
1

 Міністерство освіти і науки України

 НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

 Кафедра мультимедійних систем факультету інформатики

Курсова робота

 за спеціальністю „Інженерія програмного забезпечення”

Architectural approach in Software development. Research and technology stack decision.

Керівник курсової роботи

Ас. Корнійчук М.А.

(підпис)

“____” _________ 2021 р.

Виконав

студент 4 курсу

факультету інформатики

Кузьменко Д. О.

2

Work Schedule

Numb

er

Coursework writing stages Date

1 Team collaboration and research of the

judicial domain

10.09.2020-17.09.2020

2 Technological stack decisions 25.09.2020

3 Development stage 01.10.2020 - 28.02.2021

4 Product testing 01.03.2021 - 08.03.2021

5 Completed coursework draft 29.03.2021

6 Completed final coursework draft 11.04.2021

Table of Contents

Work Schedule Error! Bookmark not defined.

Table of Contents 2

Introduction 3

Software development lifecycle 4

SDLC Methodologies 6

Advantages of REST architecture 7

Approaches to system architecture design. 8

Product management 9

Research 9

Technology stack decision 10

Backend backbone. Frameworks, potential options 11

FrontEnd backbone. Frameworks, potential options 14

3

Search Engine solutions - potential options 18

Continuous Integration and Delivery (CI/CD) 21

My experience - project in-depth 22

General project structure 23

Challenges & Problems 27

Product demo 28

Summary 31

References 32

 Introduction

The topic of architectural approach in software engineering is chosen for the

research in this work. The topic is undoubtedly relevant at the moment. The

further we progress technologically, the more requirements are set for new

projects centered around the software. Also, more projects are being created,

more products are being designed, and more diversified approaches can be

assessed and chosen for many different tasks.

Domain research and technology stack decisions do play a vital role in the

potential risk avoidance and success of the project.

This work will comprise of different segments, such as the theoretical part of

software development architectural approach - architectural patterns, different

methodologies to the development itself, server and client sides of the

application as necessary parts of any product, core solutions to the set tasks, and

solutions to continuous integration and delivery - are to be explored, assessed,

compared and explained; the practical part - in which the team project is

evaluated, the development process inside the team is shown, and the general

structure of the project, as well as the decision per every point mentioned in the

theoretical part, is explained; the demo part - involves demonstration snapshots

4

from the working application, deployed at https://themida-devs-

kma.herokuapp.com/.

Our team consisted of 5 members:

Dmytro Kuzmenko (Software Engineering 4) - Backend developer/Product

manager

Tetiana Meronyk (Software Engineering 4) - Backend developer

Kryvosheienko Julia (Software Engineering 4) - Frontend developer

Simon Boytcov (Software Engineering 4) - DevOps engineer

Mykyta Kozhevnykov (Marketing 4) - Market analyst and researcher

Software development lifecycle

Seven main stages of SDLC:

1. Planning

2. Analysis

3. Design and Prototyping

a. Architecture

b. User interface / User experience

c. Platforms

d. Communications

4. Implementation

5. Testing

6. Deployment

7. Maintenance

Planning

https://themida-devs-kma.herokuapp.com/
https://themida-devs-kma.herokuapp.com/

5

The process of establishing goals and tasks to be achieved during a set amount

of time (sprint, for instance).

Analysis

Analysis’s main task is to figure out the main issue while trying to fix the

system. Furthermore, different stages are present in the analysis, such as:

- Subdividing the project/system into smaller pieces

- Analyzing and setting goals

- Coming up with what has to be done

- Researching and creating questionnaires for end-users to create definite

requirements.

Design & Prototyping

During this stage, the predefined set of prerequisites has to be made:

- Certain architecture, namely the programming languages, frameworks,

techniques, have to be specified

- A user interface including wireframes, prototype, website/application

design, etc

- User experience involving user stories, customer journey maps, and other

useful tools

- Platforms to be able to get your application working

- Communications have to be defined as measures for the application to be

able to establish a connection to the server or perhaps other copies of the

application.

Implementation

The hands-on experience with code. All the implementations of the designed

architecture are written here.

6

Testing

Quite a crucial step that has to be done in order to present the Minimal Value

Product, start the deployment process and begin to receive feedback from end-

users.

Deployment

In the deployment step, the application is being made available to the target

audience, which itself starts to use it, test it, and give the very necessary and

important feedback.

Maintenance

The maintenance step involves a complete, deep evaluation of the project or the

system to make sure it stays up-to-date. Additionally, all the different changes

could be implemented in the software part of the project here.

SDLC Methodologies

Waterfall

The Waterfall model is the basic methodology of development pertaining to the

step-by-step analysis and development of the software.

Agile

The Agile is much more flexible of an approach. It has some core principles,

such as:

 people are more important than process;

 the product is more important than overwhelming documentation;

7

 readiness to change is more important than following the set plan. [9]

Iterative

In the Iterative development model, developers create a demo version of the

software in a matter of a couple of iterations. It is a methodology based on

cycling through the multiple different parts of the project, i.e., analyzing,

testing, implementing, prototyping, and fine-tuning the product.

Without a shadow of a doubt, it is vital to use a Version Control System in any

of the aforementioned methodologies in order to achieve success.

Architectural patterns and styles:

- Client-server

- Data-centric

- Monolithic app

- Microservices architecture

- Layered architecture

- Representational State Transfer (REST)

Our decision for the team project - RESTful API and Agile approach (Scrum).

Advantages of REST architecture

Here are a couple of upper sides of a REST architecture:

8

● Simplicity: The RESTful architecture is much easier and more

convenient to develop than SOAP.

● Scalability: The applications can be scaled quite widely via adding

additional server nodes behind a load balancer. [8]

Image 1.1. REST Architecture Scheme

Approaches to system architecture design.

Product management, research, and technology stack decision

9

Product management

During every application/product development project, there is always a need

for proper coordination inside the team, as well as the task delegation. The

product manager comes in handy in this situation.

Who are product managers?

A product manager is a bridge between the business objective and the customer

requirements. This person comes up with an idea of what a solution to a

problem looks like and proposes a vision to implement with the help of an

assembled team.

PM responsibilities:

● Understanding what an end-user requires.

● Developing analyses by analyzing certain market trends.

● Helping define product’s vision.

● Helping stakeholders understand this vision

● Giving priority product features and capabilities.

Research

A lot of research has to be done in order to correctly assess the target audience,

the need for your product, the number of resources needed to get to the MVP

stage, and many other things.

Thanks to preemptive and right research, a lot of pitfalls can be avoided due to

the fact that Cone of Uncertainty (an agile methodology term used to describe

the confidence in how the project is going to transpose from one stage to

another) begins to narrow down, and the potential losses are fortunately

minimized.

10

In order to sum up, research analysis and discovery of the target domain are all

vital and necessary for the risk diminishing. The risk being the potential chance

that the product won’t be needed, or will be perceived as useless, or will lack

some key components/features.

Image 1.2. The cone of uncertainty

Technology stack decision

Last but not least, we do require a proper comparison of the wide range of tools,

technologies, frameworks, and libraries before committing to a certain decision.

This is definitely a part of the proper research. However it’s not a business-, but

rather a tech-oriented one. Different parts of the product are to be considered:

● Server support

● UI/UX support

● Core features, i.e., engines/approaches to a solution for a certain task

11

● CI/CD support

Backend backbone. Frameworks, potential options

Main programming language: JavaScript

Frameworks: Node.js

Main programming language: Python

Frameworks: Flask, Django

Main programming language: Java

Frameworks: Spring Boot

1. Node.js

Node.js is a server platform, which is a part of the technological stack that

encompasses all the needs in web development, based on JavaScript. Node.js

uses JavaScript-V8-Engine, the same one that is used in Chromium-based

browsers. Quite a large amount of popular frameworks are based on Node.js,

such as Express.

Node.js advantages

● The appearance of Node.js made JavaScript full-stack web-project

development possible. This resulted in the fact that developers of

different server sides of the applications got their hands on not only

the powerful JavaScript potential but also the whole JS ecosystem,

that is, libraries that could be used in the server environment.

12

● JavaScript code is much more compact than, for instance, C code.

The performance of JavaScript code is quite high to be used in

projects which require fast computation.

● Node.js platform and its frameworks are not heavily resource- and

scalability-dependent. That’s why the platform is often used by those

who use microservice architectures.

● Node.js JavaScript code is compiled into machine code, which

allows better performance in comparison to code interpreting. The

community of JS developers foresees the constant development of

Node.js as Google is always trying to improve the V8 engine.

● Node.js — is an open-source project that hosts a lot of developers.

This helps people who struggle with some issues find a fast solution

from the community.

● Node.js is planned to become a heavy-compute platform, which will

be decent for such tasks as machine learning, deep learning, etc. [4]

2. Django

Django is a backend Python framework. It follows the model view controller

(MVC) approach. It is great for the development of advanced web applications.

The framework improves coding greatly, is prone to be very reusable, and will

definitely lead to a faster development time. Django is used by many popular

products, such as Instagram and Pinterest.

Django Advantages

● Decent speed – Django is supposed to be used even by novice

developers, which helps developers speed up the entire process.

13

● Wide variety of features– Django has quite a wide arsenal of tricks and

features which help users achieve certain project requirements. Such tasks

as authentication, sitemaps, security, and many others are solved with the

help of these features.

● Secure – Django is without a doubt a secure framework that helps its

users prevent security breaches, i.e., SQL injection, packet-sniffing, and

others.

● Scalable – Django provides very decent scalability. A lot of well-known

enterprises and websites are reliant upon the scalability of Django to

maintain the working flow of their products.

● Versatile – Django can be used for the development of many different

application types. Some of these include social networks, CRMs, high-

compute platforms, and others. [4]

3. Flask

Flask can be easily set up with classic HTML or with bootstrap pieces. It is a

modular framework that is capable of high performance (Our choice for the

project)

Flask Advantages

14

● Simplicity – Developers that have a grasp of Python can easily adapt to

working with Flask. The framework can be easily understood as there is

no requirement to learn multiple different nuances some frameworks

possess.

● Flexibility – Flask’s components can be easily modified. The application

can be configured without a problem

● Decent performance – Flask is designed to provide high performance for

quite a large amount of end-users. Flask is not dependent on an

abstraction between the user and requests.

● Modularity – with the help of modular structure, the developer can write

software much more freely and structured. [3]

4. Spring Framework is a Java-based framework. Developers can use a wide

variety of extensions inherited from Java EE.

Spring Boot Advantages

● Dependency injection management is made simple

● The application and its properties are easily customized

● SpringBoot tutorials are easy to understand for even junior developers.

[3]

FrontEnd backbone. Frameworks, potential options

Angular

15

Angular is a frontend framework written in TypeScript, developed by Google

Data binding. Angular was built with Model-View-Controller architecture. The

Model and View parts are easily synchronized. Data binding provided

opportunities for engineers to diminish the time needed for development.

Dependency injection. Dependencies figure out the interaction of many code

snippets and distinguish the influence of changes being made in the

components. Quite commonly, the dependencies are components’ built-in parts.

With Angular, there is an option to use injectors that define dependencies in a

different manner, helping separate the components from the dependencies.

Community. From the very start, Angular surged in popularity among the best

of engineers. Enough support, discussions around the problematic topic as well

as an ability to find a solution to nearly every potential problem or issue have

made Angular attractive even to inexperienced users. [1]

Vue.js

Vue.js is another option to consider when choosing the frontend framework for

the project. It is currently one of the most emerging frontend technologies.

Vue.js Advantages:

16

Simplicity

Vue.js philosophy is centered around the Pareto principle - 20% of commitment

and 80% of the result. Vue.js is also great for working with components because

usually, all the file types (html, css, js) can be stored in a single file.

Integration

Developers can integrate Vue.js into other frameworks such as React or

Angular, making the project much more customizable. Due to the ease of

integration, Vue.js is rising in popularity as a choice for web development.

What is more, with the help of many components, engineers managed to create

different solutions for the applications and to switch between the preferable

frameworks.

User-Friendly

Vue.js can be described as an easy-to-learn framework. It doesn’t require prior

knowledge of multiple programming languages. Another advantage is the

ability of the files to be used in a multitude of editors without causing too many

issues.

Customization

Thanks to all of its functions being accurately accessible, Vue is a good choice

for any engineer. The functions are supposed to be named according to personal

https://www.infoq.com/news/2018/11/ionic-vue-integration-alpha

17

preferences. Every submodule of the app can have secluded functions, making it

seizable to get the application correctly customized.

Very Few Restrictions

The design of Vue.js offers not as many restrictions and greater flexibility to

complete the project. The core library focuses on the View part, which,

combined with the modular approach and the use of various libraries, allows

programmers to get any issues resolved quickly. Even though the community of

Vue is only developing and evolving, it still offers quite good support. [7]

React

ReactJS is another framework that makes use of fast page rendering and

JavaScript, making the application very user-friendly and high-performant.

Large community- The community is quite enormous and provides free access

to documentation and individual experiences, which is only an upper hand for

developers.

Code reusability- React gives any engineer an option to use the already written

code. Engineers are not required to rewrite code for different platforms, as

~85% of React’s code can be reused for multiple platforms.

Pre-built components- React development transpires in a fast manner due to

the components that have already been made present in React. There is a

possibility that a feature or a function that you require to use in your application

18

may have already been sketched by another developer, which you can use

without getting ‘charged.’

Simple UI - While building an application, it is important that every action

happens in a systematic manner. The UI designed in React is more user-exposed

and loads quite faster.

Modularity and declarative programming - with the modular programming

aspect of React, engineers can transform segregate any programming code

snippets into certain unit structures called modules. The applications can be

easily reconfigured and often updated, with the help of constant comparison to

similar solutions. Declarative programming improves React development quite

nicely. [2]

Classic JavaScript, JQuery, and templating engine (our choice)

Due to the lack of knowledge and certain experience in our team, we chose the

option of classic pure JavaScript, JQuery, and built-in template engine Jinja2 in

order to develop the frontend part of the application, which turned out to be a

decent option.

Search Engine solutions - potential options

Two main options that were considered for the project and the information

retrieval, indexing, storage - were Solr and ElasticSearch

Data Sources

Both tools offer an opportunity to work with a wide range of data sources.

Use Cases

19

While both products are document-oriented search engines, Solr is focused on

text searches with advanced information retrieval.

Elasticsearch is a good choice when the task lies within scaling, data analysis,

and processing time-series data to find out some hidden patterns in the data. Its

integration with Kibana makes it a really popular tool to use for analysis.

Elasticsearch is the best choice when it comes to more or less modern web

applications, where data is transported in JSON format.

Searching

Both Solr and Elasticsearch support near real-time searches with the help of

Lucene’s power. They both have additional search-related features.

Indexing

Because both Frameworks are schemaless, it is not a problem to index the data

that is unstructured without defining the schema of the index beforehand. Both

search engines support custom analyzers, synonym-based indexing, stemming,

and lemmatization and tokenizer improvements.

Clusters, Sharding, and Rebalancing

Both Elasticsearch and SolrCloud provide support for sharding. ES has better

support for scaling and cluster management due to the fact it was designed to

scale horizontally. Its disadvantage lies within the statement that the shards

cannot be increased in size once they’ve been created.

Comparison table 1.1

20

The choice was made in favor of ElasticSearch, because it has decent

documentation, a lot of tutorials, further potential in analytics via Kibana

integration, and is the best choice when data is transported in JSON format. [6]

21

Continuous Integration and Delivery (CI/CD)

Continuous integration is a software development discipline, which is centered

around a certain set of practices that encourage teams of developers to commit

changes to repositories as often as possible due to the ability to track down

issues and bugs easier.

In causality to the fact that almost all of the applications do require developing

code in different platforms and tools, the developers need a segregated platform

or tool to track changes and integrate within those different platforms.

A typical CD pipeline has build, test, and deploy stages.

CI/CD features allow setting/changing/removing these variables, masking

variables such as passwords and user keys, and having them configured during

the deployment.

CI/CD is a really good practice because it addresses the issue between

developers who are willing to commit changes often with operations that require

stable operations and constant control. With the help of CI/CD, there will be no

problem for the team to make commits quite frequently. [5]

Heroku.

Heroku is a platform as a Service that lets you build, test, scale and deploy

applications. We used Gitlab integration with Heroku in order to set up the

CI/CD process in our team project. We chose Heroku and Gitlab because of the

relative ease of setup, not requiring any prior experience with CI/CD. [5]

22

My experience - project in-depth

While being engaged in a student project in Kyiv-Mohyla Academy, our team

was tasked with the following scenario: create a Minimal Value Product in the

domain of judicial cases. The estimated time window for the project was about

half a year. It was, however, quite challenging to decide on the problem my

team was going to address in order to help the lawful representatives, i.e.,

lawyers (even law journalists, judges, and interested residents were considered

as the target audience at first).

The following ideas emerged while we were discussing the problematics of the

current state of information retrieval and other issues centered around the Law

system of Ukraine:

- Anomaly detection and analysis for the court cases

- Autocompletion of the text snippets for the lawyers

- Ranged smart search on the collection of documents provided by the

hosting company.

A big discussion took place, a couple of times even. Finally, the third idea was

selected and decided to be worked on.

Our team consisted of two frontend developers, a backend developer, a product

manager, and a marketing analyst. I was responsible for the product and

initialized and monitored all the coordination inside the team. What is more, we

would not have been able to achieve success without the help of our scrum

master.

23

We were iterating by sprints. Every 1 to 2 weeks, every team member presented

their completed tasks, described the plans for the next sprint.

General project structure

RESTful API lies in the middle of the development and implementation of the

client-server part of the application. The main server/route interaction file -

app.py - is a main Flask application file, which contains all the necessary

imports (libraries), routes, functions, dictionaries i/o files.

The following modules are present in the project, namely: the parser.py module,

which is an independent module responsible for parsing all the needed

documents, i.e., formatting them, splitting them into parts, removing stop words,

etc.; the elastic_insert.py module, which helps easily, in a matter of tens of

minutes, to reupload all the necessary parsed documents in the elastic search

indices (this was the case a couple of time, due to the fact the ElasticSearch free

trial version only lasted a few weeks or so. Upon the end of the trial, we had to

set up a new cluster and reintegrate it within our server. Last but not least, we

have an important mapping storage dictionary, which has the key of the

document name, and the value of a tuple, containing the index name and

document id inside that index inside the ElasticSearch.

The client part of the application consists of the templates’ module that

encompasses all the templates for the rendering and the static module - the one

having the submodules of .css, .js files, and images.

24

Diagram 1. The designed architecture of the application. It has all the necessary

components, i.e., Backend, Front-end, Search Engine Core, and CI/CD.

25

Snapshot 1.1. The file and directory structure within the PyCharm project.

26

Snapshot 1.2. Example of the developed python module, namely the

elastic_insert.py module, responsible for transferring the documents into

ElasticSearch indices.

27

 Challenges & Problems

During the planning, analysis, and research stages of our product development,

we interviewed a lot of different potential end-users of our product. We heard

many ideas from lawyers, law journalists, and just people who had certain

judicial expertise. We came up with a list of points of the biggest ‘pain’:

Lack of a proper search system over the documents with all the

conveniences, snippets of the query inside the document.

Snippets, as in Google, were one of the first cool features we came up with.

Allowing the users to quickly take a look at the document’s inner part without

opening it and searching and scrolling through the whole page is quite

impactful. We received mostly positive feedback regarding the feature during

our final pitch presentation in the host company.

Lack of useful document grouping (by case ID etc.)

The feature we introduced allowed users to interact with grouped documents

and was highly useful

Lack of improved search.

We used ElasticSearch, which allows multiple different query formats & search

with priority over parsed document areas.

This was definitely among the first ideas we checked, and it resonated quite

nicely with the feedback of our interviewees.

Absence of parsed documents areas, such as case ID, date, intro part,

resolution part, the final part, judge, etc.

Without a doubt creating a parser was a decisive part of the project - this was a

completely separate, self-written module that achieved decent accuracy in

parsing the judicial documents of different types

28

Product demo

Snapshot 2. The “Європейський страховий” query and the results. The snippet

displays the most relevant appearance (defined by ElasticSearch) of the query,

ranged by the predefined, preparsed zones of the document (initial,

motivational, resolutional, final), and displays the query itself in bold.

29

Snapshot 3.1. Demonstration of the document page, segmented by the

document zones. The decision number, case ID, date, and the motivational part

are clearly displayed.

Snapshot 3.2. Additional fields, such as the resolution part and the judge, are

displayed as well.

Snapshot 3.3. Finding by the judge who was responsible for the case.

30

Snapshot 3.4. The key feature - grouping by the case ID, an important addition

to our MVP.

31

Summary

To sum up, the following areas of software development were researched and

thoroughly described in this work:

Software Development Life Cycle (SDLC) - it plays a crucial role in defining

what product requires, what must be done, and how it has to be done.

Software development methodologies and approaches - the three most

common ones were mentioned, namely waterfall, agile and iterative.

Architectural patterns and styles - quite a few were named, and the chosen

pattern (REST) was described in detail.

Product management - was described as an important component in the

lifecycle of every product. The importance of timely research was mentioned.

With the help of research, analysis, and discovery of the target domain, risks

can be severely diminished.

Server-side (backend) and UI/UX side (frontend) and their respective most

popular frameworks, as well as Search Engine and CI/CD solutions, were

mentioned, described, and compared. Furthermore, to every single mentioned

part of the technology - the decision made for our core project was named and

explained.

The general project structure was explained in detail, and the architecture

diagram of the whole system was shown.

Last but not least, the demo of the product, as well as some code snippets, were

shown via the snapshots.

32

References

[1] Altexsoft: [Website]. URL: https://www.altexsoft.com/blog/engineering/the-

good-and-the-bad-of-angular-development/ (viewed on: 24.03.2021).

[2] Altexsoft: [Website]. URL: https://www.altexsoft.com/blog/engineering/the-

good-and-the-bad-of-reactjs-and-react-native/ (viewed on: 24.03.2021).

[3] Slant.co: [Website]. URL: https://www.slant.co/versus/158/1398/~spring-

boot_vs_flask (viewed on: 27.03.2021).

[4] Back4app blog : [Internet portal]. URL: https://blog.back4app.com/backend-

frameworks/ (viewed on: 27.03.2021).

[5] Створене посилання: Inforworld: [Website]. URL:

https://www.infoworld.com/article/3271126/what-is-cicd-continuous-

integration-and-continuous-delivery-explained.html (viewed on: 11.04.2021).

[6] Logz.io: [Website]. URL: https://logz.io/blog/solr-vs-elasticsearch/ (viewed

on: 29.03.2021).

[7] Towardsdatascience: [Website]. URL: https://towardsdatascience.com/what-

are-the-pros-and-cons-of-using-vue-js-3689d00d87b0 (viewed on: 29.03.2021).

[8] Richardson L. RESTful Web APIs: Services for a Changing World.

California. 361 p. (viewed on: 22.03.2021).

[9] Schwaber K. , Beedle M. Agile Software Development with Scrum. New

York. 158 p. (viewed on: 22.03.2021).

https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-development/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-reactjs-and-react-native/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-reactjs-and-react-native/
https://www.slant.co/versus/158/1398/~spring-boot_vs_flask
https://www.slant.co/versus/158/1398/~spring-boot_vs_flask
https://blog.back4app.com/backend-frameworks/
https://blog.back4app.com/backend-frameworks/
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://logz.io/blog/solr-vs-elasticsearch/
https://towardsdatascience.com/what-are-the-pros-and-cons-of-using-vue-js-3689d00d87b0
https://towardsdatascience.com/what-are-the-pros-and-cons-of-using-vue-js-3689d00d87b0

	Work Schedule
	Table of Contents
	Software development lifecycle
	SDLC Methodologies
	Advantages of REST architecture
	Approaches to system architecture design.
	Product management
	Research
	Technology stack decision
	Backend backbone. Frameworks, potential options
	FrontEnd backbone. Frameworks, potential options
	Search Engine solutions - potential options
	Continuous Integration and Delivery (CI/CD)

	My experience - project in-depth
	General project structure

	Challenges & Problems
	Product demo
	Summary
	References

