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CONTROL OF SYMMETRY BY LYAPUNOV EXPONENTS

In this paper we describe control systems with local and global symmetry. Recent results in control theory
have demonstrated that control can lead to symmetry breaking in chaotic systems with a simple type of symmetry.
In our work we analyze controllability of Lyapunov exponents using continuous control functions. We show
that, by controlling Lyapunov exponents, a chaotic attractor lying in some invariant subspace can be made
unstable with respect to perturbations transverse to the invariant subspace. Furthermore, a symmetry-increasing
bifurcation can occur, after which the attractor possesses the system symmetry. We demonstrate control of local
Lyapunov exponents for the control of symmetry in nonlinear dynamical systems. We also study the effect of
noise in the system. It is shown that the small-amplitude noise can restore the symmetry in the attractor after
the bifurcation and that the average time for trajectories to switch between the symmetry-broken components
of the attractor scales algebraically with the noise amplitude. We demonstrate the relation between Lyapunov
exponents, order parameters (Haken, 1983, 1988) and symmetry using a simple physical system and discuss
the applicability of our approach to the study of state transitions in the epileptic brain.
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1. Introduction

Recent investigations of the epileptic human brain
have shown that an effective correction of brain func-
tions needs new control, prediction and optimization
methods (Refs. 1-4). These methods are connected
with reconstruction, optimization and control prob-
lems. The solution of the first problem is mainly
based on the representation of electroencephalogram
(EEG) time series in a state space using delay embed-
ding methods (Refs. 5-6). The obtained quantitative

information can be computed by estimating param-
eters which are invariants of the embedding process.
The particular set of invariants we shall concentrate on
in this paper is the spectrum of Lyapunov exponents
(Refs. 7-10). The second problem can be reduced to
the solution of a detection problem using Lyapunov
exponents (Refs. 1, 3, 11-12). The third problem con-
nects with controllability of Lyapunov exponents. The
analysis of controllability of the Lyapunov exponents
is an important new problem in control theory and
different applications (Ref. 13). There are only few
attempts of attacking this problem (Refs. 3, 14-18). A
relatively new approach is to consider a control system
of Lyapunov exponents as a dynamical system, where



the st of control functions is part of the state space
of this dynamica system (Ref. 18). For solving the
above three problems, it is necessary to have effective
agorithms for the control of symmetry by Lyapunov
exponents.

The Lyapunov exponents of control systems are in-
teresting because they encapsulate in an intuitive form
the dynamical information contained in the EEG data.
In addition, the Lyapunov spectrum can be related to
other quantities derived from the experimental data.
For example, the T-index is based on the largest Lya
punov exponent (Refs. 1, 11). A number of agorithms
have been -proposed for estimating Lyapunov expo-
nents from a scalar time series. Some, for example the
method developed by Wolf et a. (Ref. 7) or the more
recent work of Rosenstein et al. (Refs. 19-20), find
the largest exponent and use this to classify a system
according to whether or not it is chaotic. Algorithms
which are designed to calculate the full spectrum of
Lyapunov exponents have also been suggested. Most
of these are derived from the Jacobian method pro-
posed by Eckmann and Ruelle (Ref. 8) which was fur-
ther developed by Eckmann et a. (Ref. 8) and Sano
and Sawada (Ref. 9). These agorithms are more gen-
erd than the basic 'Largest exponent' methods, since
they are required to extract more information from
the experimental data; and as a consequence are more
inclined to difficulties in implementation.

We reformulate the problem of calculation of Lya
punov exponents as an optimization problem. Then,
we present an dgorithm for its solution. The algo-
rithm is globaly and quadratically convergent. This
agorithm is based on earlier suggestions by the authors
(Rd. 22). Here we use well-established techniques
from numerical methods for dealing with the optimiza-
tion problem which inevitably arise when estimating
Lyapunov exponents from time series.

The paper is organized as follows. In Section 2,
we propose a numerical algorithm for calculation of
the Lyapunov exponents by solving the corresponding
optimization problem. In Section 3, we demonstrate
a number of applications to demonstrate the control-
lability of Lyapunov exponents using the proposed al-
gorithm. The advantages of the agorithm are demon-
drated by application to a range of data sets. In Section
4, we shown that control can lead to symmetry break-
ing in chaotic systemswith a simple type of symmetry.

2. Calculation of the Lyapunov exponents for
control systems

Let us consider control dynamica systems (Ref.
18) described by the differentiable dynamical model

q=flg,u), q(to)= qo, (D

where ¢ is a vector in the phase space R”, f(q,u) is
a smooth vector field on a manifold M, and « is a
control function. We suppose that » is a feed-back
control function v = u(q).

The vector field f yields a flow & = {®'} on the
phase space, where ' is a map

g— ®'(q,u), teR, qgeR™ )

The observed trajectory, starting at qo, is
{®"(q0,u) |t €RT}. &)

To get an information about the time evolution of
arbitrarily small perturbed initial conditions, we con-
sider the time evolution of tangent vectors in the tan-
gent space 7'M . It is given by the linearization of the
equation (1).

The Taylor expansion of f(P*(qo,w)) for small Aq
is

F(@" (g, u)) + Df(® (g0, u))Ag+- . (4

Here D f(®*(go,w)) is the local Jacobian matrix of the
vector field f at ®*(qo, uo)

A

J(d0,0) = D (" (g0, uo)) — {

‘I"(QO,UG):I .
(5)
For Ag — 0 the following first-order approxima-
tion holds [23] :

dq = J(qo, u0))dq. (6)

A solution of the linear variational equation (6) has
the form

§q(t) = DP*(qo, uo)Sq0, )

and represents the time dependence of the vector in
tangent space TM. Let A*(qo) be the (n X n) matrix
of the linearized flow D®*(qg,uo) and dqo an initial
perturbation. We consider matrix A® as a linear map
from the tangent space 7'M at (¢n) to the tangent space
at q)t(qO).

The spectrum of Lyapunov exponents is the set of
logarithms of the eigenvalues of the self-adjoint matrix

Ago = Jlim [(A*(g0)" A" (@), ®

where (A%(go))* is the transpose of A'(qo). The ex-
istence of the limit in equation (8) is proved by Os-
eledec’s theorem (Ref. 25).

Let B = (e!,...,e") be an (n x n) matrix, where
the column vectors are a basis of the tangent space. If
the limit exists

1 .
A = tlim ?ln [| A (go)e|| &)

then the A;’s are called Lyapunov exponents. They are
ordered by their magnitudes Ay > Ao > Az > .-+,



If the limit is independent of qg, the system is called
ergodic (Ref. 25).

For calculation of the Lyapunov exponents using
(9) with an arbitrary set of basis vectors it is necessary
to use a renormalization procedure after some time
At. One can write A*(qo) as the product of (n X n)
matrices A%*(g;), each of which represents the lin-
earization of the flow ®4¢, and maps g; = $72¢(go)

10 gj+1:

ARBY(qo) = AR (g1} 0 - 0 AR (gj) o
--0 ABY(g1) 0 A% (qo),

(10)
with kAt = t. After every time step of the evolution
time At any renormalization method can be applied.

Optimization Algorithm. For the calculation of
Lyapunov exponents we need to reconstruct an attrac-
tor in phase space from a single time series of an
observable using the method of time shifted samples.
Let an observable be a function p, that maps any point
®t(zq) in the state space to a (measurable) real value
p(®*(z0). It has been shown for compact manifolds
of dimension m, that the set

{p(®"(0)), p(®**74(w0)), . .., p(®" 274 (0))]
74 € RT\{0} = o0} (11)

is diffeomorphic to the positive limit set of ®*(zg)
under generic conditions.

The matrix of the linearized flow A%t =
D®%Y(z;) can be approximated from a single tra-
jectory by using the recurrent structure of strange at-
tractors. This is done by averaging over the time
evolution of difference vectors between x; and points
of the same trajectory on the attractor, that are within
a small distance 7.

The set of N difference vectors in a ball centered
at q; = (I)jAt(qO), with _’}At =tis

L(r) = {|®"(q0) — ®""*(q0)|x
x [|®*(qo) — D5 (qo)|| < 7,
t>—ti=1,...,N} (12)

and will be denoted by {y*|: = 1,...,N}. Af-
ter the evolution time At it is mapped to the set
{8 gg) — DMHEtA(g)} = {2fi=1,...,N}.

We will consider the approximate matrix Aasa
vector z. Now the (n x n) elements of the matrix A
are determined, such that

N
mn P = @)’ = eI 03

. 2
Subject to zeR™,

(14)

where g; : R™ — R, g; = ||z — Ay?|[>. Then,
the matrix A can be estimated by the Gauss-Newton
method

2 =27 — oY (Vg(z7)Vg(2)g(z?)),  (15)

where Vg is gradient matrix of g. For solution of the
optimization problem we can use different numerical
algorithms (Refs. 24-27).

If the ball of radius » and the evolution time At
are short enough to represent a mapping in the tangent
space (7), A should be a good approximation of the
matrix of the linearized flow D$4!(z;). Note that
the evolution times At in the renormalization and the
approximation process do not necessarily have to be
the same, but are chosen equal for convenience. This
approximation method seems to be the most flexible
one in analyzing a data set, because several parame-
ters [i. e., the evolution time At (see below)] can be
controlled separately.

Each invertible (n x n) matrix can be split uniquely
into a product of an upper triangular matrix R with
positive diagonal elements and an orthogonal matrix
@, such that

A(q;)E; = Q;R; = Ej 1 Ry, (16)
with E; = (ej,...,€e}). The matrix Q; serves as
the new basis £, 1 and the logarithms of the diago-
nal elements of R; are (local) expanding coefficients,

whose time-averaged values are the Lyapunov expo-
nents. Using

k-1 k-1
AR (go)Eo = [T A% (45)Bo = Qx-1 [ [ R

7=0 7=0

)

in (8) we obtain
=
;== i _— “7 1%
Ai= im ;0 I, (18)

where 77; are the diagonal elements of the matrix R;.

3. Application of the Numerical Algorithm to the
Control of Nonlinear Systems

Using the optimization algorithm, data sets of dif-
ferent control systems have been analyzed.

Discrete Control Systems. We have applied the
method to control systems. The first system is the
map:

(19)

In the first simulation, we choose p = 0.3 and
let the control gain sequence uy be picked from the
interval (Ref. 15)

Tkl = aﬂ:kg + cxy + buy.

[~ (zk — P (T—1) ™' = d,
—(9) (z — €*P(T—1)1d].  (20)



The control gain sequence uf, is picked from this inter-
val to satisfy condition (20) that makes the Lyapunov
exponent the larger then p = p’. Mathematical simu-
lations show the possibility to control of the positive
Lyapunov exponents.

The second control system is the map:

2
Tty = axi + czy + bug, Ukt1 = Uk, (21)

where ug is a fixed parameter, uy, is control function.

Control of Lyapunov Exponents in Lattice Sys-
tem. Consider a nonlinear lattice system (Refs. 31-32)
of the form

:1:}-%1 :'r(:c'f:1 —at) —r(zh —xi“), (22)

where £ = 1,2,..., N are the discrete time steps,
i=1,2,..., Listhe discrete lattice sites with periodic
boundary conditions, r is some nonlinear function, and
z e R2

Let us rewrite the system (22) in the following
form

i—1

i iy il
Ti1 = gkl

>$7I;c:‘7’k )) (23)

where gy, is assumed to be continuously differentiable.

The goal towards control of the dynamical system
(23) is to design an input sequence {u%} such that the
output (state vectors) of the controlled system

Thpr = gk@ L ah, T b, (24)
where :c?) is given, behaves chaotically, in the sense
that all the Lyapunov exponents of this controlled sys-
tem achieve some value while the controlled system
orbits remain to be bounded.

We assume that the linear state-feedback controls
have the standard structure wf,, = ~j(x}), where
{+i} are 1 x n nonlinear functions to be determined,
without tuning any of the system parameters. Using
this w, the controlled system (24) becomes

i g i—1 i i+l i
Tipr = ge (@70, 2k, 20 + ug,

up i =k(z}), =b given. (25)

Let A ‘
Jiz) = ()

be the Jacobian of gi(-)
7=0,1,2,..., and let

(26)

(g;."y;-) evaluated at z,

T; =T(xh, ..., z%) =

T T (b ) i) Ti(). @)

Let ¢/ = (T"?T}') be the It" eigenvalue of the
7k product matrix [T7JTTJ’], where [ = 1,...,n and
§=0,1,2, ...

The {*h Lyapunov exponent of the orbit {z%}32
of the controlled system (24), starting from the given
xb, is defined by (Ref. 3, 14-18) [25]

if i : 1 i L i
A(zp) = JAm o ln &1, Tk

. 1 il 4 iT iy 7i (.4
= klggoﬁlnlmu o(@g) - Ik (@) I k(2 )],

k=1,...,n. (28)

In the controlled system (24) we can design the
control {7 (z%)}%2 , such that all the Lyapunov expo-
nents of the orbit {z%}2°, are positive in a suitable
region

where p* is some predesigned constant.

At the initial step, k = 0, we determine the control-
gain 7% (z) such that [TET3" =1 > 0. Then, for cach
k=1,2,..., we determine the control 4% such that

() [Ti_iTi, 17" >0, (30)

and
.. iT i i q _
(i) [Ji Jel = [T Ti_y 7P > 0. (31

where the constant p* > 0 is the one given in (29).
The designed controller can be obtained by the al-
gorithm as follows.
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Fig. 1. First Lyapunov exponent A; for the lattice system.

Start with the feedback controlled system (24),
where z} is initially given. Let T¢ = Jj(z%). De-
sign a feedback control such that the matrix [TE7¢
is finite and diagonally dominant.

Fork =0,1,2,..., B = oll, > 0, start with the
controlled system (24):

Step 1. Compute the Jacobian J} (z} ), and then let
Ty =J, Iichi——l;

Step 2. Design a positive feedback controller by
choosing the positive number o}, such that the ma-
wix [T¢_ Ti_, 7]~ — e2¥" I, is finite and diagonally
dominant, where the constant p* > 0 is the one given
in (27).



The control sequence {B%} = {oLI,} is chosen
such that at step k, o}, satisfies

T yi 2kpt i i T
Ji Jp — e T (T

() (eI @0l + ok () @l +
[CF @)+ () = € [T T ]

]—1 —

(32)

This can be achieved if we let the matrix in (33) to
be diagonally dominant by appropriately choosing a
real number o%. Figure 1 shows the first Lyapunov
exponent of the lattice system.

4. Control of Symmetry by Lyapunov Exponents
in Dynamical System

When a dynamical system with control functions
possesses certain symmetry, there can be an invariant
subspace with a chaotic attractor in the phase space.
As the Lyapunov exponent changes through a criti-
cal value, the chaotic attractor can lose stability with
respect to perturbations transverse to the invariant sub-
space. Furthermore,a symmetry-increasing bifurcation
can occur, after which the attractor acquires the sys-
tem symmetry. It may therefore be possible to use
Lyapunov exponents for control of symmetry in non-
linear dynamical systems. In this case the loss of the
transverse stability can lead to a symmetry-breaking
bifurcation characterized by lack of the system sym-
metry in the asymptotic attractor. An accompanying
physical phenomenon is an extreme type of temporally
intermittent bursting behavior. The mechanism for this
type of symmetry-breaking bifurcation is elucidated.

We simulated the following control system

Tyl = Tmn(l - -'En)

33
= %umn sin[27(yn — b)] + b, (33)

Yn-+1

where r and b are parameters; w is control func-
tion. The values chosen were » = 3.8; b = 0.05
and w € [1,4]. Figure 2 shows the largest Lyapunov
exponent Ay and the [Ymaz| — 0.5 for the system (33).
Figure 3 shows the transverse Lyapunov exponent A |
for the system (33).

Preliminary simulations suggests that it is possible
to change the local Lyapunov exponent with noise as
the control input. Changing Lyapunov exponents may
restore the symmetry in the attractor after the bifur-
cation and the average time for trajectories to switch
between the symmetry-broken components of the at-
tractor depends on the range of Lyapunov exponents.
The realization of control using our approach is based
on the relation between Lyapunov exponents, order
parameters (Haken, 1983, 1988) and symmetry. This
idea may be extended to the case of complex biological
systems such as the epileptic brain which demonstrates

intermittent state transitions as it moves into and out of
seizure states. We hypothesize that such state transi-
tions involve corresponding changes in the symmetry
of the system and hence our approach may be applied
to control of such dynamical systems.
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Fig. 2. The largest Lyapunov exponent Ay

and the |Ymaz| — 0.5 for the system (33).
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Fig. 3. The transverse Lyapunov exponent A |
for the system (33).

It is possible to control a scenario of symmetry-
breaking bifurcation in chaotic dynamical systems by
transverse Lyapunov exponent. We assume that sym-
metry breaking bifurcation occurs if the transverse
Lyapunov exponent crosses zero from the negative
side. When such a symmetry-breaking bifurcation oc-
curs, the largest Lyapunov exponent exhibits an on-off
intermittency. As the control parameter varies further,
symmetry-increasing bifurcation occurs when trajecto-
ries start switching intermittently among the coexisting
symmetric chaotic components.

5. Discussions and Conclusions

The Lyapunov exponents are conceptually the most
basic indicators of deterministic chaos of dynamical
systems with control. For the analysis of such dy-
namics, several numerical algorithms for estimating



the spectrum of Lyapunov exponents have been pro-
posed. In this paper we have focused on control of
symmetry and Lyapunov exponents using optimiza-
tion techniques.

By using the new method we have obtained good
estimates of the Lyapunov spectrum from the observed
time series in a very systematic way. We also inves-
tigate the possibility of modifying the symmetry of
a dynamical system by changing its Lyapunov expo-
nents. It is hoped that the new method will have wide
applicability to systems whose dynamic equations are
not available.

Preliminary results suggest that it may be possi-
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KEPYBAHHA CUMETPIE€IO 3A JOITOMOTI'OIO TOKA3HHUKIB JIAIIYHOBA

Locnidxncenns ocmawumix pokie 'y eany3i cucmem KepyeaHHs NOKA3YIOMb, W0 308HiWHI 30YPEeHHS MONCYMb
npuzeodumu 00 NOpYUleHHs1 cumempii 6 cucmemax 3 XAOMu4yHO OUHAMIKOW 3 NeGHUM MUNOM CUMempii.
B pobomi npoananizosarno moociusicme kepyeanua nokasHuxamu Jlianynoea 3a 00nomocor HenepeperHozo
306HIWHb020 6énaugy. Ilokasano, w0 XAOMU4HUI amMpaKmop Moxce cmamu HecmadinlbHUM N0 GiOHOUIEHHIO
do mpamnceepcarvHux 0o iHeapianmuoeo nionpocmopy 30ypens. Ilpu yvomy moxcyms eunukamu 0Oigpyprauii,
nicasa AKUX ymeoproemocsa Hoéa cumempia ampakmopa. Mu makooic: noKa3yemo iCHY8aHHs CNiGGIOHOUEHHA MIdC:
nokasnuxamu Jlanynosa, napamempamu nopsadky (Xaxen, 1983, 1988) ma cumempicto na npuxaadi npocmoi
@izuunoi cucmemu. 0062080pPHOEMBCI MOICAUBICMb BUKOPUCMAHHS HAW020 NiOX00Y 00 GUBHeHHsI NepexiOHux
PedNCUMi8 8 eniNenmuyHOMy 20108HOMY MO3K) .



