chivita antisymmetric tensor, 

means the length of permutation s (the definition of 

a length see in standard handbooks on symmetric 

groups). Note that in the limit both sets 

in (7) reduce to the set of components of rank 

antisymmetric tensor operator of the Lie algebra son. 
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of Uq(sln). It is proved in [12] that 

there exists the algebra homomorphism 

uniquely determined by the 

relations The 

following theorem states that this homomorphism is 

in fact an isomorphism. 

Theorem 5. The homomorphism 

determined by 

is an isomorphism of U'q(son) to Uq(sln). 

In [6] the authors of that paper state that this 

homomorphism is an isomorphism and say that it 

can be proved by means of the Diamond Lemma. 

However, we could not restore their proof and found 

another one in [8]. Theorem 5 has the following 

important corollary, proved in [8]: 

Corollary. Finite dimensional irreducible 

representations of U'q(son ) separate elements of this 

algebra, that is, for any > there exists a finite 

dimensional irreducible representation Τ of U'q(son ) 

such that Τ (a) 0. 

Note that this corollary is true for q not a root of 

unity as well as for q a root of unity. It is important 

for the representation theoiy of the algebra U'q(son ). 

Problem. We conjecture that the algebra U'(son ) is 

connected with some extension of the Drinfeld-Jimbo 

quantum algebra Uq(son). This conjecture is proved 

in [13] for the case η = 3. It is shown there that 

there is an isomorphism 

where is an extension of the quantum algebra 

Uq(sl2). 

In order to determine the isomorphism φ : 

we note that the quantum algebra 

is generated by elements qH, , E, F 

satisfying the relations 

where It is proved in [8] that for q not a root 

of unity the homomorphism is 

injective. 

Conjecture. The homomorphism 

is injective when q is a root of unity. 

4. Finite dimensional classical type 

representations of 

If q is not a root of unity, the algebra U'q{son) 

has two types of irreducible finite dimensional 

representations: 

(a) representations of the classical type (at 

q -> 1 they give the corresponding finite dimensional 

irreducible representations of the Lie algebra son); 

(b) representations of the nonclassical type (they 

do not admit the limit q -> 1). 

Let us describe (in the framework of a q-

analogue of Gel'fand-Tsetlin formalism) irreducible 

finite dimensional representations of the algebras 

U'q(son), η 3, which are g-deformations of the 

finite dimensional irreducible representations of the 

Lie algebra son. As in the classical case, they are 

given by sets mn consisting of numbers 

(here denotes integral 

part of n/2) which are all integral or all half-integral 

and satisfy the dominance conditions 

where are elements of the Cartan matrix of the Lie 

algebra sln. 

Let us introduce the elements 

(10) 

(11) 

In order to relate the algebras and 

we need to extend by the elements 

. We denote by the associative 

algebra with unit element generated by qH, , E, 

satisfying the defining 

relations (10) and (11) of the algebra and the 

following natural relations: 

There exists a unique algebra homomorphism : 

such that 

(12) 

(13) 

for η = 2p + 1 and n = 2p, respectively. These 

representations are denoted by . For a basis in 



16 НАУКОВІ ЗАПИСКИ. Том 19. Фізико-математичні науки 

a representation space we take the -analogue of 

Gel'fand-Tsetlin basis which is obtained by successive 

reduction of the representation to the subalgebras 

As in the classical case, its elements are 

labelled by Gel'fand-Tsetlin tableaux 

(14) 

where the components of and satisfy the 

usual (classical) "betweenness" conditions. The basis 

element defined by tableau is denoted as 

or simply as 

It is convenient to introduce the so-called l-

coordinates 

(15) 

for the numbers The operator of the 

representation of U'q(son) acts upon Gel'fand-

Tsetlin basis elements, labelled by (14), by the formula 

(16) 

(17) 

In these formulas, means the tableau (14) in 

which j-th component in is replaced by 

І The coefficients in (16) 

and (17) are given by the expressions 

(18) 

A proof of the fact that formulas (16)-(20) indeed 

determine a representation of U'q (so„) is given in [14]. 

Theorem 6. The representations are irreducible 

and pairwise nonequivalent. 

Conjecture. The Casimir elements of Theorem 3 

separate irreducible representations of the classical 

type, that is, for any irreducible representations 

and there exists a central element C of Theorem 

3 such that 

5. Finite dimensional nonciassical type 

representations of U'q(son) 

Irreducible finite dimensional nonciassical type 

representations are given by sets 

and by sets consisting of half-

integral numbers (here 

denotes integral part of n/2) satisfying the 

dominance conditions 

where numbers in square brackets mean q-numbers 

defined by 

The basis element defined by tableau is denoted 

as 

As in the previous section, it is convenient to 

introduce by formula (15) the /-coordinates. The 

operator of the representation 

These representations are denoted by 

For a basis in the representation space we use 

the analogue of the basis of the previous section. 

Its elements are labelled by tableaux (14), where 

the components of and satisfy the 

"betweenness" conditions 

Ї 
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Theorem 7. The representations are 

irreducible. The representations and are 

pairwise nonequivalent for For 

any admissable and the representations 

and are pairwise nonequivalent. 

Conjecture. If q is not a root of unity, then 

every irreducible finite dimensional representation of 

U'q(son) is equivalent to one of the representations 

of the classical type or to one of the 

representations of the nonclassical type. This 

conjecture is proved for the algebra U'q(so3) (see [11]). 

Theorem 8. If q is not a root of unity, then a 

restriction of any irreducible representation of Uq(sln) 

to the subalgebra U'q(son ) is completely reducible 

and contains only irreducible representations of the 

classical type. 

The assertion on complete reducibility is proved in 

[6]. The second part of Theorem 8 is proved in [16]. 

Problems: 1. It is necessary to show that finite 

dimensional representations of the algebra U'q(son) at 

q not a root of unity are completely reducible. This 

assertion is proved for n = 3 in [17]. 

2. Note that central elements of the algebra 

U'q(son) from Theorem 3 do not separate irreducible 

representations of the nonclassical type, that is, there 

exist nonequivalent irreducible representations of the 

nonclassical type on which all central elements take 

the same eigenvalues. Namely, it can be shown that 

on representations and (with the same 

mn) Casimir elements take the same eigenvalues. It 

is necessary to show that central elements separate 

representations and with different 

and 

3. Using the embedding 

it is shown in [13] how to define tensor products 

of irreducible representations of U'q(so3). Using the 

embedding U'q(son) -> Uq(sln) it is shown in [16] 

how to multiply the classical type representations 

and: of U' (son) at q not a root of unity. (The 

decomposition of such tensor product is such as in the 

classical case.) It is necessary to show how to multiply 

any irreducible representations of U'q(son) for q not a 

root of unity. 

6. Irreducible representations of U'q (son) 
for q a root of unity 

It is well-known that a Drinfeld-Jimbo quantum 

algebra Uq(g) for q a root of unity is a finite 

dimensional vector space over the center of Uq (g). The 

same assertion is true (see [8]) for the algebra U'q (son). 
The above formulas for the operators 

are given in [15]. 

of acts upon our basis elements by the 

formulas 

where the summation in the last sum must be from 1 to 

ρ -1 if = 1/2, and the operator 

of the representation acts as 

where In these 

formulas, means the tableau in which 

j-th component in is replaced by 

Matrix elements and are given by the same 

formulas as in (16) and (17) (that is, by the formulas 

(18) and (19)) and 

For the operators and we 

have 
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Using this assertion and the Poincare-Birkhoff-Witt 
theorem for U'q(son ) it is easily proved the following 
theorem: 

Theorem 9. If q is a root of unity, then any irreducible 

representation of U'q(son ) is finite dimensional. 

Irreducible representations of the algebra U'q(son) 

for q a root of unity are described in [8]. For 

construction of these irreducible representations of 

U'q(son), it is used the method of D. Arnaudon and 

A. Chakrabarti (used by them for construction of 

irreducible representations of the quantum algebra 

Uq(sln) when q is a root of unity). If qp = 1 and 

ρ is an odd integer, then there exists the series of 

irreducible representations of Uq(son) which act on 

pN-dimensional vector space (where N is the number 

of positive roots of the Lie algebra son) and are 

given by r = dim son complex parameters. These 

representations are irreducible for generic values of 

these parameters. These representations constitute 

the main class of irreducible representations of 

U'q(son ). For some special values of the representation 

parameters in Cr the representations are reducible. 

These reducible representations give many other 

classes of (degenerate) irreducible representations 

which are given by less number of parameters or 

by parameters, values of which cover subsets of 

of Lebesgue measure 0. As in the case of 

irreducible representations of the quantum algebra 

Uq(sln), it is difficult to enumerate all irreducible 

representations of these classes. However, the most 

important classes of these degenerate representations 

can be constructed. In particular, in [8] we give 2n-l 

classes of these representations, which are an analogue 

of the nonclassical type irreducible representations of 

U'q(son ) for q not a root of unity. 

Note that the problem of classification of 

irreducible representations of the algebra U'q(son) at q 

a root of unity is very complicated problem. (The same 

is true for the Drinfeld-Jimbo quantum algebras.) This 

problem is complicated even for the case of the algebra 

U'q(so3) (see [12] for details). 

Problems: 1. Let q be a root of unity: qk — 1, 

It is necessary to find explicit expressions for the 

values , (i,j) = (2,1), (3,2), (3,1), for 

irreducible representations T of the algebra U'q(so3). 

These values are known for some of irreducible 

representations. Namely, then for the irreducible 

representations from section 9 of [13] we have 

and for the irreducible representations from [13] 

, where = 

2. For q a root of unity, irreducible representations 

of the algebra U'q(so3) map the set of Casimir elements 

, ', to We conjecture 

that the image of this map coincides with 

3. It is conjectured that there exists a closed domain 

of Lebesgue measure 0 such that the mapping 

T : is a one-

to-one map for 

7. Restriction of representations of Uq(sln) 

to U'q(son ) 

In this section we assume that q is not a root 

of unity. The algebra U'q(son) is a subalgebra of the 

quantum algebra Uq(sln). Therefore, we may restrict 

irreducible finite dimensional representations of the 

algebra Uq(sln) to the subalgebra U'q(son). Generally 

speaking, such a restriction leads to reducible 

representations of the subalgebra. It was proved in [17] 

that each irreducible finite dimensional representation 

of Uq(sln) under restriction to U'q(son) decomposes 

into a direct sum of irreducible representations of this 

subalgebra. N. Iorgov has proved (will be published) 

that such a decomposition contains only irreducible 

representations of the classical type. However, explicit 

formula for the decomposition is known only for the 

restriction Uq(sl3) -> U'q(so3). 

Irreducible finite dimensional representations of 

Uq (sl3) are given by three integers such 

that . We denote such the representation 

by . Irreducible finite dimensional classical type 

representations of U'q(so3) are denoted by , where 

k is a nonnegative integral or half-integral number. 

In order to find which irreducible representations 

of U'(so3) are contained in the decomposition of 

we split in [18] the spectrum Spec 

of the representation operator into spectra of 

operators of irreducible representations of 

U'q(so3). (It is proved in [18] that such splitting is 

unique.) As a result, we have that 

if is odd and 

if is even, where means the summation over 

the values - 4, · · · , 1 (or 2) 
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and the last sum is over the values — 

- 4 , ··· ,0 (or 1). Note that 

these decompositions coincide with the corresponding 

decompositions for the reduction SU(3) -> S0(3). 

8. Applications 

There are the following main applications of the 

algebra U'q(son) and its irreducible representations: 

1. The theory of orthogonal polynomials and 

special functions (especially, the theory of q-

orthogonal polynomials and basic hypergeometric 

functions). This direction is not good worked out. 

Some ideas of such applications can be found in [19]. 

2. The algebra U'q(Son) (espesially its particular 

case U'q(SO3)) is related to the algebra of observables 

in 2+1 quantum gravity on the Riemmanian surfaces 

(see the papers [3], [4], [20], [21]). 

3. A g-anaiogue of the Riemannian symmetric 

space SU(n)/SO(n) is constructed by means of the 

algebra U'q(son). This construction is fulfilled in the 

paper [12]. 

4. A g-analogue of the theory of harmonic 

polynomials (g-harmonic polynomials on quantum 

vector space ) is constructed by using the algebra 

U'q(son). In particular, a g-analogue of different 

separations of variables for the g-Laplace operator is 

given by means of this algebra and its subalgebras. 

This theory is contained in the papers [6] and [22]. 

5. The algebra Uq(son) also appear in the theoiy 

of links in the algebraic topology (see [23]). 
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Клімик А. У. 

НЕСТАНДАРТНА q-ДЕФОРМАЦІЯ ОГОРТУЮЧОЇ АЛГЕБРИ 

U(son), ЗВ'ЯЗАНА З КВАНТОВОЮ ГРАВІТАЦІЄЮ 

Описуються властивості нестандартної q-деформації U' (son) універсальної огортуючої алгебри U(son) 

алгебри JIi son, зв'язаної з 2+1 квантовою гравітацією на ріманових поверхнях. Ця алгебра не співпадає 

з квантовою алгеброю Дрінфельда-Джімбо Uq(son). Формулюється багато нерозв'язаних проблем. 


