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THE NONSTANDARD g-DEFORMATION OF ENVELOPING
ALGEBRA U(so,) RELATED TO QUANTUM GRAVITY

We describe properties of the nonstandard q-deformation U'(so,) of the universal enveloping algebra U(so,) of the
Lie algebra so, which is related fo 2+ 1 quantum gravity on Riemannian surfaces. This algebra does not coincide with the
Drinfeld-Jimbo quantum algebra U (s0,). Many unsolved problems are formulated.

1. The g-deformed algebra U'(so0, )

We consider a g-deformation U'(so,) of the
universal enveloping algebra U(so,) of the Lie
algebra so, which does not coincide with the
Drinfeld-Jimbo Ufso,). The
U(so,) is constructed without using the

quantum algebra
algebra
Cartan subalgebra and roots. This algebra has no root
elements.

Existence of the g-deformation U'(so,) is
explained by the following reason. The Lie algebra
so, of the rotation group SO(n) has two different
structures related to two bases of the algebra so,. The
first structure is related to the basis consisting of a
basis of the Cartan subalgebra and root elements. A
g-deformation of this structure leads to the Drinfeld-
Jimbo quantum algebra U(so,) which contains root
elements (see, for example, [1]). The second structure
is related to the basis of so, consisting of skew-
symmetric matrices 35,4 > j. The ma t r Ij;, ¢ > §,
are defined as Ij; = FE;; — Ey;, where Ey is the
matrix with entries (F;;)rs = 6ir8;5. The universal
enveloping algebra U(so,) is generated by a part of
the basis elements /;;, i > j, namely, by the elements
Iy, I3, -+, In na. It is directly verified that these
elements satisfy the relations
B L — 2L1 Dy il + Ii+1,-a'f§,«;_1

1

= TLi41,i»
2 ¢ .
LigaIiyq s — 201l i1 L s + I ilii-1 =

1

=~ 1,

Ii,i—l-{j,j—l - Ij,j-l-{i,i—l =0 for I?r —]I > 1.

The following Serre type theorem is a starting point
for obtaining the algebra U'(so, ).

Theorem 1. The universal enveloping algebra
U(so,) is isomorphic to the complex associative
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algebra (with a unit element) generated by elements
Iy, Isg, -+ I a1 satisfying the above relations.

We make the g-deformation of these relations by
222 = -aN/g-ag Y =qg+¢ " Asa
result, we obtain the complex associative algebra (with
a unit) generated by elements Iy, Is2,  * ,Jnn-1
satisfying the relations

(g+a Wi Lipriliio +
+ Ii-l—l,ffzi__l = —fit14,

Ii,i—lf;‘z-i-l,i -(g+ Q"I)Ii-H,iIz',z'—l L+
+ sl = =Ty,
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Lii—djj1 =103 =0 for [i—j[> 1 (3)

This algebra was introduced by us in [2] and is denoted
by U’ (s0,).

The main motivation for studying this algebra is
that the algebra of observables in 2+1 quantum gravity
is isomorphic to the algebra U'(so, ) or to its quotient
algebra [3,4]. A g-analogue of the theory of harmonic
polynomials (g-harmonic polynomials) on quantum
vector space is also constructed by using the algebra
U'(so, ) (see [5]). The g-Laplace operator Ay, by
means of which g-harmonic polynomials are defined,
is invariant with respect to this algebra [6].

In Ujfso) we can determine [7] elements
analogous to the matrices Ij;, i > j, ofthe Lie algebra
s0,. In order to give them we use the notation Jx g1 =
=1t g1 =1 pg—1. Then for k > [+ 1 we define
recursively the elements

I = D e g =

=t i — € P i e

(Note that similar sets of elements of U'(s0,) are also
introduced in [6]). The elements T+ gz, k > 1, satisfy
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the commutation relations

I I ko= kns [T e I knle=1 1,

Ut e, I inle=dth for k>1>n, @)

[[¥e, It =0 @
for k>l>n>r and k>n>r >,

U I oelg =g — ¢ W el in ~ (5)

*—I-"kf—I—an) for k>n>l>r

For 74, ¥ > I, the commutation relations are
obtained by replacing 13 by I=4 and g by g
When ¢ = 1, then these commutation relations
coincide with the corresponding relations for the
matrices I3;, ¢ > §, of the Lie algebra so,.

The algebra Ug(so,) can be defined as the
associative algebra generated by the elements I +£j,
i > j, satisfying the defining relations (4)-(6). That
is, the algebra U'(so, ) can be defined by means of
quadratic defining relations.

Using the diamond lemma, it is proved [8]
the Poincare-Birkhoff-Witt theorem for the algebra
Ufso, ):

Theorem 2. The elements

L[t Mmes

SN {5 B (5 + 71‘:.32 % &
TQF Iiii I.‘i? -y n,n—1

el

m‘,; == (] i,f—-""?

Jorm a basis of the algebra U'(so,). This assertion
is true if Ity; are replaced by the corresponding
elements I~ ;.

2. Center of U'(s0,)

In order to describe central elements of the algebra
U{so,) we form the elements

+ e flr=1) 4
jk oy ihan — 4 * Z .F-‘;-.-'.-:(,_s'}x
SCSa,
XI}' ag2) 1 ka1 I;g_s{"i,\:k‘s.(:i} o .I""'_m:m-;:ks(z,._,”! (7)

of the algebra U'(so,) (see [9]), where 1 < k; <
ky < --- < kep < n and summation runs over all
permutations s of indices k1, kz,- - - , k2 such that

Kotzy > ksqrys ksta) > Ksgsyy -+

kg2r) > kaqar—1)s Korz) < kspay <0 < Kspar)-

The symbol ey+1(s} = (—g™" ¥48) stands for the g¢-
analogue of Levi-Chivita antisymmetric tensor, £(s)
means the length of permutation s (the definition of
a length see in standard handbooks on symmetric
groups). Note that in the limit ¢ — 1 both sets
in (7) reduce to the set of components of rank 27
antisymmetric tensor operator of the Lie algebra so,.
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Theorem 3. /6, 9]. The elements

cin= > TIY ke oo I ke o
1<k <k <. . <harsn
)
where T = gfithetothe—rlntl) o = §92...

{n/2} ({a} means the integral part of a), are Casimir
elements of U'(s0,), that is, they belong to the center
of this algebra. If n is even, then C‘(lnH =JTi12.n
and G\~
Ufso, ).

= J71,9,....n also belong to the center of

If ¢ is a root of unity, then (as in the case
of Drinfeld-Jimbo quantum algebras) there exist
additional central elements of U’(s0,) which are given
by the following theorem:

Theorem 4. /10, 11]. Let¢* =1 forkeNand ¢ # 1
Jor 8 < § < k. Then the elements

{k/2}

CHa (k j— 1)
CYHIT, Z ik 27)1
1 + k=24
X G—__'F)"g rt Y AO)

where {k/2} is the integral part of k/2, belong to the
centerof U'(s0, ).

Conjecture 1. For q not a root of unity the set of
central elements (’ T", r= 1,2, ,{(n-1)/2},
and the element C',, (if n is even) generates the
center of the algebra Ufso,). If ¢ = 1 (that is, in
the case of the enveloping algebra U(so,)), then this
conjecture is true, that is, these elements generate the
centerof U'(so, ).

Conjecture 2. For ¢ a root of unity, the central
elements of Theorems 3 and 4 generate the center of
the algebra U'(so,). The central elements of Theorem
3 algebraically depend on those of Theorem 4.

3. The embedding U’ (s0,) -> U (sl)

An important property of the algebra Ul(so, )
is that it can be embedded into the Drinfeld-Jimbo
quantum algebra U(s/) (see [12]). This quantum
algebra is generated by the elements E;, Fj, K;H =
= g*¥Hi § = 1,2,--- ,n— 1, satisfying the relations
KK; = K;K;, KX, ' = K;'K; =1 and

KE;K' = ¢ E;, K;F;K;'=q % Fj,
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ElEi1 — (g + ¢ )EiEg1 B + By B2 = 0,
FiFm — (q+ ¢ W Fa F + Fo  F? =0,
[Ei, E;] =0, [FFy]=0 for |i—j>1,

where @4 are elements of the Cartan matrix of the Lie
algebra sl .
Let us introduce the elements

lij1=Fj1—qg " Ejy, j=2,3,--,n,

of Uf(sl). It is proved in [12] that
there the algebra homomorphism
@:Uj(s0n) — Uy(sl,) uniquely determined by the
relations ¢(Ji114)=Iip14, 4 = 1,2,-++, n — 1. The
following theorem states that this homomorphism is

exists

in fact an isomorphism.

Theorem 5. The homomorphism ¢ Uj(s0,) = Uy (sly)
determined by p{Iip1)=Iip14 1=1,2,---,n—1,
is an isomorphism of U’ (s0,) to U(sl).

In [6] the authors of that paper state that this
homomorphism is an isomorphism and say that it
can be proved by means of the Diamond Lemma.
However, we could not restore their proof and found
another one in [8]. Theorem 5 has the following
important corollary, proved in [8]:

Corollary. Finite dimensional irreducible
representations of U'(so, ) separate elements of this
algebra, that is, for any a€U, (s0n,)> there exists a finite
dimensional irreducible representation T of U'(so, )

such that T (a) # 0.

Note that this corollary is true for ¢ not a root of
unity as well as for g a root of unity. It is important
for the representation theoiy of the algebra U'(so, ).

Problem. We conjecture that the algebra U'so, ) is
connected with some extension of the Drinfeld-Jimbo
quantum algebra U (so,). This conjecture is proved
in [13] for the case n = 3. It is shown there that
U{:,(S(J‘rg) -t [:Tq(slg),
where U, (sl2) is an extension of the quantum algebra
Usl).

In order to determine the isomorphism ¢
Us(sos) = U,(sl3) we note that the quantum algebra
U,(sl} is generated by elements ¢, ¢~¥, E, F
satisfying the relations

there is an isomorphism ¢ :

g H = g HgH =1,

¢"Eq" =q¢B, "Fe¥=q'F, (10
21— g2

|[B,F):=EF - FE = ————. (11)

g=qg
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In order to relate the algebras Uy (so3) and Uy(slz)
we need to extend Uy (sly) by the elements {g*g® +
+ ¢ %¢=H )1 We denote by [}q(Slg) the associative
algebra with unit element generated by ¢”, q‘H , E,
F,(¢*q¢" +q%q= "), k€Z, satisfying the defining
relations (10) and (11) of the algebra U, (sl2) and the
following natural relations:

(qkqff_,r_q—kq-ﬁ)—-! (qu”‘_;_'g-—kq—ﬂ)

= (¢*q"+¢7*¢ ") * ¢ " +g7Fa ) =1,
q::H (qkqﬂ'_i_q—kq—ﬂ )_1:(qu“":‘q_kg_” ) -1 QiH,
(gkqﬁ +q—kq—ﬂ)—TE:E£qk+]qH _-r_qv--k—-tq—ﬁ)—lj

(¢ +q~ g ) F=F ("1 g" +g~F+1g~H) 1,

There exists a unique algebra homomorphism % :
U, (s0g) = Uy(sl2) such that

P{In) = q—_-lé_—l(qﬂ - g,

$(Is2) = (E - F)(@” + ¢,

where: i := \/—_1 . It is proved in [8] that for g not a root
of unity the homomorphism ¢ : U (s03) — I:Tq (slz) is
injective.

Conjecture. The homomorphism ¢/ : U} (s03) — ﬁ'q (sls)

is injective when ¢ is a root of unity.

4. Finite dimensional classical type
representations of U (s0y,)

If g is not a root of unity, the algebra U’ {s0,)
has two types of irreducible finite dimensional

representations:

(a) representations of the classical type (at
g -> 1 they give the corresponding finite dimensional
irreducible representations of the Lie algebra so,);

(b) representations of the nonclassical type (they
do not admit the limit g -> 1).

Let us describe (in the framework of a g¢-
analogue of Gel'fand-Tsetlin formalism) irreducible
finite dimensional representations of the algebras
U(so,), n Z 3, which are g-deformations of the
finite dimensional irreducible representations of the
Lie algebra so,. As in the classical case, they are
consisting of {n/2} numbers

given by sets m

ML 0y M2,n oy M{ny2),n (here {n/2} denotes integral
part of n/2) which are all integral or all half-integral

and satisfy the dominance conditions

(12)
(13)

M1 2p41 = M22p+] = - = Mp2pt1 = 0,

Miop 2 Ma2p 2 o 2 My 1,2p 2 !mpﬁp]

for n = 2p+ 1 and n = 2p, respectively. These

representations are denoted by T, . For a basis in
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a representation space we take the g-analogue of
Gel'fand-Tsetlin basis which is obtained by successive
reduction of the representation 7y, to the subalgebras
Ug(80n-1), Uy(son—2), +++, U(s03), Uj(soz) :=
= U/(80z). As in the classical case, its elements are
labelled by Gel'fand-Tsetlin tableaux

My
{én}= m”‘l : (14)
iy
where the components of mi,; and m,,_; satisfy the

usual (classical) "betweenness” conditions. The basis
element defined by tableau {£,} is denoted as |{£,,}}
or simply as |£,).

It is convenient to introduce the so-called /-
coordinates

ljapt1 = Mjapr1 +p—j+1,

ljop =mj2p + - J,

(15)

for the numbers 71t 3. The operator Ty, {141 ;) of the
representation Ty, of U'(s0,) acts upon Gel'fand-
Tsetlin basis elements, labelled by (14), by the formula

. , 2 2;}(5“ t
T, (L2p+1,2p)|n) = Z I—aﬂ--_ 1520 )
=
f]l JJ
,Z ff o= e (gn), (16)
ru, I(Izp 2p—1 \llgn) }J—L(‘:rl)ha?">+
+P—1 BEP-'(&L___KC‘ )—J )_
 Rligp-1 — llizpa] 7
ﬂ*'_ =

—j
'QE?ZP 1 = 1][L2p- 1*1]|(£H)QP_E> an

In these formulas, (fn)fj means the tableau (14) in
which j-th component m;x in my is replaced by

m;,k = 1. The coefficients 43 , ng_l, Cypy in (16)
and (17) are given by the expressions

P, \2p+ 1+ ep liop 1 =15 05 —1]

_ (L b Jial il
Agp(fﬂ) (' 11 [;‘3145 25l 2p—1t; gp__—- i

1

g p_ 1 [li2p—1+t,2p] li2p—1—lj2p—1] ’
Hz-#:}f'zl,.fggp-i-]f)p—f?p—l] I

(18)
j 2 IIH Liap+l;op—11[li 2p—1;2n—1]
823’ -1 (fn}m (]IL: Lijgp -1+l 2p—1 ][l 2p—1 15,05 -1] X
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r 5
) ”z 1%2;) 2,29 1'5‘,21? 2=Lj,2p— 1]
ns#; '!Mp 1"‘5f271 1_1]LI€ 2p—1~1j,2p—1~1]

(19)
__,,su 1n?’:1u,,2 s8]
= l 2i 3_-i'. 327 J (.2..”
H 823? 1
where numbers in square brackets mean q-numbers
defined by

Cop-1(&n) = T
sz‘.pml P

o] :={¢" ~q~*)/(a—¢7")
A proof of the fact that formulas (16)-(20) indeed
determine a representation of U’, (so,,) is given in [14].

Theorem 6. The representations Ty, are irreducible
and pairwise nonequivalent.

Conjecture. The Casimir elements of Theorem 3

separate irreducible representations of the classical

type, that is, for any irreducible representations ',

and Tm; there exists a central element C of Theorem

3 such that T, (C) # T, (C).

5. Finite dimensional nonciassical type
representations of U’ (so,)

Irreducible finite dimensional nonciassical type
representations are given by sets € := (€, €3, - ,€n),
¢; = £1, and by sets m,, consisting of {n/2} half-
integral numbers My p, Man, o, Minsey,n (here
{n/2} denotes integral part of n/2) satisfying the
dominance conditions

T, 2p+1 22 2412 " - 2Mpop4121/2,
oy 2p > M 2p2> + +* ZMhp 3 2p > My 2p 2> 1/ 2
These representations are denoted by Tt m,,

For a basis in the representation space we use
the analogue of the basis of the previous section.
Its elements are labelled by tableaux (14), where
the components of my and m_; satisfy the

"betweenness” conditions

M1 2pyl 2 M 2p 2 Maoprl 2 Me2p 2 ..
2 Mpap+l 2 Mpap 2 1/2,
M1,2p > M ,2p—1 = M2,2p = M2 op—1 2 o

o Z Mp_12p-1 = Mp,2p-

The basis element defined by tableau {£,} is denoted
as |§Tl)

As in the previous section, it is convenient to
introduce by formula (15) the /-coordinates. The
operator Ty yn_ (Jap41,2) Of the representation T,
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of U}(s0p) acts upon our basis elements by the
formulas

Tepmn (Lopr1,2p)16n) =

€2p+1

mfbp(gn”fn)'*

= 5mp.2p‘1K2 q72

P :r' ( )
+Zmi(§«»)

AQp En) 2p )

!jzp__.

- Z F(En)z J }:

where the summation in the last sum must be from 1 to
o -1 ifmy2p = 1/2, and the operator Tyn, (2p,2p-1)
of the representation Ty, acts as

_!J =37}

Teom, (Tap2p—1)1€n) = €2pCopt (En)lén)+

S ng—l(gn)
+j:1 (20 0p—1 — [ls.2p—1]+ l(ﬁn)gp -
3 B2IJ 1 (gn}gp 1)
‘?Zl 2{1 2p-1 1] lj2p-1 — 1 l(fn)gp_;[},

where [aly = (¢*+¢™%)}/(g—¢'). In these
formulas, (Eﬂ)fj means the tableau {£,} in which
J-th component 1 in my is replaced by m; ; £ 1.
Matrix elements A%p and B{;p_l are given by the same
formulas as in (16) and (17) (that is, by the formulas

(18) and (19)) and

P -' 1 p=1
]._,[3 1L Mp-—'ng 1pr 2+
1r
Hp zs 2p—[ |+ Iv 2p=1 = 1‘ -+

) 1
H? 1liep+1 — % Hf 1'Iz 2p—-1 " %]
H‘r 1 ig2p + EJLEW 2p — %]

For the operators Te m, (f32} and Tem,, (£2,1} we
have

Cf‘zp—l (gn) =

Di!p(&n) =

Tem, (I32)1én) = == ([l 3+

g g
+1m, 21”1 3—Tyg— 1|}U2|(E?«)j—1>—
([3]3+m]‘2_-1jlld_m] 2] én) ))
if myz # 3,

Te_.m,, (IS,E)J‘S?!) = q_f/'_i’_—-]q—

75 (chz‘r = 1/2]]§7r>_

+([ls +1/2]0s — 3/2)'2|(€a)37))

ir'ml,) — %s (rmd Te,mn I:-[‘.M )[én) = E?E'ml ,‘P.]-i—[in)-
The above formulas for the
Te,m,, (Ip,k—1) are given in [15].

operators
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Theorem 7. The T om,
irreducible. The representations Te v, andTe y are
pairwise nonequivalent for (e,my,) # (¢',m.). For
any admissable (e,1ny,} and 1y, the representations

representations are

T.m, and Ty arepairwise nonequivalent.

Conjecture. If ¢ is not a root of unity, then
every irreducible finite dimensional representation of
U'(so0,) is equivalent to one of the representations
Ty, of the classical type or to one of the
representations T m, of the nonclassical type. This
conjecture is proved for the algebra U'(s0,) (see [11]).

Theorem 8. If g is not a root of unity, then a
restriction of any irreducible representation of U (sl,)
fo the subalgebra U'(so, ) is completely reducible
and contains only irreducible representations of the
classical type.

The assertion on complete reducibility is proved in
[6]. The second part of Theorem 8 is proved in [16].

Problems: 1. It is necessary to show that finite
dimensional representations of the algebra U'(so0,) at
g not a root of unity are completely reducible. This
assertion is proved for » = 3 in [17].

2. Note that central elements of the algebra
U'(s0,) from Theorem 3 do not separate irreducible
representations of the nonclassical type, that is, there
exist nonequivalent irreducible representations of the
nonclassical type on which all central elements take
the same eigenvalues. Namely, it can be shown that
on representations T ym, and T ,n, (with the same
m,) Casimir elements take the same eigenvalues. It
is necessary to show that central elements separate
representations Ty, and T m: with different my,
and 1,

3. Using the embedding % : U (s03) — I:Tq(slg)
it is shown in [13] how to define tensor products
of irreducible representations of U’(so,). Using the
embedding U'(so,) -> U(sl) it is shown in [16]
how to multiply the classical type representations Tm;‘
andT(l,g,,.. 0) of U'(s0,) at g not a root of unity. (The
decomposition of such tensor product is such as in the
classical case.) It is necessary to show how to multiply
any irreducible representations of U'(so,) for ¢ not a
root of unity.

6. Irreducible representations of U’, (so,)
for g a root of unity

It is well-known that a Drinfeld-Jimbo quantum
algebra U(g) for g a root of unity is a finite
dimensional vector space over the center of U, (g). The
same assertion is true (see [8]) for the algebra U’ (so,).
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Using this assertion and the Poincare-Birkhoff-Witt
theorem for U'(so, ) it is easily proved the following
theorem:

Theorem 9. [f g is a root of unity, then any irreducible
representation of U’ (so, ) is finite dimensional.

Irreducible representations of the algebra U’(so,)
for ¢ a root of unity are described in [8]. For
construction of these irreducible representations of
U'(s0,), it is used the method of D. Arnaudon and
A. Chakrabarti (used by them for construction of
irreducible representations of the quantum algebra
Ufsl) when q is a root of unity). If ¢ = 1 and
o is an odd integer, then there exists the series of
irreducible representations of Uj(so,) which act on
p"-dimensional vector space (where N is the number
of positive roots of the Lie algebra so,) and are
given by r = dimso, complex parameters. These
representations are irreducible for generic values of
these parameters. These representations constitute
the main class of irreducible representations of
U'(so, ). For some special values of the representation
parameters in C' the representations are reducible.
These reducible representations give many other
classes of (degenerate) irreducible representations
which are given by less number of parameters or
by parameters, values of which cover subsets of
€ of Lebesgue measure 0. As in the case of
irreducible representations of the quantum algebra
U(sl), it is difficult to enumerate all irreducible
representations of these classes. However, the most
important classes of these degenerate representations
can be constructed. In particular, in [8] we give 2"
classes of these representations, which are an analogue
of the nonclassical type irreducible representations of
U'(so, ) for g not a root of unity.

Note that the problem of classification of
irreducible representations of the algebra U'(so0,) at g
a root of unity is very complicated problem. (The same
is true for the Drinfeld-Jimbo quantum algebras.) This
problem is complicated even for the case of the algebra
U'(s0,) (see [12] for details).

Problems: 1. Let ¢ be a root of unity: ¢ — 1,
It is necessary to find explicit expressions for the
values T(C™) (I3 1)), (i.j) = (2,1), (3,2), (3,1), for
irreducible representations 7 of the algebra U’(so,).
These values are known for some of irreducible
representations. Namely, then for the irreducible
representations R}l} from section 9 of [13] we have

RVC® (1)) = RV(CH (I52) =

2 nk
= B (C™ (In)) = i g™")*cos X
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and for the irreducible representations Fgpy from [13]
Rapa (CH) (I21)) = %{q — g~ *cosko, where X =
e—«ia’

2. For q a root of unity, irreducible representations
of the algebra U’ (s0,) map the set of Casimir elements
CEY (L), C®) (I3, C® (J31) to € We conjecture
that the image of this map coincides with C*

3. It is conjectured that there exists a closed domain
D C ©* of Lebesgue measure 0 such that the mapping
T : (CU") (Izl),O(k)(I;;g), (k) (I31)) — C® is a one-
to-one map for €3\ D

7. Restriction of representations of U (sl,)

to U’ (s0,)

In this section we assume that g is not a root
of unity. The algebra U’(so,) is a subalgebra of the
quantum algebra U(sl). Therefore, we may restrict
irreducible finite dimensional representations of the
algebra U (sl,) to the subalgebra U'(so,). Generally
speaking, such a restriction leads to reducible
representations of the subalgebra. It was proved in [17]
that each irreducible finite dimensional representation
of Ujsl,) under restriction to U'(so,) decomposes
into a direct sum of irreducible representations of this
subalgebra. N. lorgov has proved (will be published)
that such a decomposition contains only irreducible
representations of the classical type. However, explicit
formula for the decomposition is known only for the
restriction U/(sl,) -> U’ (so0,).

Irreducible finite dimensional representations of
U, (sl,) are given by three integers€ = (I1,{2,43) such
that {;, > l2 = l3. We denote such the representation
by K. Irreducible finite dimensional classical type
representations of U'(so,) are denoted by T%., where
k is a nonnegative integral or half-integral number.

In order to find which irreducible representations
of Uf(so,) are contained in the decomposition of
Rg Ly (so5) We split in [18] the spectrum Spec Ri(do1)
of the representation operator Rz (fz1} into spectra of
operators 1 (I31) of irreducible representations % of
U’ (so,). (It is proved in [18] that such splitting is
unique.) As a result, we have that

f
Ry Lyi(sop)= E

a8

g+ly—I3

>
k=8

if 1y — 15 is odd and

; g4ia—lg

b lUé(soﬂz Z Z

Ef k=3

Tk @ Z!Tf'

if {; —I5 is even, where Z’; means the summation over
the values I} —ls, 0y —lo — 2,0, — {3 -4,---, 1 (or2)
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and the last sum .. is over the values Iy —
I3l —l3 — 2,15 — I3 -4, - ,0 (or 1). Note that

these decompositions coincide with the corresponding

decompositions for the reduction SU(3) -> S0(3).
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Kaimux A. V.
HECTAHIAPTHA g-AE®OPMALIA OI OPTYIOUOI AITEBPU
U(so,), 3B'SI3AHA 3 KBAHTOBOIO I'PABITALIIEIO

OnucyioTbcs BIaCTUBOCTI HecTaHAApTHOI g-aedopMauii U’ (so,) yHiBepcabHOI oroprytoyoi anredpu U(so,)
anredpu Jli so,, 3B'13aHO1 3 241 KBaHTOBOIO IpaBiTalli€lo Ha piMaHOBUX NMoBepxHsX. Ll anrebpa He cniBnagae
3 KBaHTOBOIW anre6poto JIpindenbaa-/IximMoo U (so,). DOpMyTIOEThCs: 6arato HEPO3B'A3aHUX TPOOIEM.



