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Abstract

A description of a recursive algorithm for QR-decomposition
of a matrix based on Givens rotation matrices is given. Another
version of the block-recursive algorithm is obtained by replacing
Givens rotations with the Householder transform. These block-
recursive algorithms have the same complexity as the matrix mul-
tiplication algorithm.

Keywords: recursive QR decomposition, block-recursive
matrix algorithms, factorization of matrices, Givens rotation,
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1 Introduction

In connection with the new concept of creating recursive parallel algo-
rithms with dynamic control (see [1]-[3]), we began to look for a recur-
sive algorithm for QR decomposition. When did we get the algebraic
equations of such an algorithm, thanks to the personal communication
of Prof. Alexandr Tiskin and his publication [3], we found A. Schénhage
paper [4] in German, which suggested a similar algorithm, and which
was quoted very little in recent years. This convinced us of the correct-
ness of this approach and the whole concept of revising and searching
for recursive matrix algorithms.

To simplify the description of the algorithm, we restrict ourselves
to the decomposition of matrices over real numbers. At the same time,
we note that these matrix factorization algorithms are closed in the
sets of algebraic, real and complex numbers and are not closed in the
set of rational numbers.
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2 Givens algorithm of ()R decomposition

Let A be a matrix over a field. It is required to find the upper triangular
matrix R and the orthogonal (unitary if the initial field is a field of
complex numbers) matrix Q such that A = QT R.

Consider the case of a 2 x 2 matrix. The desired decomposition
A = @R has the form:

(5)-( )G
@ == (1)

If v =0 then we can set c =1, s =0.

If v # 0, then A = a? + 42 > 0, and we get ¢ = a/A, s=y/A.
We denote such a matrix QT by Ja,y-

Let the matrix A be given, its elements (7, j) and (i+1, j) be o and
v, and all the elements to the left of them be zero:

Qi 5 = &y Gi41,5 =7, V(S < ]) : (ai,s = 0) & (ai+1,s = O)
Let us denote Givens matrix:
Gi,j = diag(Ii—lv Ja,y, In—i—l)- (1)

Then the matrix G; ;A differs from A only in two rows ¢ and i + 1.
All elements in these two rows which are located to the left of the
column j, remain zero, and a;41,; will will become 0.

This property of the Givens matrix allows us to formulate such an
algorithm.

(1). First we reset the elements under the diagonal in the left column:

A1 =G1,1G21...Gp21Gr_11A.

(2). Then we reset the elements that are under the diagonal in the
second column:

Az = G22G33..Gp_22G,_1241.
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(k). Denote
G(k)) = Gk,ka—l,k‘"GH—Q,kG”_Lk’ (2)

for k =1,2,..,n—1. Then, to calculate the elements of the k-th column,
we need to obtain the product of matrices

Ak = G(k)Ak—l

(n-1). At the end of the calculation, the element in the n — 1 column
will be reseted: An—l = G(n_l)An_Q = Gn—l,n—lAn—Q-

Let’s find the number of operations in this algorithm.

It is necessary to calculate the (n? — n)/2 Givens matrices and for
each of them 6 operations must be performed. When calculating A; in
(1), the number of multiplications of the Givens matrices into columns
of two elements (4 multiplications and 2 additions) is (n — 1)2. When
calculating Az in (2), the number of such multiplications is (n — 2)?,
and so on. As a result, we get

6(n” —n)/2+6 Y i*=3n>—3n+6(n—1)(2n—1)n/6 ~ 2n°

i=1l..n—1

Here we count the number of all arithmetic operations and the opera-
tions of extracting the square root.

3 Recursive QR decomposition
We will change the order of actions in the algorithm so that it becomes
a recursive algorithm, which contains another recursive algorithm (QP

algorithm).
Let a matrix M of size 2n x 2n be divided into four equal blocks:

u=(28)
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3.1 Recursive QR decomposition algorithm.

There are three steps in this algorithm.
(1). The first step is the QR decomposition of the C block: Q1C = CV

I 0 A B A B
ue (5 8)(28)-(& 8): mao o

(2). The second step is the decomposition of a “parallelogram”, which
is comnsist of two triangular blocks: the lower triangular part of the
block A and the upper triangular part of the block CV:

A B AV B

M2_Q2<CU D1>_< 0 D2> (4)

(3). The third step is the QR decomposition of the Dy block: Q3D3 =
DY.

U U
R I 0 A B\ _ (A Bllj ' (5)
0 Q3 0 Dy 0 D
As a result, we get:
M =QR, Q= diag(l,Q3)Q2diag(l,Q1). (6)

Since the first and third steps are recursive calls of the QR proce-
dures, it remains to describe the procedure for decomposing a “paral-
lelogram”. We will call it QP-decomposition.

3.2 Recursive QP-decomposition.

We are looking for the decomposition of the matrix P:

QP =PV, Q) =@y, P=QiP.

cv
divided each of the two blocks that make up matrix P (of size 2n x n)
into four equal parts. We got 8 blocks, including one zero block and
two upper triangular blocks: fU and kY (7).

The matrix P = ( 4 > is the left half of the matrix M; (3). We
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It is required to annul all elements between the upper and lower
diagonals of the P matrix, including the lower diagonal. We are inter-
ested in a block procedure. Since n is even, we can split the parallelo-
gram formed by the diagonals into 4 parts using its two middle lines.
We get 4 equal parallelograms. To decompose each of them, we simply
call the QP-procedure 4 times. We will decompose each of them in the
following order: lower left (Fj;), then simultaneously cancel the upper
left (P,;) and the lower right (P},.) and the last we decompose parallel-
ogram in the upper right corner (P,;,). The corresponding orthogonal
matrices of size n X n are denoted as Q. Q. Q- and Q.

a c a c1
_ A _ b d U _ AY 0 dv
P_<CU)_ Yoy ’P_<0) 0 0
0 haY 0 0
(7)
b d U ody >
Py = = , 8
I Qll<ng> <0 0 (8)
a c aV c1
- 0 g1 \_[(0 gY
0 do\ [0 dY
re=au(y 2)-(0 %) (10)

As result, we get matrices Q2 (4) and PV (7):

Q2 = QurQ2Qu, Q2P = PY, (11)

with such factors:

Qur = diag(Iz, Qur, In), Q2 = diag(Qu, Qir), Qu = diag(Iz, Qu, In)
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3.3 Complexity of QP decomposition algorithm

The total number of multiplications of matrix blocks of size n/2 x n/2
is 28: 8 multiplications is necessary for the matrices Py (8) and Py (9)
and 20 multiplications is necessary for the matrix Q2 (11).

Hence the total number of operations: Cp(2n) = 4Cp(n) +
24M(n/2). Suppose that for multiplication of two matrices of size
n x n you need yn® operations and n = 2, then we get:

k—1
Cp(2¥T1) = 4Cp(2¥) + 28M (2F1) = 4FCp(2") + 287 ) ~ 47127 =
=0
2k(B=2) _ 1 n® —n?
2 2 _ 2
28y(n”/4) Sy — O =Ty gp - +on
7ynf n? Ty
Cp(n) = o+ —(3 — ). 12

4  The complexity of )R decomposition algo-
rithm

Let us estimate the number of operations C(n) in this block-recursive

QR-decomposition algorithm, assuming that the complexity of the ma-

trix multiplication is M (n) = yn?, the complexity of QP-decomposition
is Cp(n) = an®, where a, 8,v are constants, a = ﬁg_@ and n = 2"

C(n) =2C(n/2)+Cp(n)+6M(n/2) = 20(2k_1)+C’p(2k)+6M(2’f—1) _

k k
C(20)2F +) "2k iop2) + 6 2k M (2 =

1=0 =0
k k
o Z ok—igif | 6 Z ok—ig(i-1)f _
i=0 i=0
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k
(2% + 672570) Y " 21071 =
=0

28n8 _ o, 7(256 —17)(n? 2 )

o2 @@
For the case of B =3, v =1, we get C(n) = (31/24)(n® — n/4).
For the case of 8 =log, 7, v = 1, we get C(n) = (5/3)(n® — 2n/7).

(o + 672_5)

5 Conclusion

We have presented a recursive algorithm for computing the QR-
factorization of a matrix, which is based on Givens rotations and has
the complexity of matrix multiplication. It is not difficult to see that
Givens rotations can be replaced by Householder transformation [6].
For this, it is necessary to use matrices

H.=1- iukug
[l 3
(with Householder vector uy) insted of Gy (2). All other steps of
the recursive algorithm can be left unchanged. An experimental com-
parison of these two variants of QR-decomposition is of interest. Of
particular interest is the implementation of these algorithms for a dis-
tributed memory cluster.
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