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DIAMETER SEARCH ALGORITHMS FOR DIRECTED
CAYLEY GRAPHS

It is considered a well known diameter search problem for finite groups. It can be formulated as 
follows: find the maximum possible diameter of the group over its system of generators. The diameter 
of a group over a specific system of generators is the diameter of the corresponding Cayley graph. In 
the paper a closely related problem is considered. For a specific system of generators find the diameter 
of corresponding Cayley graph. It is shown that the last problem is polynomiality reduced to the problem 
of searching the minimal decomposition of elements over a system of generators.

It is proposed five algorithms to solve the diameter search problem: simple down search algorithm, 
fast down search algorithm, middle down search algorithms, homogeneous down search algorithm and 
homogeneous middle down search algorithm.

The first two algorithms are universal. They can be applied to any finite group and its systems of 
generators. Moreover, the fast down search algorithm is an optimized version of the simple down search 
algorithm.

A property of strict growing fora system of generators is introduced. In this case the search process can 
be optimized by focusing only on those group elements, for which minimum decompositions potentially 
have the maximum possible length. Based on this property middle down search algorithm is introduced.

The main part of the paper is homogeneous theory. It is considered a series of groups with its 
systems of generators and some additional properties of them. It is defined a homogeneous property of 
these series. A binary equivalence relation relies on it. The main purpose of defining such a relation is 
preserving decompositions of elements from the same equivalence class. It is enough to find the minimum 
decomposition of only one representative of the equivalence class.

It is introduced homogeneous down search and homogeneous middle down search algorithms. These 
algorithms can be applied to groups that belong to homogeneous series of groups with systems of gener
ators.

For every algorithm its correctness is shown. The complexity estimations for algorithms is discussed.
K eyw ords: Cayley graph, diameter of group, system of generators.

Introduction

The diameter search problem in group theory- 
can be formulated as follows: for a finite group G 
find the maximum of its diameters D(G)  over all 
systems of generators of G. A few general results 
in this area are known. The most general conjec
ture was proposed by L. Babai and A. Seress in 
[1, Conjecture 1.7]:
C onjecture 1. If G is a non-abelian finite simple 
group of order N, then D(G) < (log N )C for the 
absolute constant C.

The first family of finite simple groups, for 
which this conjecture was proved by H. Helfgott 
in [2], is P SL 2(Z /pZ), where p is a prime. For 
groups of Lie type an upper bound of the diameter 
was found by E. Breuillard, B. Green, and T. Tao 
in [3] and by L. Pyber and E. Szabo in [4]. For per
mutation groups upper bounds of diameters were 
presented by H. Helfgott and A. Seress in [5].

We can also consider in this domain another 
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widely known problem, the minimum-length gen
erators sequence search problem. Specifically, for a 
given finite group G, its system of generators S and 
a target element g G G find a shortest generator se
quence realizing g. In particular, for permutation 
groups such a problem is NP-hard [6].

As a partial case of the diameter search problem 
one can deal with the diameter search for a finite 
group over a fixed system of generators. For exam
ple the diameter of Sym(n) over S =  {(1,k)|k G 
G 2, . . .  ,n}  was found in [7].

In this paper we consider the diameter search 
problem for directed Cayley graphs. We introduce 
different algorithms and discuss their properties.

The paper is organized as follows:
1. Section Introduction contains basic notations 
and decomposition problem description. The rela
tion between decomposition problem and diameter 
search problem is demonstrated.
2. Section Simple down search algorithm intro
duces universal diameter search algorithm and
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proves its correctness.
3. Section Fast down search algorithm introduces 
infinite decomposition trees and optimized version 
of simple down search algorithm. It is proved cor
rectness of the algorithm.
4. Section Middle down search algorithm intro
duces strict growing property of a system of gener
ators and diameter search algorithm, based on it. 
It is proved correctness of this algorithm.
5. Section Homogeneous theory introduces 
groups-generators series, properties of them and 
homogeneous equivalence between elements of 
groups.
6. Section Homogeneous down search algorithm 
introduces algorithm, which requires homogeneous 
property of groups-generators series. It is proved 
its correctness.
7. Section Homogeneous middle down search algo
rithm introduces diameter search algorithm, which 
requires both homogeneous property of groups
generators series and strict growing of system of 
generators. It is proved correctness of the algo
rithm.

Preliminaries

Unless otherwise specified in the paper we de
note by G a finite group and by S a system of 
generators of G.

B asic notation. The following notations will 
be used:
1. k modm  — the remainder of division of integer 
k by integer m =  0.
2. ni, n2 — the set of natural numbers
{n i , . . . ,  n2}, where n i < n2.
3. f  o g := g ( f ) — the right composition of map
pings f, g.

We define an index tuple I  as a tuple of pair
wise different natural numbers, i.e. for some n > 0 
we have

1 =  {i1, ^  . . . , in), ij =  ik , j  =  k .

In other words, every index tuple is a linearly or
dered finite set of natural numbers. We call n the 
cardinality of the index tuple I. Sometimes we 
abuse terminology and refer to index tuples as to 
sets with no ordering.

Let I, J  be disjoint index tuples (i.e. they have 
no common elements) with cardinalities n i ,n 2 re
spectively. Then we define the concatataion of 
them as

1 LI J (ii, . . . , in1 , j i , . . . , jn2 ) .

Let I, J  be index tuple with cardinalities n i ,n2 
respectively. Then their difference is defined as

I\J — the tuple of numbers from the set I\ J,

ordered as in I.
Note that I\ J can be empty.

D iam eter search problem.
Definition 1. The (right) Cayley graph of G 
over S is a colored directed graph Cay(G, S) con
structed as follows:
1. the set of vertices is G;
2. the set of colors is S;
3. for any g є  G mid s є  S, the vertices g and g • s 
are connected by a directed edge of color s.

Since S generates G the Cayley graph of G over 
S is a strongly connected graph.

Remind that the distance between two vertices 
in a directed strongly connected graph is the length 
of the shortest oriented path which connects them. 
The diameter of the graph is the maximum of dis
tances between its vertices.
Definition 2. The diameter of the group G with 
respect to the system of generators S is the diam
eter of the corresponding Cayley graph Cay(G, S) 
of the group G over S:

D s (G) =  D (Cay(G ,S)).

Definition 3. The diameter of the group G is de
fined as the maximum of diameters of G over its 
systems of generators:

D(G) =  max D s (G).
(S) = G

D ecom position  problem. Every element g of 
G can be decomposed into a product

i
g =  П sik

k= 1
of generators from S for some natural l. Corre
sponding tuple of generators ( s^, . . . ,  sik) will be 
called a decomposition of the element g over S. 
The length |g|S of the element g over S is the 
length of the shortest decomposition of g over S.

Let us formulate the following computational 
problem.

Decomposition problem: for a given group G 
and its system of generators S find the maximum 
of lengths of its elements over S.

Let g1, g2 be vertices from Cay(G, S ). Denote 
by d(g1, g2) the distance bet ween g1 and g2 оте r S. 
Theorem 1. The diameter search problem is 
polynomial-time reducible to the decomposition 
problem.
Proof. Let l be the diameter of the group G with 
respect to the system of generators S. It means 
that there exist vertices g1,g2 from Cay(G, S) 
such that d(g1,g2) =  l. It immediately implies 
d(g1,g2) =  d(e, h), where h =  g2 • g - 1. Hence, the 
labels of the shortest path between e mid g2 • g1-1 
form a decomposition of h over S. The statement 
immediately follows.
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An element a G G will be called diameter ele
ment of group G over S if its length over S equals 
to diameter of group G over S:

M s =  D s (G).

Simple down search algorithm

Consider an algorithm of finding diameters that 
are based on breadth-first search algorithm [8] for 
graphs.

Algorithm 1: Simple down search algo
r ith m _________________________________________

Input: G ■— a group, S ■— its system of 
generators

Result: Diameter D s (G)
Initialization: found =  {e},  

all =  {gig G G}, current_level =  {e} ,  
level =  0;

while found =  all do
current_level =  current_level • S; 
found =  found,U current _level', 
level =  level +  1; 

end
Output: level

Theorem 2. Simple down search algorithm is cor
rect.
Proof. We need to show that:
1. the algorithm has no “dead” loops;
2. the output of the algorithm is the diameter 
D s (G).
These two parts will be proved separately.

Part 1. Let a be arbitrary element of the group 
G. Since S generates G there exists a decomposi
tion of a over S:

i

a =  n sik.
k= 1

Therefore, the element a will belong to found  at 
the moment when level =  l.

Since the group G is finite there exists n such 
that at the moment level =  n we obtain found =  
=  all.

Part 2. Let us denote D s (G) by d. Suppose 
that d =  level, where level is the output of simple 
down search algorithm for group G over S. Con
sider two cases.
1. Assume that d < level. Then, for every element 
a of the group G there exists its decomposition over
S with length l < d. The set found  is redefined in 
the algorithm on each loop. Hence, at the moment 
level =  d we have:

d
all =  found =  {e }  |̂ |( |̂| S . y  S ),

l = 1 1 times
which means that level < d. A contradiction.

2. Assume that d > level. Then there exists an 
element a of the group G with length d over S. By 
the definition of length over system of generators 
there are no sets of indices { i 1, i2, • • • ,1^, l < d 
such that:

i
a =  n  sik.

k=1

Therefore, the set found  does not contain the el
ement a when the algorithm stops. This leads to 
a contradiction with the requirement that found  
equals to all.

The proof is complete.
Proposition 3. Let G be a finite group generated 
by S, |S| =  n and D s (G) =  m. Then the total 
number of multiplications in simple down search 
algorithms is bounded from above by •
Proof. At the moment level =  k +  1 the algorithm 
needs to multiply every element of the previous 
level by every generator. Then we obtain the fol
lowing number of multiplications: \currenf_level| • 
|S| =  |S|k • |Si =  nk+1. As the result, the total 
number of multiplications will be

m  nk+ i = n • (nm -  ^ .
n — 1k=1

The proof is complete.

Fast down search algorithm

We need to define additional structures in order 
to describe another algorithms, in particular fast 
down search algorithm. After that we will prove 
a few statements to connect simple down search 
algorithm and fast down search algorithm.

Infinite decom position tree. Let G be a 
finite group, S =  {s^ s ^  ••• , sm} be its system 
of generators. Consider infinite rooted m-ary tree 
T(V, E ). We introduce enumeration of vertices on 
each level of this tree. The vertices of the lth level 
will be enumerated by numbers from 1 to m* l * * * S, l > 0. 
We obtain that
1. the root is the first vertex of level 0.
2. the kth child of the tth vertex of level l will have 
index ((t — 1) • m +  k) on level (l +  1).

We also label vertices and edges of the tree 
T(V ,E ) starting from level 0 as follows:
1. the root will be labeled by e.
2. the edge, which connects the kth vertex of level 
l with ([k/m] +  1)th vertex of level (l — 1), will be 
labeled by k modm, k G 1,. . .  ,m l.
3. the kth vertex of level l will be labeled by the 
result of product: b•skmodm, where b is the label of 
([k/m] +  1)th vertex of level (l — 1), k G 1,. . .  ,m l.
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We call such a tree the infinite decomposition tree 
of the group G over the system of generators S. 
A path in this tree will be identified with the se
quence of labels on edges along this path.

Let T  be the infinite decomposition tree of the 
group G over S.
Lem m a 4. An element a from G has decomposi-

i
tion П sik if and only if the path i1, i2, • • • il con-

k=i
nects the root vertex with the vertex labeled by a in 
T.
Proof Induction on the decomposition length l. 

The basis: case l = 1 .
Necessity. Let a =  sik for k Є 1, . . .  ,m. The 

equality e • sik =  a implies that the kth vertex on 
level 1 will have the 1 abel a.

Sufficiency. Let the kth vertex of the first level 
be labeled by a. Then, from the definition of the 
infinite decomposition tree we have a =  e • sik. 
Then a =  sk. Hence, a has a decomposition of 
length 1, i.e. sik.

Induction step: case l+1 under assumption that 
for l the statement holds.

l+ 1
Necessity. Let a =  p  sik. Under inductive as-

k=i
i

sumption for the element b =  P  sik we have: the
k=i

path i1, i2, .. .  , i l connects the root with the vertex 
w labeled by b. The equality a =  b • sil+1 implies 
that the (il+1 )th child v of the vertex w is labeled 
by a  Hence, i1, i2, . . . ,  il+1 is a path from the root 
to w.

Sufficiency. Let i1, i2, . . . ,  il+1 be a path, which 
connects the root with the vertex v labeled by a. 
The definition of the infinite decomposition tree 
implies the equality

a b • sii + i ,

where b is a label of the vertex w, the parent of the 
vertex v.

From the inductive assumption we have that
l

the product П sik equals to the element b. There-
k=i

fore, the product

l l+i
( I I  sik ) • sil +1 11 sik
k=1 k=1

equals to the element a.
P roposition  5. Let G be a group, S be its system 
of generators, l be a natural number.
1. The diameter of the group G over the system of 
generators S equals to l if and only if l is the small
est level number in T such that every element of G 
appears at least once as a label of a vertex starting 
from level 0 up to level l.

2. In simple down search algorithm an element a G 
G G appears at the moment level =  l if and only if 
there exists a path i1, i2, . . .  ,ii which connects the 
root with the vertex v labeled by a in T.
Proof. 1. The diameter of the group G over S 
equals to l if and only if for every element a of G 
there exists a decomposition over S with length < 
< l. The last statement holds if and only if there 
exists a path with length < l which connects the 
root with a vertex labeled by a. Therefore, for ev
ery element a of G there exists at least one vertex 
labeled by a on levels from 0 to l.

2. The element a appears in the simple down 
search algorithm at the moment level =  l if 
and only if there exists a sequence of generators

i
si1 ,s i2 , . . . , s il G S such that a =  sik. From

k = 1
Lemma 4 it follows that the last statement holds if 
and only if the path i1, i2, . . .  , i l connects the root 
with vertex labeled by a.

The proof is complete.
Let v be a vertex of the tree T  on level t. Recall 

that the sub-tree T\v of T rooted at the vertex v is 
the tree constructed from T  as follows:
1. the root of new tree T \v is v.
2. the lth level of tree T\v consists of vertices from 
(t +  l)th level of T  which are directly connected to 
(l — 1)th level of T \v, l >  1. Labels of edges and 
vertices are preserved.
Denote by gv the label of a vertex v in T.
Lemma 6. Let v, w be vertices of T such that the 
labels of v and w are equal. Then the rooted trees 
Tv and Tw are isomorphic as labelled graphs. 
Proof. Note, that T\v mid T\w are isomorphic as 
rooted m-wy trees. The natural isomorphism t 
preserving enumeration of vertices on levels is de
fined as follows:
1. the kth vertex of the lth level of T\v is mapped 
to the kth vertex of the lth level of T \w, k G 1,Cl
l >  0;
2. an edge, which connects two vertices of the tree 
T\v, is mapped to the edge, which connects images 
of corresponding vertices.
It is enough to show that isomorphism t preserves 
labels of vertices.

Let a Mid b be labels of jth  vertices on level l 
of corresponding trees T\v and Tw. Suppose that 
a =  b. Then

i i
gv n  Sik =  gw ■ sik .

k = 1 k=1

Hence, gv =  gw. This leads to a contradiction with 
the equality of labels of v Mid w.

The proof is complete.
Denote by PathT (v, w) the shortest path from 

vertex v to vertex w in T.
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Lem m a 7. Let an element a G G decomposes as
i __

a =  El in S. If there exists t G 1,1 such that
k=i

t
the element sik appears as a label of a vertex

k=i
of T on level less then t then |a|S < l.

t
Proof. Denote by b the product n  sik. Then

k=i
the vertex v G V, which is defined by the path 
i1, i2, . . .  , i t starting from the root, will have la
bel b. Note, that the element a decomposes as a

i
product sik if and only if the path i1, i2, • • • il

k=i
connects the root of Tv with the vertex labeled by
gv • a■

The assumption of the lemma implies that 
there exists a vertex w G V  such that w is up
per than v in T  and w is also labeled by b. Since 
labelled trees T |v and T |w are isomorphic the ver
tices, which are defined by the path it+1, . . . , i l 
from the root in trees T |v mid Tw, have the same 
label a. From Lemma 4 it follows that

i i
a =  sik =  sk • sik =

k=1 kEPathT (e,v) k=t+1

l
IT sk • rT sik.

k^PathT (e,w) k=t+1
Since w is upper than v, the length of the path 
PathT (e, w) is less than t. This leads to the in
equality |a|S < l.

The proof is complete.
Fast down search algorithm. In order to 

optimise the simple down search algorithm we use 
the results of the previous section. The main goal 
is to reduce the number of multiplications.

A lgorithm  2: Fast down search algo
r ith m _________________________________________

Input: G — a group, S — its system of 
generators

Result: Diameter D S(G)
Initialization: found =  {e},  

all =  { g ^  G G}, current_level =  {e} ,  
level =  0;

while found =  all do 
current _level =
=  (current_level • S)\found;

found =  found,U current _level; 
level =  level +  1; 

end
O utput: level

T heorem  8. Fast down search algorithm is cor
rect.
Proof. We need to show that:

1. the algorithm has no dead loops;
2. the output of the algorithm is the diameter 
D s (G).
These two parts will be proved separately.

Part 1. There are no dead loops if and only if 
there exists a natural number n such that the algo
rithm will find all elements of group G (set found) 
at the moment level =  n.

Suppose that there exists an element a G G 
which never appears in the set found. Consider a

i
decomposition sik of a over S. Since a is not

k=1 __
contained in found, there exists t G 1,l such that

t
the element b =  sik appeared on an earlier it-

k=1
eration of the algorithm. This means that there 
exists a shorter decomposition of b over S. From 
Lemma 4 it follows that the element b is a label of 
a vertex on the level which is upper then level t. 
Lemma 7 implies the inequality |a|S < k. Hence, 
for every decomposition of a a shorter decompo
sition can be found. This immediately leads to a 
contradiction for the set of all lengths of decompo
sitions of a over S is bounded from below.

Part 2. Let d1 be the output of the simple 
down search algorithm with input G and S and let 
d2 be the output of the fast down search algorithm. 
Note that directly from these definitions we have 
the inequality

d1 < d2.

Suppose, that d1 < d2. Then there exists an ele
ment of the group G such that it firstly appeared 
strongly after the d1th step of the fast down search 
algorithm. Otherwise, first down search algorithm 
stops at the moment d1.

Let the element a G G be such that:
1. a firstly appeared at the moment level =  d2 in 
the fast down search algorithm;
2. a firstly appeared at the moment level =  d2 — r 
in the simple down search algorithm.
The second condition leads to the equality |a|S =  
=  d2 — r. Proposition 5 implies that there exists a 
path i1, i2, . . .  ,id2-r,  which connects the root with 
the vertex labeled by a. Based on the fast diam
eter search algorithm, there exists a natural num-

t
ber t , t  < d2 — r, such that the element b =  sik

k=1
appears earlier then level =  (d2 — r). Lemma 7 
implies that |a|S < d2 — r. A contradiction.

The proof is complete.
The main optimization of the fast down search 

algorithm compared to the simple down search al
gorithm is to skip previously founded elements of 
a group. The number of repetitions of elements 
depends on a group and its system of generators. 
Therefore, in general the number of multiplication,
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which are required for the fast down search algo
rithm, can be estimated only as in Proposition 3 
by • However, in some cases this number
can be reduced significantly.

M iddle dow n search algorithm

In this section we present an algorithm that re
quires additional properties of generators.

Strictly growing system  o f  generators.

An element a G G will be called properly gener
ated, over S if element for arbitrary A c  S,A  =  S 
we have a G (A).

This definition immediately leads to the follow
ing statements.
Lem m a 9. Every decomposition of a properly gen
erated element contains every genera,tor of S.

Proof Since every element belongs to the sub
group generated by the elements that appeared in 
its decomposition the statement follows.
Lem m a 10. The minimum possible length of a 
properly generated element over S is |S|.
Proof Immediately follows from Lemma 9.

A system of generators S of a group G will be 
called strictly growing if every diameter element a 
from G is properly generated.
Lem m a 11. Let G be a finite group, S be its 
strictly growing system of genera,tors. Then the 
diameter of the group G over S is greater or equal 
to |S|.
Proof By Lemma 10 every diameter element has 
length over S greater or equal to |S|. This means 
that the diameter of G over S is not less than |S |.

The proof is complete.

M iddle down search algorithm. Let G be
a finite group, S be its strictly growing system of 
generators.

We introduce the following notions:
1. Gf — the set of all properly generated elements 
of the group G;
2. D f (S,m) — the set of all decompositions over 
S with length m such that every generator of S 
appears at least once in every decomposition, m >
>  |S|;
3. P  — the function on the set of decompositions, 
which converts a decomposition to the correspond
ing element.
Let a be an element of G with a decomposition in 
Df (S,m). Note, that in general it does not imply 
that a is properly generated.

A lgorithm  3: Middle down search algo
r ith m _________________________________________

Input: G — a group, S — its strictly- 
growing system of generators 

Result: Diameter DS(G)
Initialization: found =  0, all =  Gf, 

level =  |S| — 1; 
while found =  all do 

level =  level +  1; 
for decomp G D f (S, level) do 

product =  P  (decomp); 
i f  product G Gf then 
| found =  found[J {product}; 

end 
end 

end
O utput: level

Theorem  12. Middle down search algorithm is 
correct.
Proof. Since the system of generators S is strictly- 
growing every diameter element is properly- gener
ated. Then the set of all diameter elements is a 
subset of Gf. This means that the diameter can 
be found as the lengths over S of elements from 
Gf are found. More precisely, the diameter is the 
maximum of these lengths:

DS(G) =  max |el|S.
el G G f

Hence, the main loop of the algorithm terminates 
after finite number of steps, i.e. after D S (G) —|S| +  
+  1 steps.

Lemma 9 implies that for every properly- gener
ated element a minimum decomposition belongs to 
Df (S, level) for some natural number level. From 
Lemma 10 it follows that level is not less than 
|S|. This explains why the main loop starts from 
level =  |S|.

The proof is complete.

P roposition  13. Let G be a finite group gener
ated by a strictly growing system of generators S, 
|S| =  n and D S(G) =  m for some n,m  G N. Then 
the number of multiplications required by the mid
dle down search algorithm is bounded from above 
by

m n—1 / \
£ < t  —1> • 5 0  ( —1)k • u )  • (n — k'G

Proof. Since the system of generators S is strictly- 
growing the inequality m > n holds. Hence, we 
need to obtain a product of every sequence of gen
erators of lengths from n to m. Moreover, every 
such sequence must contain every generator from S
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at least once. The total number of decompositions 
on the tth step equals

n-1 , \

2 -  ' - ' » ‘ ( n ) ' "  -  k'>‘ .
k=0 '  '

Therefore, on the tth iteration of the algorithm the 
number of multiplications is not greater than

n-1 , \
(t - 1 » .  £ ( - i ) k - ( k ) - ( »  -  k')‘ .

Hence, the total number of all multiplications from 
the nth to the mth step can be estimated from 
above as

m n-1 / \
- ( t  - ' » . -  ( - ' » k ■ ( " ) ■ ( "  -  k»‘ .
t=n k=0 '  '

The proof is complete.

Homogeneous theory

In this section we consider series of groups with 
its systems of generators. We put additional con
ditions on them and obtain some useful properties. 
Then it gives us a possibility to introduce new al
gorithms.

Inductive limits o f  groups. Recall the no
tion of inductive limit of groups. Let (I, <) be a 
directed set, {G(i)[i G I } be a family of indexed 
groups. Assume that there exist homomorphisms 
hi,j : G(i) ^  G ( j ), i , j  G I, i < j ,  such that
1. hi,i =  id over G(i) fore'very i G I;
2. hi,k =  hi,j o hj,k for every i,j, k G I, i < j  < k. 

For indices i , j  G I  and elements x G G(i), y G
G G ( j ) we write x  ~  y if there exists k G I  such 
that

hi,k (x) =  hj,k (x).

Then ~  is an equivalence relation on the disjoint 
union of given groups that admits to define multi
plication of equivalence classes induced by multi
plication rules in given groups.
Definition 4. The inductive limit of the system 
(G(i), hij ), i , j  G I  is the group defined as

lim G(i) =  |_| G(i)/ ~  .
 ̂ iel

H om ogeneous system  o f  generators. Let
G(1) < G(2) < . . .  < G(n) < . . ., n G N be an as
cending group series. Let i, j  be natural numbers, 
i < j .  We define the homomorphism hi,j from G(i) 
to G(j)  as the embedding mapping between these 
groups, i.e.

hi,j (g) =  g, g G G(i) .

Then the inductive limit of the system (G(i), hi,j), 
i , j  G N is well-defined.
Definition 5. A groups-generators series G is the 
sequence of pairs (G(n), SoG(n)ln G N) such that:
1. G(1) < G(2) < . . .  < G(n) <  . . .  is an ascend
ing group series;
2. SoG(n) is a system of generators of G(n) and

SoG(n) C SoG(n +  1),n G N.

Let G be a groups-generators series.
Denote by IL(G)  the inductive limit of the sys

tem (G(i), hi,j), i , j  G N with embedding mappings
h. . hi , j

Denote by G D i f f (n )  the set of generators, 
which appear exactly on the nth, n > 1, i.e.
1. G D i f f (1) =  SoG(1),
2. G D i f f  (n) =  SoG(n)\SoG(n -  1^ n > 2. 
Definition 6. The groups-generators series G is 
called uniform if:

t
< U  G D i f f  (ik) ) -  G(t),
k = 1

for every index tuple I  =  (ii, i2, - ■ ■ , it) of cardi
nality t.

Let C  be a natural number.
Definition 7. The groups-generators series G is 
called C-stable if:

IG D i f f (t)| =  C,t > 1.

Let the groups-generators series G be C-stable. 
Suppose that elements from |J SoG(n) are enu-

n>1
merated

U  SoG(n) =  { s i G G|i G N}
n>1

and the following conditions hold:
1. SoG(n) =  { s 1 , s2, ..., s c , s c +1 , . . . ,  Sn-c}  n > 1
2. G D if f (n )  =  ^ ( n - ^ ^ D  S(n-1)•C+2, . . . , Sn C} j 
n > 1.

Let I  =  (i1, i2,--- , i t) be an index tu
ple. Define the mapping ĥ 7 from 1,t ■ C  to

t ____________________
|J (ik -  1) ■ C +  1,ik ■ C  by the rule:

k=1

hC(x) =  (i[(x-1 ) /c ]+1 -  1) ■ C + ( x  -  1) modC +  1

Note that the unique representation of x =  
=  (k -  1) ■ C +  r, k G 1,n, r G 1,C leads to the 
equality

hCC((k -  1) -C  +  r) =  (ik -  1) -C  +  r. (1)

The last equality can be reinterpreted as follows: 
if x  is the index of the rth generator of G D i f f  (k),
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then hp (x) is the index of the rth generator of 
G D i f f  (ik).

Now define a mapping
n

yp  : SoG(n) ^  U  G D i f f  (ik)
k=1

by the rule:
(i).

We will use notationsn
1. SoGj (n) =  U G D i f f  (ik);

k = 1
2. Gi (n) =  (SoGi (n)).
Note that SoGi(n) is the image of SoG(n) under

Definition 8. A uniform and C-stable groups
generators series G is called homogeneous if for ev
ery natural t and every index tuple I  of cardinality 
t the mapping can be extended to the group 
isomorphism between G(t) mid G/(t).

We will omit the letter C  in notations , hp . 
We will use notations h/ instead, unless other
wise stated in this paper.

H om ogeneous equivalence. Let G be a ho
mogeneous groups-generators series. We define a 
binary relation ~  on IL(G).
Definition 9. Let a, b be elements from IL(G). 
We write a ~  b if there exist index tuples I, J of 
the same cardinality n such that:
1. a € G/(n);
2. b € Gj (n);
3. ( y i -1 o yj ) (a)  =  b.
Lemma 14. The binary relation ~  is an equiva
lency.
Proof. Refiexivity. Let a be an element from 
IL(G).  The definition of the inductive limit im
plies the existing of natural n such that a € G(n). 
Then for the index tuple I  =  (1, 2, . . .  ,n):

a € G/(n) =  G(n) mid ( ( y i ) 1o y i )(a) =  id(a) =  a.

Symmetricity. Let a, b be elements from IL(G)  
and a ~  b. Then there exist index tuples I, J of 
the same cardinality n:

a € G/(n), b € GJ(n) and ( (y i ) -1 o y J)(a) =  b. 

From the definition of ~  we obtain

a =  ( ( y i )-1 o y j )-1 (b)

Then the equality

( ( y i )-1 o y j ) - 1 (b) =  ( ( y j )-1 o yi)(b), 

implies the equality

( ( y j )-1 o y i )(b) =  a.

Transitivity. Let a,b,c € IL(G)  be such that a ~  b 
and b ~  c. From the definition of ~  it follows that 
there exist index tuples I, J1 of cardinality n1 such 
that

a € Gi (n 1 ),b € G j1 (n1 ), ( (^i )-1 o y j x )(a) =  b,
(2)

and also exist index tuples J2, K  of cardinality n2 
such that

b € g j2(n2),c € g k (n2), ( (y j 2)-1 o y K)(b) =  c
(3)

Denote by m the cardinality | J1 p| J2\. Let

A =  (max i +  1 , . . . ,  max i +  n2 — m),
i£i i£i

B =  (max k +  1, . . . ,  max k +  n1 — m)
keK keK

and define the following index tuples:

I  =  I  u A,

J1 =  J1 u (J2\J1 ),

K  =  k  u b ,

J2 =  J2 U (J1\J2).

Denote by N  the sum n1 +  n2 — m. Then |I| =
=  |J1| =  |K | =  |J2| =  n .

Denote by g1 the element ( y i ) (a). Then
g1 € G(n]) . Equality (2) implies that g1 =
=  ( y Ji )- 1 (b)  Sinee I  =  I  U A  the inclusion 
SoGi D SoGi (G) holds. It implies that G i (N ) > 
> Gi (n1). Hence, we obtain

( y i )~1(a) =  (y i T 1(a) =  g1. (4)

Similarly, from the equality J1 =  J1U B we obtain:

(y j 1)-1 (b) =  ( y Ji)-1 (b) =  g1. (5)

Denote by g2 the element ( yK )-1 (c). Equation (3) 
implies that g2 € G(n2). Similar to the previous 
case one can show that
!• (j r 1(b) =  ( y j2)-1(b) =  g2,
2- ( yK )-1(c) =  ( yK) - \ c ) =  92.

Since index tuples J1 and J2 contains the same 
numbers, we have the equality Gj (N ) =  Gj (N ). 
Then the mapping

(y7)-1 o J  : G7(N ) ^  Gj  (N ) 

maps a to b and the mapping

( J  )-1 o y K : G j  (N ) ^  Gk  (N )

maps b to c.
It follows that the composition

( y T) 1 o y j1o ( y j2) 1 oyK  : Gi (N) ^  GK (N ) (6)
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maps a to c.
We are left to show that the composition (6) 

can be re-combined so that it is a product of two 
isomorphisms, according to the definition of It 
is enough to show that there exists an index tuple 
I  of cardinality N  such that:

( f b  )-1 =  ( f 7)-1 ° J  ° (^Jb)-1 .

Assume that I  =  (i1, . . . ,  iN)• Note that J1 =  J2. 
Hence, there exists a permutation n : 1, N  ^  1, N 
such that:
1 • J1 (jn(1), . . . , j n(N});
2- J2 =  CtD . . . , j N)■
Let s be arbitrary generator from SoG(N). Then 
its index is t =  (k — 1) • C  +  r for some k G 1, N, 
r G 1, C. Then from (1) we obtain

hJ2(t) =  ( jk — 1) • C +  r =  (jn(t) — 1) • C +  r

(hj i) - 1 ((jn(t) — 1) • C +  r) =  (t — 1) • C +  r,

(hi)-1 ((t — 1) • C +  r) =  (it — 1) • C +  r,
where t — position of j t in J2, which is mapped to 
j k by n. Define the index tuple I  := (it|n(t) =  
=  k, k > 1). Then

f 7' (s) =  (( J  ° ( f J1)-1 ° f 7)(s ).

From the definition of ~  we obtain ( f 7/ -1 ° 
)(a) =  c
The proof is complete.

Definition 10. Elements a, b G IL(G) are called
homogeneously equivalent if a ~  b.
Definition 11. The homogeneous class of an ele
ment a G IL(G) is the subset of all elements from 
IX(G), which are homogeneously equivalent to a:

HC(a) =  {b G 1L(G)|a ~  b}.

Properties o f  a hom ogeneous class. 
Lem m a 15. The set {e } is the (trivial) homoge
neous class of e.
Proof. Let a G G(n) for some natural n. Suppose 
that a G HC(e), a =  e. From the definition of the
homogeneous equivalence we obtain e ~  a. This 
means that there exist index tuples I, J  of cardi
nality n such that:

( f - 1 ° f j )(e) =  a.

Note that f 7, f J are group isomorphisms. Hence, 
f - 1 ° f  J is a group isomorphism as well. It means 
that

( f - 1 ° f  j )(e) =  e,

which leads to a contradiction with ineaquality a =
=  e-

The proof is complete.

Lemma 16. Let a G G7(n), b G GJ (n) and a ~  b 
for some index tuples I, J of cardinality n. Then

|a|SoG/(n) lblsoGj (n).

Proof. Denote by l the length |b|SoGj(n). Suppose 
that

|aUoGj(n) > l.

Then there exist generators sj1, Sj2, . . . ,  s j  G
i

G SoGJ (n) such that b =  sjfc.
k=1

Since the groups-generators series G is homo
geneous the decomposition

i i
n  ( J  ° f 7 )(sjk ) =  n  s(h-1 ohl )(jk) =  a
fc=1 fc=1

is a decomposition of the element a over SoG7(n). 
Hence, |a|SoG(n) < l. A contradiction.

Similarly the assumption |a|SoGj(n) < l leads 
to a contradiction.

The proof is complete.

Lemma 16 gives rise to the following definition. 
Let HC be a homogeneous class such that its 

intersection with G is non-trivial.
Definition 12. A length of the homogeneous class 
H C m et S is defined as:

|HC |s =  |a|s,

where a is an element from H C p| G.

Lemma 17. Let a, b G G(n), a ^  b for some nat
ural n. Then there exists an automorphism f  of 
G(n) such that:

f  (a) =  b

whose restriction on SoG(n) is a permutation.
Proof. From a ~  b it follows that for some index 
tuples I, J  the mapping f  := ( f 7)-1 ° f J is an 
automorphism of G(n) such that

f  (a) =  b.

From the definition of mappings f 7, f  J it fol
lows that the composition f  is a permutation on 
SoG(n).
Lemma 18. Let H C be a homogeneous class and 
a be a properly generated element from HCp| G(n) 
over SoG(n) for some natural n. Then every el
ement of HCp|G(n) is properly generated over 
SoG(n).
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Proof. Let b be an element from HCÇ\G(ri). 
Suppose that b is not properly generated over 
SoG(n). Then there exists a decomposition
D =  (sil , . . . , s il ) of b over SoG(n) such that 
SoG(n)\D =  0 as sets. Note that a, b belong to the 
same group G(n). Since b G HC  we have b ~  a. 
Then from Lemma 17 for b, a implies that there 
exists an automorphism of G(n) such that

ÿ(b) =  a.

The homogeneous property of groups
generators series G implies th at ÿ(D) =
=  (ÿ(sil ) , . . . ,  ÿ ( s il )) is a decomposition of the 
element a over SoG(n). Moreover, the restric
tion of ÿ  on SoG(n) is a permutation. Hence, 
SoG(n)\ÿ(D) =  0 as sets. It means, that the 
element a is not properly generated over SoG(n). 
A contradiction.

The proof is complete.

P roposition  19. Let H C be a homogeneous class 
and a G H C p| G(n) for some natural n. If a is a 
diameter element of G(n), then every element of 
H C Ç\G(n) is a diameter element of G(n).
Proof Directly implies from the previous lemma.

H om ogeneous down search algorithm

Let G b e a  homogeneous groups-generators se
ries, n be a natural number. Assume that G =  
=  G(n), S =  SoG(n).

Let H C  be a homogeneous class such that 
HCp|G =  0. Fix an element hc e  H Cf|G . We 
define the product

HC * S =  {HC(hc ■ s)|s e S }, (7)

Lem m a 20. The product (7) of the homogeneous 
class H C and the system of generators S is well 
defined.
ProoU Let hci, hc2 be different elements from 
HCp| G. Lemma 17 for hc1, hc2 states that there 
exists an automorphism ^ of G such that:

^(hci) =  hc2.

Since elements from the same group both index 
tuples I  and J consist of numbers {1 ,2 , . . . ,n } .  
Therefore, there exists a permutation n : I  ■ C ^  
J ■ C  such that:

^ (si) sn(i)

for every i e  1,n ■ C . Note that n ■ C =  |S|.
Let i , j  e  1, |S| be indices of generators in S, 

n(i) =  j .  Then

hc2 ■ Sj =  hc2 ■ Sn(i) =  4>(hc{) ■ if(si) =  if(hci ■ Si).

The definition of homogeneous equivalence implies 
that hc2 ■ Sj e  HC(hc1 ■ si). Hence, for every gen
erator Sj e  S there exists unique si e  S such that

hc2 ■ Sj e  H C  (hci ■ Si).

The definition of homogeneous equivalent now im
plies the equality

HC(hc2 ■ Sj ) =  HC(hc1 ■ Si).

Then moving through all generators of S we have:

{HC(hc2 ■ s )|s e S } =  {HC(hc1 ■ s )|s e S}.

The proof is complete.

The following down search algorithm is based 
on homogeneous classes.

A lgorithm  4: Homogeneous down search 
algorithm

Input: G — a group, S — its system of 
generators

Result: Diameter DS(G)
Initialization: found =  {H C  (e)}, 

all =  {HC(g)lg e  G}, 
current^level =  {HC(e) } ,  level =  0; 

while found =  all do
previous_level, current_level =  

current_level, { } ;  
for H C e  previous_level do 

current _level =
=  current_level U H C  * S ;

end
current _level =
=  current _level\found; 
found =  found[J current_level\ 

level =  level +  1; 
end
O utput: level

Lemma 21. Let a e  G, |a|s =  l. Then l is the 
number of iterations of the main loop of homoge
neous down search algorithm required to obtain the 
homogeneous class H C (a).
Proof. Induction on l

The basis: case l =  1. Note that on the initial
ization phase of the algorithm we have equalities

current ̂ level =  found =  {H C  (e)}.

Hence, when level =  1 mid CL =  current_level 
the following set of homogeneous classes will ap
pear:

( y  H C * S) \ found =
HCe CL

=  (HC(e) * S) \ {HC(e ) }  =

=  { H C (e■ s)|s e S } \ { H C (e)} =  { H C (s)|s e S}.
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Let |a|S =  1. Then there exists i G 1, |S| 
such that a =  ŝ . From previous equalities for 
current_level it follows that the class H C (sj) will 
appear on the first iteration of the main loop.

From the other hand, let H C (a) appears on the 
first iteration of the main loop. Then, from pre
vious equalities for current_level it follows that 
there exists s G S such that HC(s)  appears as a 
product e ■ s on the first step of the main loop and 
equality H C (s) =  HC (a) holds.

Lemma 17 implies that there exists an auto
morphism ^ of G such that:

^(s) =  a.

Note that by the same Lemma, ^ is a permuta
tion on S. Then there exists j  G 1, |S | such that 
^(s) =  sj =  a. Hence, |a|S =  |sj|S =  1.

Inductive step: case l +  1 under assumption that 
for l the statement holds.

Let |a|S =  l +  1. Then there exist
i1, i2, . . . ,  il+ 1 G 1, |S| such that: 

i+i
a =  n  sik.

k= 1 
l

Then the element b =  P[ sik has length l. Oth-
k=1

erwise, the length of a over S is less than l +  1. 
Then, by inductive assumption, HC(b) appears on 
the lth step of the algorithm. Lemma 21 implies 
that H C (a) =  HC (b ■ sil+1 ^ ^ ie n  H C (a) appears 
on the (l +  1)th iteration of the algorithm. Other
wise, the element a appears on the same previous 
level. It leads to a contradiction with inductive 
assumption.

Let HC (a) appears on the (l +  1)th step of the 
algorithm. Then for some b G G mid s G S we 
have the equality

H C (a) =  HC (b ■ s).

The inductive assumption implies |b|S =  l  The
i

last equality leads to equality b ■ s =  ( p[ sik) ■ s for
k = 1

some sik G S. This decomposition is minimal for 
b ■ s. Otherwise, HC (b ■ s) =  H C (a) appears earlier 
than on (l +  1)th level. Therefore |a|S =  |HC|S =  
=  l + 1 .

The proof is complete.

C orollary 22. Let HC be a homogeneous class 
and HC appears on the lth step of homogeneous 
down search algorithm for G and S. Then |el|S =  
=  l for every el G H C f ]  G.
Proof Let a G H C p| G. Lemma 21 implies that if 
H C  appears on the lth step of the algorithm then 
|a|s =  l

The proof is complete.

Theorem  23. Homogeneous down search algo
rithm is correct.
Proof. The algorithm terminates if and only if 
found =  all. This equality holds if and only if 
every homogeneous class with non-trivial intersec
tion with G appears at least once. This statement 
follows from Lemma 21 and existence of the mini
mum decomposition for every element.

Moreover, the last level of the algorithm con
tains homogeneous classes of elements of G, which 
have the maximum length over S. It means that if 
algorithm stops on step l, then from Corollary 22 
it follows

|el|s =  l =  D s (G)

for every H C G lastlevel and every el G H C [ { G .  
The proof is complete.

H om ogeneous middle down search 
algorithm

Let G b e a  homogeneous groups-generators se
ries, n be a natural number. Assume that G =  
=  G(n), S =  SoG(n).

Let H C be a homogeneous class with nontrivial 
intersection with G. Recall that

H C  ■ S =  {HC(hc ■ s)|s G S},

where hc is a fixed element from the intersection 
HCp| G.

We will use the following notations:
1. G fh is the set of all properly generated homo
geneous classes of the group G over S.
2. D f h(S, m) is the set of all decompositions over 
S of length m such that the following property- 
holds:
if some element of a homogeneous class has a de
composition of length m then D f h(S,m) contains 
at least one decomposition of length m of some 
element of this homogeneous class, i.e

if D G D f (S, m), P(D) G H C  then

there exists D H  G D f h(S, m)

such that P ( D H ) G HC.
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A lgorithm  5: Homogeneous middle 
down search algorithm 

Input: G — a group, S — its strictly
growing system of generators 

Result: Diameter D S(G)
Initialization: found =  0, all =  G f h, 

level =  |S| — 1; 
while found =  all do 

level =  level +  1; 
for decomp € Dfh(S, level) do 

product =  HC (P (decomp)); 
i f  product € G f h t hen 
| found =  found U product; 

end 
end 

end
O utput: level

T heorem  24. The homogeneous middle down 
search algorithm is correct.
Proof. Let m be the iteration of homogeneous mid
dle down search algorithm when found =  all. Let 
DS(G) =  l for some natural l

Suppose that a € G is a diameter element of G. 
Then strictly growing property implies that the el
ement a is properly generated. Lemma 10 implies

that the length of a over S is not less than |S|. 
It follows that the minimum decomposition of the 
element a belongs to Df (S, l). Homogeneous prop
erty implies that D f h(S,l) contains a decomposi
tion defining a product homogeneously equivalent 
to a. And this decomposition has the same length 
l  Therefore, we have the inequality

m > l.

Let H C be a homogeneous class. Suppose that 
H C  is found on step greater than l  It follows 
that there is no decomposition of H C  with length 
from |S| to l. Lemma 16 implies that there is no 
decomposition of any element from HCp|G with 
length from |S | to l- But the diameter element of 
G has length l. It means that there exists a de
composition of an element from HCp| G of length 
stricktly less than |S|. From Lemma 10 it follows 
that every element of H C p| G is not properly gen
erated. Hence, HC  is not in Gfh- We obtain the 
inequality

m < l.

Therefore, we have the equality m =  l  
The proof is complete.
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Ольшевський М. С.

АЛГОРИТМИ ПОШУКУ ДІАМЕТРА ОРІЄНТОВАНИХ
ГРАФІВ КЕЛІ

Розглянуто добре відому задачу пошуку діаметра скінченної групи. Вона формулюється так: 
знайти найбільший серед діаметрів групи відносно її систем твірних. Діаметром групи є діа
метр графа Келі, що будується на основі групи та її системи твірних. У цій роботі розглянуто 
підзадачу задачі пошуку діаметра групи, а саме, задачу знаходження діаметра групи відносно 
заданої системи твірних. Показано, що ця задача поліноміально зводиться до задачі пошуку 
мінімальних розкладів елементів.

Для разе ’язання задачі знаходження діаметра групи відносно заданої системи твірних запро
поновано п ’ять алгоритмів: простий алгоритм пошуку вниз, швидкий алгоритм пошуку вниз, 
серединний алгоритм пошуку вниз, однорідний алгоритм пошуку вниз та однорідний серединний 
алгоритм пошуку вниз.

Перші два алгоритми є універсальними, а інші вимагають виконання додаткових умов на
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системи твірних.
Для, алгоритму серединного спуску введено поняття строго зростаючої системи твірних. За 

виконання цієї умови, пошук мінімальних розкладів потенційних найдовших розкладів можна 
почати одразу ж із певної множини.

Введено окрему теорію однорідності. В ній розглядануто ряди груп та їх систем твірних, що 
задовольняють певніш, додатковим умовам. Введено властивість однорідності таких рядів та 
відношення, еквівалентності їх елементів. Основною метою введення такого відношення с збе
реження. розкладів її елементів в одному класі. Ця. властивість дає можливість обраховувати 
мінімальний розклад л.ише для представника класу еквівалентності.

Для. алгоритмів однорідного пошуку вниз та однорідного серединного пошуку вниз необхідною 
умовою застосування с належність групи до однорідного генеративного ряду груп. Тоді задача 
знаходження, мінімальних розкладів елементів зводиться, до знаходження, мінімальних розкла
дів представників класів еквіваленції.

Показано, що всі описані алгоритми с коректними. Зроблено оцінки складності їх роботи.
К л ю чові слова: граф Колі, діаметр труїш, система твірних.

Матеріал, надійшов 25.10.2021

Сгеаііус Сопшюш АіІгіЬиІіоп 4.0 Іпістаїіопаї Ілсеше (СС В¥ 4.0)


