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THE BOUNDARY PROBLEM BY VARIABLE t FOR EQUATION OF
FRACTAL DIFFUSION WITH ARGUMENT DEVIATION

For a quasilinear pseudodifferential equation with fractional derivative by time variable t with order
a e (0,1), the second derivative by space variable x and the argument deviation with the help of the step
method we prove the solvability of the boundary problem with two unknown functions by variable t.
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Formulation of the problem

We should determine the solution of the boundary
value problem

Dtu{t,xj = a%rdéjd(—:(;) ----- B(t)p(t,x) +
+ f (t,x,u(t —h,x)), t>h,x eR, (1
u(t, x)lo<t<h = uo(t,x), xe R, 2
u((k + 1)h,x) = p(x), xeR, 3
where
1

DOu(t, x) = r1-a) V)Z

md  lu(t,x)dr .

dtah - Ma (t —h)au0(h, x)

is a regularized fractional Riemann—Liouville deriva-
tive ofa e (0,1) order,t > h, x e R, h is a number,
k e N, f, u0, p are known functions, u, p are un-
known functions.

The problem (1)-(3) contains fractal integro-
differential equations, which are used in physical,
mechanical, and other disciplines. We note that the
Cauchy problem for an equation with fractional deriva-
tives is sufficiently complete and thoroughly analyzed
in the papers of A. N. Kochubey and S. D. Eidel-
man [1-3] and many of their later papers.

As a solution of the problem (1)-(3) we mean a pair
of functions u(t, x), p(t, x) with such properties [4]:
LueC2n,n = OT] xR, T = (k+ 1)h;
Pe KC(n);
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2. fractal integral

. u(t,X)

it au(t, x) M-a o - n

belongs to class CI£ (n);
3. function u(t,x) satisfies equation (1) and condi-
tions (2) and (3).

Definition and properties of Green function.
The formula of convolution

We denote
Gi(t,x,a,h) = F f\x[Qi(t,a,a,h)], i= 12 (%)
where F—X is an inverse Fourier transform,
QXL(t,a,a,h) = Eaji(-a2jal2(t - h)a),
t > h,aGR,
Q2(t,a,a,h) = D1-“Eaii(-aZ2|al2(t - h)a),
t >haGR,

are expressed in the Mittag—teffler function

tk
"M =g r<(+ir f>0,a>0,">0

[4, p. 25]. For functions Gj, i = 1,2, from (4) such
estimates are true [2, lemmas 1,2]:

IG"IGi(7,x,a, h)I < Ctaill™

x exp{—ep(t, x, h)}, m < 3 5
IG“Gi(7,x,a, )\ <C{t-h)-iax
x exp{—ep(t, )}, (6)
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|D™ ot z, o, )| < Ot — h)~ U3~ Lre

x exp{—cp(t,z, h)}, m <3, (7
|D2Go(t, z, o, h)| < C(t —h)" %1 x

x exp{—cp(t,z, h)}, 8)

-2
where p(t,z, h) = (|z|(t — h))>=,t >0,z €R.
Vector-function (G, G2) is called Green function
for Cauchy problem without the deviation of the argu-
ment:

5 0%u(t, )
oz?
+ f(t7$7U0(t - h7x))7

w(t,z)|i=p, = uolh,z),z € R,

Diu(t,z) = a
h<t<2hzecR, (9
(10)

which is obtained from the problem (1), (2) when it
is solved by the steps method when B(¢) = 0. Let
us prove the convolution formula for Green function’s
component. The Cauchy problem for homogenious
equation (9) with initial condition w(t, z)|s—0 = ¢(z),
x € R have only one solution in continuously and
bounded functions [2] which is represented as convo-
lution

wt) = [ Gilt =02 - 0@ (1)
Let us write initial condition as

u(t7 x)|t:5 - Gl(ﬁ7$7 @, h)7

The Cauchy problem with this condition corre-
sponds to a solution of the form (11)

z €R.

wite) = [ Gt po—yah)x

X Gl(ﬁ7y7a7 h)dy (12)

On the other hand, when ¢ > 5 the function

ug(t, z) = G1(t,z,a, h) is also the solution of equa-
tion (9) when f = 0 with initial condition

uZ(t7 x)|t:5 - Gl(ﬁ7$7 @, h)7

From the theorem of uniqueness of Cauchy prob-
lem from [2] follows that uy(t,z) = wa(t, ), 0 <
< fB <t xR So the formula (12) takes the view

z eR.

Gl(t7x7a7h):/ Gl(t_ﬁ7x_y7a7h)x

X Gl(ﬁ7y7a7 h)dy7 (13)

where 0 < 8 < ¢,z € R.

Since Go(t,z, o, h) = DI “Gy(t, x, a, h) using
operator D}~ to (13) we obtain the convolution for-
mula for Green functions

Gz(t7$7a7h):/ Gg(t—ﬁ7x—y7a7h)x

X Gl(ﬁ7y7a7 h)dy7 (14)

where 0 < 8 < ¢,z € R.

The classical solution of (1)—(3) problem

Let us construct a classical solution of the original
problem (1)-(3) when kh < ¢ < (k+ 1)h, 2 € R in
the band II = (h, (k + 1)h) x R [4]

utt.o)— | T Galtsa — & 0 khyuo(kh, €)dE 1
t o0
d _ _
+/kh leGg(t T, —& a,kh) x

X [f(7—7 57 kh) - B(T)p(7'7 f)]d£7 (15)

where the term B(¢)p(t,«) moved to the right-hand
side of equation. Let us assume we satisfied the con-
dition (3) from (15), then we obtain the equation

(k+1)R o
/ ClT/ Gol(k+1)h—7,2 =&, a,kh) X
kh —00

X B(T)p(7—7 g)dg - [Gl (t7 z, o, kh)uo(kh7 ZE) +
+ Gz(t7 T, a, kh)f(t7 Z, kh)]|t:(k+1)h - QD(ZE) =

= U(z, a, kh, (k + 1)h), (16)

which is an integral Fredholm equation of first kind for
definition of function p(¢, z). The solution of equation
(16) we find as

p(t7$) = Gl(t7x7 a, kh)C7 (17)

where C' is constant.
If we substitute (17) in (16) we obtain linear equa-
tion for definition of C, whose solution is

(k+1)h

O — W(a, a, kh, (k+1)h){/k B(r)dr

h

/OO Gollk+ 1V)h — 7,2 — &, a, kh) x

-1
x Gi(T1, ¢, a, kh)df} )

If we take into account the convolution formula
(14), we obtain

C =V(x,a,kh, (k+1)h) x
(k+1)h —1
X {Gg(t7x7a7 h)/ B(T)dT} :

k

h

So from (17) we obtain

p(t,x) = Gi(t,z, a, kh)¥(z, o, kh, (k + 1)h) X
(k+1)h —1
X {Gg(t7x7a7 h)/ B(T)dT} . (18)

kh
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If we substitute (18) in (15) we obtain the for-
mula for w(¢,z). So the pair of functions u(¢, z)
from (15) and p(t,z) from (18) defines the clas-
sical solution of the problem (1)-(3). Based on
the inequalities (5)-(8) for Green functions, we
estimate pair (w(t,z),p(t,z)) of searched func-
tions

lp(t,z)| < Ct™ 2| B(Juolc + lele + 1flo),
lu(t, )] < C(luolc + |fle + |Ble + |¥lc),

(19)
(20)

where | - |¢ denotes norm in space continuously func-
tions.

Note that function p(¢, z) is not uniquely defined,
since in (17) we can add a multiplier m(¢).

The two-point boundary value problem for the dif-
fusion equation with the operator of fractional differ-
entiation with respect to the ¢ is considered in [5]. So
we have the following theorem.

The classical solution of the problem (1)-(3) de-
fines by pair of functions (15), (18) for which the
estimates (19), (20) are correct.
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I'PAHUYHA NTPOBJIEMA 3A 3MIHHOIO ¢ J1JIs1 PIBHAHHSA
®PAKTAJIBHOI JJU®Y3Ii 3 BIIXUJEHHSIM APTYMEHTY

Jna a KeasiniHiliHo20 NCed0oouhepenyianviozo PisHAHHA 3 OpPOO060I0 NOXIOHOK 3a 4aAcom t NOPAOKY
€ (0,1), dpyeoro noxionoio 3a nPOCMOPOBOIO IMIHHOIO X [ 3 GIOXUNEHHAM APSYMEHMY MemoooM KPOKi6 Mu
00800UMO P0O38 A3HICY 2PAHUYHOT 3A0ayi 3 080Ma HesiooOMUMYU DYHKYIAMY 30 3MIHHOIO L.

Kurrouosi caioBa: rpannyna mpodiaeMa, (paxkrambHa Tudy3is, BIAXWICHHS apTyMEHTY.
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