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1. Introduction

The game of resource extraction (also known as
the capital accumulation game) belongs to a class
of nonzero-sum stochastic infinite-horizon games.
It is also an extension of the famous discrete-time
one-sector optimal growth model (see [1, 2]) to a
strategic interaction of competing agents. The
seminal study on the topic is by Levhari and Mir-
man [3], in which the authors considered a two-
agent deterministic version of the game with the
identical logarithmic one-period utilities of the
players and the Cobb-Douglas production func-
tion regulating the resource quantity. The exis-
tence of a non-randomized stationary Nash equi-
librium in a deterministic game setting was later
established by Sundaram [4]. It is worth mention-
ing that some extensions to the game in its deter-
ministic formulation are also being studied nowa-
days (e.g., a recent paper [5] on fishery extraction

with more than one species). The result of Sun-
daram relied on the assumptions that the pref-
erences of the players are identical and bounded
in the state space, i.e., the space of all possible
resource stocks. Both of these assumptions were
also helpful in reporting the existence of a sta-
tionary Nash equilibrium in different stochastic
frameworks of the game. The condition that the
players have the same preferences makes a game
symmetric. For the results on a stationary Nash
equilibrium existence in the symmetric setup of
resource extraction games the reader is referred
to [6–10]. Studies [11, 12] tackled the problem
in the non-symmetric case while assuming that
the preferences of the players are bounded. Such
condition was also important for studying non-
symmetric stochastic games in a general context
[13]. Moreover, the existing literature on non-
symmetric supermodular stochastic games relies
on the assumptions of either a bounded state
space [14, 15] or bounded utilities [16].
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Finally, some partial results of the Nash equilib-
rium existence in non-symmetric resource extrac-
tion games with unbounded payoffs were obtained
in [17,18]. These extensions were achieved at the
cost of additional structural assumptions. In the
paper of Amir [17] the model does not only require
that the spaces of player’s actions are bounded
by some constants, but also includes a very re-
strictive convexity assumption on the transition
probability. A discussion on the relevance of such
transition was covered in [18], concluding that it
only makes sense in the case of a bounded state
space. The approach in [18] by Jaśkiewicz and
Nowak is more general. Authors set the tran-
sition probability to be a convex combination of
stochastic kernels which depend on the state vari-
able, or, in other words, the resource stock before
consumption. Coefficients of the combination, as
in the case of [17], are allowed to depend on a joint
investment of players. However, the idea that a
joint investment, which is the amount of the re-
source left after consumption, can influence only
the coefficients was still limiting.

In this study we extend our view to the unexam-
ined class of non-symmetric resource extraction
games. In which, not only the players’ utilities
are unbounded, but the transition probability is
a Markov kernel dependent on a joint investment.
Moreover, the number of players in the game may
be larger than two. At the same time, we restrict
our attention to a specific form of the preferences
and a concrete stochastic production function, the
choices of which are motivated by economic con-
siderations. Such settings, on which we elabo-
rate below, enable us to prove the existence of a
non-randomized stationary Markov perfect equi-
librium in the game.

Our first assumption is that the utilities of the
players are concave power functions. This type of
preferences belongs to the Constant Relative Risk
Aversion (CRRA) family. CRRA is a typical ex-
ample of an established unbounded utility, and it
is commonly used in economics. The arguments
favouring exploiting CRRA utility functions are
often supported by the existing empirical studies
on investors’ behaviour (see [19–21]).

The second assumption is that the transition law
is determined by the state equation s′ = p · ξ,
where p is a joint investment of players and ξ is
a random shock, which adds a stochastic nature
to the process. The model with multiplicative
random shocks is known in economic literature
as a geometric random walk. It is widely used
in forecasting, especially for stock market data,
where it is the default model. In order to avoid
dealing with infinite values of players’ expected

discounted rewards within the structure, an addi-
tional natural constraint is imposed on the ran-
dom variable ξ, restricting the growth rate of the
stock.

The main result is presented as a theorem, the
proof of which is based on the optimality prin-
ciple of discounted dynamic programming. The
preceding lemmata is aimed at finding the value
functions which solve the corresponding Bellman
equation for every player.

2. The model

A nonzero-sum m-person stochastic resource ex-
traction game is described by the properties:

(i) The game is played in discrete moments
t = 1, 2, 3, . . . .

(ii) S := [0; +∞) is the state space, i.e., the
space of all possible resource stocks.

(iii) A(s) := [0; s] is the space of actions avail-
able to each player in state s ∈ S.
D(s) :=

{

(x1, . . . , xm) ∈ [0, s]m :
∑m

i=1 xi ≤ s
}

denotes the space of feasible action pro-
files in state s ∈ S. Define also
D :=

{

(s, x1, . . . , xm) ∈ Sm+1 :
∑m

i=1 xi ≤ s
}

.

(iv) ui : S → [0; +∞) is player i’s continuous
utility function.

(v) The stochastic law of motion among
states is described by the state equation
s′ = M(s, x1, . . . , xm, ξ),
where s is the previous state of the game,
(x1, . . . , xm) ∈ D(s) are players’ feasible
decisions, ξ is a random disturbance, and
M is a continuous function with the prop-
erty M(0, (0, . . . , 0), ·) = 0, meaning that
s = 0 is an absorbing state.

(vi) βi ∈ (0, 1) is player i’s discount factor.

The game is interpreted as follows. Several agents
(numbered 1 to m) jointly own a productive as-
set, the evolution of which is represented by the
state variable. At each of infinitely many stages of
the game, players observe the state s ∈ S and si-
multaneously choose their actions (x1, . . . , xm) ∈
A(s)m, expressing which part of the available
stock each of them wishes to utilize for con-
sumption. Provided that the actions are feasi-
ble, i.e., (x1, . . . , xm) ∈ D(s), players receive their
appropriate utilities u1(x1), . . . , um(xm), and the
game moves to the next stage, where the new
state is obtained from a stochastic technology
M(s, x1, . . . , xm, ξ), the output of which depends
on the realization of the random variable ξ on
a probability space, drawn independently at ev-
ery stage of the game. If the actions (x1, . . . , xm)
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happen to be infeasible, then players must revise
their decisions. Therefore, we will restrict our at-
tention only to strategies which generate feasible
actions.

Let I := {1, 2, . . . ,m}.

Our further assumptions to the model are:

A1: ui(x) = ci · x
αi , where ci ∈ (0; +∞)

and αi ∈ (0; 1) for every i ∈ I.
A2: M(s, x1, . . . , xm, ξ) = (s−

∑m
i=1 xi) · ξ,

where the random variable ξ takes values
in [0; +∞) with a probability distribution
that is known to the players, and whose
expectation is E.

A3: li := βi · E (ξαi) ∈ (0; 1) for every i ∈ I.

Player’s general strategy is a Borel mapping from
the space of all possible histories of the game
to the space of available actions. The set of all
strategies for player i ∈ I is denoted by Πi.

A strategy profile π = (π1, . . . , πm) ∈ Π1 × . . . ×
Πm is called feasible if for any state s ∈ S and
every possible sequence of preceding states and
actions h, the vector

(

π1(h, s), . . . , πm(h, s)
)

∈
D(s).

Let F be the set of all Borel measurable functions
f : S → S such that f(s) ∈ A(s) for every s ∈ S.

A stationary Markov strategy for player i is a con-
stant sequence (πit)t∈N, where πit = fi ∈ F for
all t ∈ N. Thus, a stationary Markov strategy for
a player can be identified with a mapping f ∈ F .
We will say that a stationary Markov strategy
profile (f1, . . . , fm) is feasible if and only if it be-
longs to the space

Φ :=
{

(f1, . . . , fm) ∈ Fm :
m
∑

i=1

fi(s) ≤ s ∀s ∈ S
}

.

Let H := D × D × D × . . . be the space of all
infinite histories of the game. For every initial
state s1 = s ∈ S and any feasible strategy profile
π = (π1, . . . , πm) we can define a probability mea-
sure P π

s and a stochastic process {St, Xt} on H

in a canonical way (see Chapter 7 in [22]), where
St and Xt are random variables describing respec-
tively the state and the action profile at time t.
Then, for each initial state s ∈ S and a feasible
strategy profile π, player i’s expected discounted
reward is

γi(π)(s) = E
π
s

[ ∞
∑

t=1

βt−1
i ui(Xti)

]

,

where Xti is the i-th coordinate of the random
vector Xt and E

π
s is the expectation operator with

respect to the probability measure P π
s .

Notation: Let ȳ = (y1, . . . , ym) be a vector with
coordinates belonging to some set Y . If zi ∈ Y ,

then (zi, ȳ−i) signifies the vector ȳ with coordi-
nate yi replaced by zi.

A feasible strategy profile π∗ = (π∗

1, . . . , π
∗

m) ∈
Π1 × . . . × Πm is called a Nash equilibrium if for
each s ∈ S, every player i ∈ I and any πi ∈ Πi

such that (πi, π
∗

−i) is feasible,

γi(π
∗)(s) ≥ γi(πi, π

∗

−i)(s).

A Stationary Markov Perfect Equilibrium
(SMPE) is a Nash equilibrium which belongs to
the class of strategy profiles Φ.

3. Results

Let V be the space of all nonnegative Borel mea-
surable functions v : S → R such that v(0) = 0.
For every f̄ = (f1, . . . , fm) ∈ Φ and v ∈ V define
m distinct backward induction dynamic program-
ming operators associated with the game:

Ti(f̄ , v)(s) := ui
(

fi(s)
)

+ βi E
[

v
(

M(s, f̄(s), ξ)
)

]

,

i = 1,m.

We start with a preliminary problem. For a fixed
set (v1, . . . , vm) ∈ V m consider a system of equa-
tions:











f1 = arg maxy1∈F
T1

(

(y1, f̄−1), v1
)

(s)

. . .

fm = arg maxym∈F Tm

(

(ym, f̄−m), vm
)

(s).

(1)

Note that it is not immediately clear whether
there exists a profile f̄ = (f1, . . . , fm) ∈ Φ which
would satisfy system (1) for all s ∈ S. However,
an affirmative answer can be obtained if the func-
tions v1, . . . , vm are additionally specified.

Define spaces V1, . . . , Vm, where

Vi :=
{

v : S → R | v(s) = k · sαi , k ∈ (0; +∞)
}

.

Lemma 1. For every set (v1, . . . , vm) ∈
V1 × . . . × Vm there exists a unique pro-
file φ̄ = (φ1, . . . , φm) ∈ Φ which solves the corre-
sponding system (1) for all s ∈ S. Moreover,
Ti(φ̄, vi)(s) ∈ Vi for each i ∈ I.

Proof. For all i ∈ I let vi(s) = ki s
αi , where

ki ∈ (0; +∞).

Define wi : D → R for every i ∈ I, such that

wi(s, x1, . . . , xm) := ci (xi)
αi +ki li

(

s−
m
∑

j=1

xj

)αi

.

The motivation behind introducing functions wi

in the above formulation is explained by the fol-
lowing equalities:
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Ti(f̄ , vi)(s) = ui
(

fi(s)
)

+

+ βi E
[

vi
(

M(s, f1(s), . . . , fm(s), ξ)
)

]

=

= ci
(

fi(s)
)αi + βi E

[

ki

(

s−
∑

j∈I

fj(s)
)αi

ξαi

]

=

= ci
(

fi(s)
)αi + ki li

(

s−
∑

j∈I

fj(s)
)αi

=

= wi

(

s, f1(s), . . . , fm(s)
)

for every i ∈ I, s ∈ S and f̄ = (f1, . . . , fm) ∈ Φ.

Notation: I(i) := {j ∈ N such that 1 ≤ j ≤ m

and j 6= i}.

Arbitrarily choose i ∈ I and a set of functions
(fj)j∈I(i) such that (0, f̄−i) ∈ Φ. Fix s ∈ S and
consider a maximization problem

maxwi

(

s,
(

xi, f̄−i(s)
)

)

subject to (2)

xi ∈
[

0; s−
∑

j∈I(i)

fj(s)
]

.

The problem (2) has a trivial solution xi = 0 in
the case when

∑

j∈I(i) fj(s) = s.

Suppose that s ∈ (0; +∞) and
∑

j∈I(i) fj(s) ∈

[0; s).

Then, for every xi ∈
(

0; s−
∑

j∈I(i) fj(s)
)

we have

that

∂2

∂x2i
wi

(

s,
(

xi, f̄−i(s)
)

)

= ci αi (αi − 1)xαi−2
i +

+ ki li αi (αi − 1)
(

s−
∑

j∈I(i)

fj(s) − xi

)αi−2
< 0.

Thus, wi

(

s, (xi, f̄−i(s))
)

is a concave function
with respect to xi by being concave in the interior
of the domain and continuous.

Notice that there exists a point x̃i ∈
(

0; s−

−
∑

j∈I(i) fj(s)
)

which turns ∂
∂xi

wi

(

s, (xi, f̄−i(s))
)

into zero, namely

x̃i =

(

1 +

(

ki li

ci

)
1

1−αi

)

−1(

s−
∑

j∈I(i)

fj(s)

)

.

By the sufficient extremum condition, the point
x̃i is a local maximum of wi

(

s, (xi, f̄−i(s))
)

.
Furthermore, x̃i is a global maximum of
wi

(

s, (xi, f̄−i(s))
)

due to concavity of the objec-
tive function with respect to xi.

We have that

arg max
xi∈[0;s−

∑

j∈I(i) fj(s)]
wi

(

s,
(

xi, f̄−i(s)
)

)

=

=



















0, for s ∈ S such that
∑

j∈I(i) fj(s) = s;
(

1 +
(

ki li
ci

)
1

1−αi

)−1
(

s−
∑

j∈I(i) fj(s)
)

,

for s ∈ (0; +∞) s.t.
∑

j∈I(i) fj(s) ∈ [0; s).

Therefore, a function

ỹi(s) :=

(

1 +

(

ki li

ci

)
1

1−αi

)

−1(

s−
∑

j∈I(i)

fj(s)

)

,

defined for all s ∈ S, maximizes the operator
Ti

(

(yi, f̄−i), vi
)

(s) for any s ∈ S and any set of

functions (fj)j∈I(i) such that (0, f̄−i) ∈ Φ.

Consequently, system (1) can be rewritten as



































f1 = 1

1+
(

k1 l1
c1

) 1
1−α1

(

s−
∑

j∈I(1) fj(s)
)

. . .

fm = 1

1+
(

km lm
cm

) 1
1−αm

(

s−
∑

j∈I(m) fj(s)
)

(f1, . . . , fm) ∈ Φ.

(3)

Let qi :=
(

ci
ki li

)
1

1−αi . Clearly, qi ∈ (0; +∞) for all

i ∈ I.

In accordance with this notation, the first m equa-
tions of system (3) are equivalent to











1
q1

f1(s) = s−
∑m

j=1 fj(s)

. . .
1
qm

fm(s) = s−
∑m

j=1 fj(s),

which is a system of linear equations with a
unique solution φ̄ = (φ1, . . . , φm), where

φi(s) :=
qi s

1 +
∑m

j=1 qj
.

The fact that for every s ∈ S
m
∑

i=1

φi(s) =

∑m
j=1 qj

1 +
∑m

j=1 qj
s < s

implies that φ̄ ∈ Φ. Therefore, φ̄ is a unique so-
lution of system (1) for all s ∈ S.

It remains to calculate Ti(φ̄, vi)(s) for every i ∈ I.
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Ti(φ̄, vi)(s) = ci
(

φi(s)
)αi + ki li·

·

(

s−
m
∑

j=1

φj(s)

)αi

=
ci q

αi

i sαi

(

1 +
∑m

j=1 qj

)αi
+ ki li·

·

(

s−

∑m
j=1 qj

1 +
∑m

j=1 qj
s

)αi

=
ki li s

αi

(

1 +
∑m

j=1 qj

)αi
·

·

(

ci q
αi

i

ki li
+ 1

)

=
(qi + 1) ki li s

αi

(

1 +
∑m

j=1 qj

)αi
. (4)

Hence, Ti(φ̄, vi)(s) ∈ Vi for every i ∈ I. �

For all i ∈ I define functions Ri : (0; +∞)m →
(0; +∞) with the formula representing the coeffi-
cient in (4):

Ri(k1, . . . , km) :=

(

1 +
(

ci
ki li

)
1

1−αi

)

ki li

(

1 +
∑m

j=1

(

cj
kj lj

)
1

1−αj

)αi
.

Lemma 2. There exist values k∗1, . . . , k
∗

m ∈
(0; +∞) that satisfy a system of equations











k∗1 = R1(k
∗

1, . . . , k
∗

m)

. . .

k∗m = Rm(k∗1, . . . , k
∗

m).

(5)

Proof. Let g : [1; +∞) → R be the following
function:

g(z) :=
1

z

(

m
∑

i=1

zαi

li
−m + 1

)

.

Notice that

(a) g(z) is continuous in [1; +∞);
(b) g(1) > 1;
(c) limz→+∞ g(z) = 0.

Property (b) follows directly from A3, while (c)
from the choice of αi (i ∈ I) in A1.

Together, (a)–(c) infer that there exists a point
z∗ ∈ (1; +∞) where g(z∗) = 1.

Thus,

z∗ =
m
∑

i=1

(z∗)αi

li
−m + 1.

For i ∈ I define values q∗i as expressions of z∗:

q∗i :=
(z∗)αi

li
− 1. (6)

Since z∗ ∈ (1; +∞), then each value q∗i belongs to
(0; +∞) for i ∈ I.

Note that

1 +
m
∑

i=1

q∗i =
m
∑

i=1

(z∗)αi

li
−m + 1 = z∗. (7)

We can use equality (7) to rewrite equations (6)
and obtain that values q∗1, . . . , q

∗

m satisfy the fol-
lowing properties for every i ∈ I:

q∗i =

(

1 +
∑m

j=1 q
∗

j

)αi

li
− 1,

which is equivalent to

(q∗i + 1) li
(

1 +
∑m

j=1 q
∗

j

)αi
= 1. (8)

For each i ∈ I introduce values k∗i ∈ (0; +∞) as

k∗i :=
ci

li (q∗i )1−αi
.

Rewriting (8) in terms of k∗i and multiplying both
sides of the equation by k∗i provides the result
which was needed to prove:

k∗i =

(

(

ci
k∗i li

)
1

1−αi + 1
)

k∗i li
(

1 +
∑m

j=1

( cj
k∗j lj

)

1
1−αj

)αi
= Ri(k

∗

1, . . . , k
∗

m)

for all i ∈ I. �

We are now ready to formulate the main result.

Theorem 1. Every resource extraction game
defined by (i)–(vi) and A1–A3 has a non-
randomized SMPE.

Proof. For every i ∈ I put

v∗i (s) := k∗i s
αi

and

f∗

i (s) :=

(

ci
k∗i li

)
1

1−αi s

1 +
∑m

j=1

(

cj
k∗j lj

)
1

1−αj

.

By Lemmas 1 and 2, we have that for every i ∈ I

and any s ∈ S

v∗i (s) = Ti(f̄
∗, v∗i )(s) = max

y∈F
Ti

(

(y, f̄∗

−i), v
∗

i

)

(s) ,

(9)

where f̄∗ = (f∗

1 , . . . , f
∗

m).

In order to appropriately apply dynamic pro-
gramming theorems, it remains to check whether
limt→∞ E

π
s

[

βt−1
i v∗i (St)

]

equals to zero for every
i ∈ I, every initial state s1 = s ∈ S and every
strategy πi ∈ Πi such that π = (πi, f̄

∗

−i) is feasi-
ble.

Observe that for any initial state of the game
s ∈ S and any feasible strategy profile π ∈
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Π1 × . . .× Πm, the corresponding stochastic pro-
cess {St, Xt} has the following property:

St+1 = M(St, Xt, ξt) =

(

St −
m
∑

i=1

Xti

)

ξt ≤ St ξt,

where ξt is a random realization of the random
variable ξ at stage t.

Then, for every i ∈ I, every s ∈ S and every strat-
egy πi ∈ Πi such that π = (πi, f̄

∗

−i) is feasible,

lim
t→∞

E
π
s

[

βt−1
i v∗i (St)

]

= lim
t→∞

E
π
s

[

βt−1
i k∗i (St)

αi
]

≤

≤ lim
t→∞

E
π
s

[

βt−1
i k∗i (S1 ξ1 · . . . · ξt−1)

αi
]

=

= lim
t→∞

E
[

βt−1
i k∗i (s ξ1 · . . . · ξt−1)

αi
]

=

= k∗i s
αi lim

t→∞

βt−1
i E

[

ξαi

1 · . . . · ξαi

t−1

]

=

= k∗i s
αi lim

t→∞

(

βi E [ξαi ]
)t−1

= 0. (10)

The last equality is due to Assumption A3.

Equation (9) together with property (10) imply
by discounted dynamic programming arguments
(see [1]) that

v∗i (s) = γi(f̄
∗)(s) = sup

πi∈Πi

γi(πi, f̄
∗

−i)(s)

for every i ∈ I and every s ∈ S. Hence, f̄∗ is a
SMPE. �

4. Concluding remarks

Remark 1. As a consequence of Lemma 1, there
also exists a unique Markov Perfect equilibrium in
the similarly defined finite-horizon game, where at
the final stage players split the available resource
in the pre-determined relations.

Indeed, if player i’s utility at the horizon time T is
equal to ki s

αi

T , where ki ∈ (0; +∞) and sT is the
observed state, then Lemma 1 ensures that there
is a unique equilibrium solution to every appro-
priate one-shot subproblem obtained sequentially
via the backward induction. Together they consti-
tute, by the optimality principle, a unique (back-
wardly constructed) Markov Perfect Equilibrium
of the game.

Remark 2. A numerical calculation of the SMPE
from Theorem 1 and the corresponding rewards is
straightforward. By their construction, it suffices
to simply find a point z∗, which turns the function
g(z) into 1. Since g(z) is continuous, the task can
be easily executed with standard numerical meth-
ods.
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