

Ministry of Education and Science of Ukraine
National University of "Kyiv-Mohyla Academy"

Informatics department of the Faculty of Informatics

Procedural content generation: resolving of customer satisfaction problem
Text part of course work

in speciality “Computer Science and Information Technologies” 112

Coursework supervisor

Assistant
Shabinsky A.S.

(signature)

“____” ____________ 2020 yr.

Made by student
Vasylenko K.A.

“____” ____________ 2020 yr.

Kyiv 2020

1

Ministry of Education and Science of Ukraine
National University of "Kyiv-Mohyla Academy"

Informatics Department of the Faculty of Informatics

APPROVED

Head of the Informatics Department
associate professor, candidate of physical and mathematical sciences

_______________________ S.S. Gorokhovskyi
(signature)​_____________________________

“____” ____________ 2020 yr.

INDIVIDUAL TASK
for course work

For the student of the Faculty of Informatics of 4 course of studying
THEME Procedural content generation: resolving of customer
satisfaction problem

Output data:
Text part content of coursework:
An individual task
Calendar plan
Annotation
An introduction
Explanation of game balancing and customer retention and acquisition
Definition of the game and its problem
Discussion about Reinforcement learning and Unity as a learning
platform
Learning process explanation
Conclusion
References
Applications

Issue date “____” ____________ 2019 yr. Supervisor _______________
 ​(signature)

Task received ​__________________
(signature)​__________

2

Theme:​ Procedural content generation: resolving of customer satisfaction problem

Calendar plan of coursework execution:

№ Stage name Deadline Note

1. Getting of coursework topic 01.09.2019

2. Searching of appropriate
literature

10.09.2019

3. Research in-game balancing
approach area

10.12.2019

4. Exploration of the puzzles
subject area

25.12.2019

5. Exploring of technologies and
frameworks

01.01.2020

6. Research in Unity
Development

7.01.2020

7. Game specification definition 20.01.2020

8. Documentation formation 01.02.2020

9. Application's core
implementation

10.03.2020

10. Writing game definition part 12.03.2020

11. Coursework analysis with the
supervisor

13.03.2020

12. Writing learning part 20.03.2020

13. Coursework analysis with the
supervisor

21.03.2020

14. Writing coursework summary 27.03.2020

3

15. Coursework analysis with the
supervisor

28.03.2020

16. Coursework changing
according to the supervisor’s

remarks

03.04.2020

17. Creation of the presentation 10.04.2020

18. Presentation of the
coursework

19.04.2020

Student Vasylenko K.A.

Supervisor Shabinsky A.S.

“____” ________________

4

Contents

Introduction 8

1. Game Balancing 10
1.1. Dynamic Game Balancing 10
1.2. Progress-Sensitive Game Balancing 12

2. Customer retention and acquisition 13
2.1. Explanation 13

2.1.1. First session and first-time user experience 15
2.1.2. Steady progression 16
2.1.3. Other 16

2.2. Summary 17

3. Game definition 18
3.1. Project logical structure 18

3.1.1. Background Items Grid 19
3.1.2. Puzzles row 21
3.1.3. Stars and rotations 22
3.1.4. Agent's role 23

3.2. Project class diagram 25
3.2.1 Core logic 25

3.2.1.1 Background Items Grid 25
3.2.1.2 Puzzles row 27
3.2.1.3 Game lifecycle and logging 29

3.2.2 Config 29
3.2.3 Puzzles generation 30

4. Reinforcement learning 32
4.1. Introduction 32
4.2. Elements 34

4.2.1. Policy 35
4.2.2. Reward signal 36

5

4.2.3. Value function 36
4.2.4. Model 37

5. Unity platform as a learning environment 38
5.1. Introduction 38
5.2. Environment properties 39
5.3. Simulation properties 40
5.4. Unity Editor 42
5.5. ML-Agents Core Toolkit 44

5.5.1. ML-Agents SDK 44
5.5.2 Python module 46

6. Learning process 46
6.1. Learning environment 46
6.2. Intellectual agent 47
6.3. Results 48

7. Conclusion 50
7.1. Practical results 50

References 52

Listing 1 54

6

Abstract

Procedural content generation (PCG) is used in a variety of products for

different purposes. Most techniques are hidden due to commercial reasons, which

forces engineers to invent PCG algorithms from the beginning for every concrete

problem. Apart from concrete purpose, current work has an aim to create a public

solution for a single problem, which is common in thousands of games.

Firstly, this paper will define the specific benefits of PCG for a puzzle game.

Problems that will be considered are customers retention, customers acquisition,

session duration control.

The second aim is to implement a suitable algorithm for a game that will

solve problems above.

Keywords - Procedural content generation, dynamic procedural content

generation, customer retention, customers acquisition, session duration control,

reinforcement learning, unity platform.

7

Introduction

Procedural content generation (PCG) is a technology used for the generation

of media[1]. Which could be both music, poetry, drawing for some purpose and

textures, sounds, levels, maps and so on for games. There are two types of PCG:

Static and Dynamic, each type has a specific set of purposes. Firstly, dynamic

generation is a generation of content during the execution of the game, commonly

it depends on customers' input or reaction. On the other hand, static generation is

any content produced before runtime such as maps, levels and so on.

There are two types of content to generate: ​technical​, which directly

influences game mechanics and ​visual​ that serves as a part of a user interface.

In addition, PCG for games has a classification [1]:

1. Game Bits - fundamental units of game content like pixels in pictures.

This type includes, but not limited to textures, sound, sound effects.

2. Game Space - environment for games such as maps, terrain.

3. Game Systems - simulate complex environments, entity interactions.

4. Game Scenarios - organizations of levels, stories and puzzles.

5. Game Design - set of rules and mechanics of the game.

6. Derived Content - extra items to a game world like leaderboards or

news.

Current work will discover dynamic procedural content generation of game

design elements. The game has a block puzzle genre. Currently, the block puzzle

means a game where a customer is given an N x N grid and M different types of

puzzles. There are some amount of generated puzzles to put in a grid out of M

8

unique types. Aim of the game is to fill the grid using dynamically generated

puzzles. When the user collects a row or column of N puzzles they will disappear.

Game is endlessly remaining until there is no way to put the next puzzle in place.

Apart from a visual component, the core of the game lies in the generation of

puzzle elements, which ought to imply on factors including:

1. Game balance

2. Customers retention

3. Customers acquisition

4. Session duration

Of course, a straightforward way to tackle the first problem may be a

creation of difficulty levels and providing an ability to choose for customers, which

is quite inefficient with a variety of players, who have extremely diverse skills

together with different learning approaches. Thus, a solution is dynamic game

balancing, which will be able to adapt as firmly as possible for every specific case.

Moreover, the procedural way of balance control provides an opportunity

not only to control difficulty but also a session duration, which will be quite useful

in satisfaction problem-solving.

The next section will explore the question of game balancing. Afterwards,

customer retention together with the acquisition problems will be discussed as

well. The final sections of work will dive into a case study and define a way of

solving problems above together with an algorithm implementation.

9

1. Game Balancing

A game player’s satisfaction is influenced by different variables, like the

graphical interface, the background story, the input devices, and, in particular,

game balancing. Game balancing aims at providing a good level of challenge for

the user and is recognized by the game development community as a key

characteristic for a successful game (Falstein 2004) [2].

1.1. Dynamic Game Balancing

Dynamic game balancing is a procedure that requires at least three fulfilled

basic conditions. [2] First, the game ought to determine the customers' entry skills

and experience, which obviously vary from a beginner to an advanced user. For

instance, a novice in puzzles will not be able to understand most of the features at

first and have to receive more long and easy game sessions, while an expert could

become easily bored by a big deal of uncomplicated tasks that are only

time-consuming. Second, players' performance in learning has to be tracked for

providing an instant adaptation to acquired customers' skills. Nowadays it is not a

secret that every person is diverse from others in his learning abilities and fast

reaction to progress is a necessary ability. Third, adaptation has to be fluent and

believable, so the player is not expected to feel that a machine is just adjusting

parameters behind his eyes with an aim of improving his experience that will be

quite disappointing rather than successful.

10

Many different approaches [2] to achieve a game balance have a mandatory

function called "challenge function". Which measures a current difficulty that a

user experiences by exploring game environmental parameters.

Hunicke and Chapman’s [3] approach for adjusting the difficulty of a

gaming environment. For instance, for tough game experience players receive

more bonuses like weapons, extra life points and fewer opponents, which is quite

useful for games that have an ability to provide such bonuses. On the other hand, a

board game has no ability to use such an approach.

The next approach is a modifying of Non-Player Characters' (NPC)

behaviour which is usually controlled automatically and serves as intelligent

agents. These agents typically use behavioural rules that are predefined in the

development stage and switch between them based on domain-specific knowledge.

In addition, there is a modification of this approach called dynamic scripting [4].

Dynamic scripting is a set of rules for an NPC, where each rule has a probability

(weight) for being used. Weights are updated dynamically during the game

process, so an agent is able to easily adjust to a players' skills. However, the harder

a game, the more rules needed to keep into account, implementation harder. In

addition, an agent's progress is limited by the best rule, so highly skilled players

could easily become bored.

Finally, the last approach is teaching the agents with machine learning. With

some predefined models at the beginning, the agent is improving through the game

together with the player. Despite the convenience of this approach, it has

limitations as well as other ones. For instance, as in the previous case, the agent's

progress is restricted, so it cannot tackle uncommon behaviour or highly skilled

users. Moreover, the agent is not able to degrade its progress in case of player's

11

skills degradation. As a result, it is a good strategy for providing a beginner on his

way to become a pro rather than entertain sophisticated customers.

1.2. Progress-Sensitive Game Balancing

Another approach is a challenge-sensitive game balancing [2], which is

usually implemented using reinforcement learning. Instead of predefining a

specific behaviour to an agent or limiting his abilities to degrade, there is a way to

teach an agent in advance. The main idea is to provide an ability to instantly adjust

to a user's progress and play at the appropriate level at any time. Which requires

solving of two tasks: competence - achieve as well as possible and performance -

act as well as necessary. So, agents will be able to adapt to players' level including

both capturing skills degradation cases and tackling with high performers.

Firstly, competence ought to be solved using reinforcement learning by

playing with itself which is called self-learning. Also, it could be done by training

with other intelligent agents. Second, performance is solved by providing a correct

policy for choosing rules for game balance creation.

Current work is planned to use the progress-sensitive game balance in a way

of creating an agent that first ought to learn how to solve the puzzle problem from

any beginning stage. In addition, the agent has to detect whether it is possible to

continue the game from a specific stage. Because of the reason that there is no end

to the puzzle game, an agent needs no more than the ability to go ahead for N

steps. As a result, an agent is available at any time for customers supporting during

the game. But, there are some questions including: "What is support?" and "What

if the customer does not have support?". Which will be discussed in detail in the

implementation section.

12

2. Customer retention and acquisition

2.1. Explanation

Retention on day N is a percentage of customers who used a service again

on the day N. Usually, in an industrial case it is better to measure the retention on

day 1, day 3, day 7 or day 30. For instance, day 30 is 30 days after the retention

graph's beginning [5].

For instance, if an application has 10 thousand customers on day 1, which is

100% then if it drops to 8000, day's 1 retention will be 80%. In case active users'

amount dropped down to 4000 on day seven, so 4000 users out of 10000 came

back on this day. Thus, retention means the percentage of users who used the

application again on day N.

For a real example, retention of a game Bell Bird by Bellkross [6] will be

demonstrated below.

Figure 2.1.1 - Retention table

13

On figure 1, on January 26, there were 3 138 total users that entered the app.

38.4% of which had come back after one week, that is 1205 unique users. So, the

picture shows 61.6% users lose. In addition, users lose is increasing by each week

and values of churn (opposite value to retention [7]) are 0%, 61.6%, 79.9%, 86.3%,

89.4% and 92% accordingly.

Figure 2.1.2 - Retention graph

There is also the retention graph that demonstrates the percentage of users

who return each day from Jan 26 to Mar 7. On day 4 retention has fallen to 80%

and steadily goes down to 2%.

14

To have an audience, a specific application has to have a churn rate lower

than a number of acquired customers [8]. Which makes customer retention an

important factor of a game in defining the game's lifetime value and expanding the

audience.

T V Σ retention Average Revenue P er Daily Active UserL = ×

There is a list of things to do [8] to keep healthy retention within the game:

2.1.1. First session and first-time user experience

Obviously, there is no chance of keeping a customer, who received a

negative experience during the first session and instantly left the game. Perfectly,

the first experience shows the game's core design and features, so users are able to

understand whether the idea matches their wishes. There could be negative

outcomes of the unclear first session: Firstly, the idea meets the user's wishes in the

long-term, but in the beginning, it is unclear, so the user will be lost. Secondly, the

idea does not match a user's needs which is unclear from the first experience, as a

result, the customer will both waste his time and end up unsatisfied. The first

experience could be easily proven by the dynamic PCG, which could provide a

special environment for a first session.

For this purpose was created a classical approach named ​tutorial​, where the

customer meets the game's world and explores the games' core features. The

tutorial is a gate for both a game and a customer in long-term relationships.

In addition, there is an ​instant games approach provided by google play.

The instant games feature provides an opportunity to actually play the first game

without fully downloading. That is an innovative feature that solves crucial

problems. Firstly, there is no need to download a game for a customer to

15

understand whether he or she needs it, thus, the choice is more conscious.

Secondly, it is reducing the chance of losing customers during product presentation

on the market because instant experience increases a chance to provide a positive

impression.

2.1.2. Steady progression

Not so obvious as the previous, but still the straightforward fact is that all

extra features and elements should not be opened too fast. So, the game process has

to be gradual. If a person achieves at once 10 thousand points, logically, the next

aim will be at least 10001 points, but if there is no extra progression left - the game

becomes mundane.

With the aim of achieving steady growth, games provide various resources,

levels, achievements and other extra items which makes customers interested in

further progression. But, content creation is not a single method of achieving

gradual advancement. For instance, some puzzle games attract people without

having long-term progression plans or a variety of content, the only thing they do

is a ​restriction of session duration​. Thus, customers cannot achieve huge progress

during a single session, otherwise, the user will become bored too fast because of

an overwhelming amount of achievements.

2.1.3. Other

In addition, there are three more crucial elements that impact the game's
retention and acquisition rate:

● Bonuses and gifts

● Keep reminding about the game. Customers need to be notified about

updates, features and bonuses.

16

● Social interactions. Any interactions within people in the context of a game.

Despite things as UX, UI, bonuses, gifts and marketing are important for CRA,

they will not be analysed in depth.

2.2. Summary

Customer retention and acquisition (CRA) are complex problems that could

be affected by a variety of factors. There is a thing that could be done for a positive

effect on CRA - improving the game's core logic in a way of adjusting it

individually for every customer and every specific case.

First, the initial user experience would be tackled as a specific case of a

content generation where the main aim of a session will be acquisition rather than a

long-term effect. Eventually, a session could be bright and short rather than

ordinary and moderate. Instant games together with tutorials are common

techniques for providing first positive impressions and game's logic understanding.

Second, to retain customers, a game needs steady progression. Which could

be implemented with a significant amount of content including levels, locations.

As a result of this strategy, a player will be able to smoothly walk through the

game.

Third, there is a solution for games that are running out of content:

modification of core game logic in a way of controlling the duration of customers'

sessions. For instance, in an endless game without any levels, it is possible to make

sessions easy to play until a customer reaches the best result.

17

3. Game definition

Block Puzzle is a game, where the main mechanic is filling as many as

possible cells with puzzles. The current game does not have levels or plot, the main

idea is a smooth experience during the puzzles matching which makes the player

relaxing during the process.

3.1. Project logical structure

Figure 3.1.1. Main game screen

The game could be effectively decoupled on the two core components:

puzzles row and puzzles grid. There are also such components as score, menu and

so on, but they do not play a big role in the problem consideration.

18

3.1.1. Background Items Grid

Figure 3.1.1.1 ​Background Items Grid

Background Items Grid​ ​is a game area for puzzles that have a size 8x8.

Grid could be ​filled​ with puzzles and released by puzzle destruction effects. There

are two types of ​destruction​: simple and bonus. Simple destruction occurs when

the grid has all the puzzles filled in a ​row​ or ​column​, while bonus destruction is

done in case the player failed the game and decided to use a bonus to resume it.

19

Bonus destruction cleans up an area where any new puzzle could be placed again.

Figure 3.1.1.2. Background Items Grid block scheme

20

3.1.2. Puzzles row

Figure 3.1.2.1 Puzzles row

Each turn player receives three puzzles, every of which has a specific type.

Puzzles appear in the bottom ​puzzles row and could be dragged by a user and

attached to the ​background items grid​.

21

Figure 3.1.2.2 Puzzles row block scheme

3.1.3. Stars and rotations

Every puzzle is rotatable, rotation exactly means rotation of the puzzle at 90

degrees. There are no rotations at the beginning of the game, rotations could be

earned by collecting stars during the puzzles' destruction. For a single rotation, the

customer has to collect X stars and the user could have multiple rotations at a time.

22

3.1.4. Agent's role

The task of an agent is to make a customers' experience as enjoyable as

possible with puzzle generation. In case of a random probability for each puzzle

type, the game immediately loses its session control and most sessions become

chaotic. As a result, the game will fail in its core logic due to the lack of feedback

and an outcome on the customer's efforts that breaks all the motivation to play the

game.

The duration of a game session heavily depends on the player's progress. A

session remains as long as puzzles successfully match the grid and there is a place

for new ones. Success requires two factors: suitable puzzles to match and a player's

ability to match them, where the first condition is required for the second one. In

case of chaotic puzzle generation, the player's ability will not play any role during

the game, so the game is not flexible according to the player skills which have to

be fixed. A workaround for this is a removal of the first condition, puzzles need to

be suitable for most of the cases. As a result, when the first condition is satisfied,

there are some puzzles to match, the only influence on the game session left for a

player's skill. Eventually, players will always be able to achieve higher. Of course,

every session filled with achievements could become mundane after some time and

the scheme may be improved and modified somehow.

Thus, the task of the puzzle generation is laid on an agent which has to

generate suitable puzzles at appropriate moments. Aim of an agent during the game

is to generate appropriate puzzles that will be obviously suitable within the specific

turn.

23

An agent has two roles: puzzles matching for the ability to provide hints and

puzzle generation to empower the importance of player's skills in the game and

reduce the influence of random factors. Puzzle matching is a short task on three

turns which could be solved at the runtime algorithmically. But, puzzle generation

is not such a trivial problem: First, puzzles ought to have a probability of being

generated as evenly as possible to increase the variety of items for users. Second,

the customer needs to feel all the features of the game, so during a session, he

ought to earn and use as much rotation as possible too. Third, not all the customers

have the same skill, so the generation ought to be adjusted for both newbies and

pro gamers. And last, but not the least, customers have to be able to beat his best

score within three games, so he will not sit at the single place.

Eventually, the solution of these cases lies in the right probability parameters

for puzzles that have to be chosen after some experiments and control of these

parameters to be relevant for the customer.

24

3.2. Project class diagram

Figure 3.2.1 Class diagram

The actual game has 5 logic modules: Core, External Services, Config,

Puzzles Generation, File system. Most of the classes and relationships that serve

for UI purpose were suppressed for the diagram simplicity.

3.2.1 Core logic

As has been written before, the core module is divided into two visual (and

functional at the same time) parts called ​grid and ​puzzles and the third functional

one, ​game lifecycle and logging​.

3.2.1.1 Background Items Grid

25

Figure 3.2.1.1.1. Grid functional diagram

Background items grid has a purpose of background items generation,

attachment and destruction management. ​Background item​s serve as a sensor of

puzzle movement. Background items grid has ​attached items manager that is

delegated to control grid state with the next logic:

1. C is a set of background items in the gridG

2. RC is a set of rows and cols items in the gridG

3. x, x ε GC, F illed(x) rue if x has been f illed with a puzzle∀ = t

4. x, x ε GRC, F illed(x) rue if ∀ item, item ε x F illed(item) true∀ = t =

If every item or row/col is filled then row/col is filled

5. x, x ε GC, Distructible(x) rue if x ε r, F illed(r) true, r ε GRC ∀ = t =

Coordinate is destructible if it is in the filled row.

Star serves as a star object for background items grid that is spawned only in the

destruction case. Background item star is a static star for background item.

26

3.2.1.2 Puzzles row

Figure 3.2.1.2.1. Puzzles row functional diagram

Active puzzles grid serves as the adapter between the customer and the

puzzles generation module. Roughly speaking, everything it does - takes three

puzzle types from the ​puzzle provider​ and presents them to the customer.

27

Figure 3.2.1.2.2 Active puzzles grid block scheme

Rotations manager is responsible for rotations providing, for receiving ​S

stars it provides a single ​rotation turn​. During the rotation turn the player is able

to rotate generated puzzles any amount of time until one of the puzzles will be

attached or the end of the game.

28

3.2.1.3 Game lifecycle and logging

Figure 3.2.1.3.1. Game lifecycle and logging diagram

This module has trivial tasks such as notifying about records and errors to a

cloud service, game lifecycle control.

3.2.2 Config

Figure 3.2.2.1. Config class diagram

29

Config is a set of rules that are predefined in the file before the build

procedure. The most interesting detail in the current scope is that config provides

puzzle types predefined in the file. Entire config module in the program

represented by the ​Data Provider​.

3.2.3 Puzzles generation

Figure 3.2.3.1. Puzzles generation class diagram

Puzzles generation module is represented by ​Types Provider and ​Game

Simulator classes. ​Puzzles Provider retrieves puzzles from the Game Simulator

on demand. Eventually, it is a task of the current work.

Game Simulator is a module that performs ​procedural content generation

by simulating a three-turns in depth game with puzzles provided by Types

Provider.

30

Figure 3.2.3.1. Game simulator block scheme

To add up to a scheme, "Find best possible turn" is a search algorithm that

finds all possible matches on the board and picks up a one with the best possible

score. Score is defined by the following formula (some rules are taken by 3.2.1.1

chapter):

1. C is a set of items in a puzzleP

2. x, x ε P C, F (x) true if x is f its in the grid∀ =

3. x, y, x ε P C, y ε GC, Adj(x, y) true∀ =

f y is vertically or horizontally adjacent to the xi

4. core Σ (F (x) Σ Adj(x)), where x ε P Cs = +

Procedural content generation occurs exactly in the game simulator. The

most of the balance lies in the ​"Request a puzzle" step, where ​Types Provider

provides a type for puzzle with a predefined probability. These parameters ought to

31

be learned using reinforcement learning with an intellectual agent with a learning

environment.

4. Reinforcement learning

The tuning of probability parameters demands a big amount of experiments

and sessions analysis in case it is provided by people, but reinforcement learning

makes this process much faster and precisive and below will be explained why.

4.1. Introduction

"Reinforcement learning is an area of Artificial Intelligence; it has emerged

as an effective tool towards building artificially intelligent systems and solving

sequential decision making problems. Reinforcement Learning has achieved many

impressive breakthroughs in recent years and it was able to surpass human level in

many fields; it is able to play and win various games. Historically, reinforcement

learning was efficient in solving some control system problems. Nowadays, it has a

growing range of applications." (Hammoudeh, Ahmad. (2018). A Concise

Introduction to Reinforcement Learning. 10.13140/RG.2.2.31027.53285.) [9]

32

Figure 4.1.1. Many Faces of Reinforcement Learning [10]

For the current problem, reinforcement learning is a convenient type of

learning that does not require a supervisor, but it differs from unsupervised

learning that serves for finding a pattern within a collection of unstructured data.

Supervised and unsupervised learning terms do not fully cover the classification of

machine learning paradigms. Reinforcement learning is executing a series of

experiments with an aim of reward maximization, it does not find a latent structure

within a data. Reinforcement learning is considered to be an extra machine

learning paradigm apart from supervised and unsupervised machine learning

paradigms and other paradigms too. [11]

33

To achieve the best reward level an agent relies on steps from the past he

remembered to be effective. This is called the exploitation of existing steps to

achieve a reward. But, to have such steps in memory there is a need to make some

decisions, so actions made by the agent will be remembered and will be able to

exploit that called exploration. To obtain a reward the agent has to exploit steps it

already grasped and to have steps to exploit it has to explore them first. Eventually,

the agent should try a lot of actions to find the best way to earn a reward. By the

way, the exploration-exploitation dilemma does not arise in both unsupervised and

supervised learning types. [11]

Reinforcement learning starts with an interactive reward-seeking agent. A

reinforcement learning agent always has an explicit goal and an uncertain

environment where it will find ways to interact to earn a reward.

4.2. Elements

Apart from an agent and an environment, reinforcement learning has four

elements called: a policy, a reward signal, a value function and model which is an

optional one. [11] This chapter will discuss theoretical aspects of the main

elements of reinforcement learning based on explored literature and papers.

34

Figure 4.2.1 Agent and Environment [10]

At each step ​t ​the ​agent executes action , receives observation and at ot

receives scalar reward . The ​environment receives action , emits observation rt at

 and sends out scalar reward . o t+1 rt+1

4.2.1. Policy

A policy is a definition of how a learning agent acts at a given moment.

Policy could be considered as a mapping from incoming environments' states to

concrete actions of the agent in these conditions. On the one hand, policy could be

a simple function or a lookup table that directs from a state to an action. But, on the

other hand, policy easily could involve a computation such as a search progress.

35

The policy is the core of the reinforcement learning agent because of the reason it

is the sufficient factor to determine the agent's behaviour. [11]

4.2.2. Reward signal

A reinforcement learning problem's goal is called reward signal. Each time

period reinforcement learning agent receives a number from the environment

called reward. The aim of the reward signal is to notify the agent about good or bad

actions in a way of sending positive or negative reward numbers respectively.

Every action agent aims to maximize the reward it receives during the long run.

For instance, an agent's reward could be compared to biological experience of

pleasure and pain that are immediate in defining a problem during the learning

process. [11]

The reward is sent to an agent at any time based on some either agent's or

environmental parameters. This process cannot be suppressed by the agent or

influenced directly. The only way to earn reward is to provide a successful action

or to influence the environment somehow. The reward is a direct way of altering

the policy. The action followed by low reward will be changed to another one in

the future. [11]

4.2.3. Value function

While the reward signal provides a short-term effect on the agent, a value

function defines an outcome for a long run. "Value of a state is the total amount of

reward an agent can expect to accumulate over the future, starting from that state"

[11]. Value function provides long-term strategy from the current state by looking

at states the agent is likely to follow and accounting the reward available at these

36

states. For instance, controlled by a value function an agent will prefer path

1->2->3->100 rather than 20->20->20->20. Projecting a value function on the

human world, it is rather someones' annual plan of how much could be acquired

following some plan. [11]

4.2.4. Model

The last element of the reinforcement learning system is an environmental

model. The model allows agents to make predictions about how the environment

will behave. For example, knowing current state and action, next both action and

state could be predicted by the model. Common case of model usage is planning

which means considering possible future situations before they are actually

experienced. Reinforcement learning problems solving methods with model and

planning usage called model-based, while opposite methods to them called

model-free methods that are pure trial-and-error learners. [11]

An accurate example of model-based reinforcement learning is the chess or

checkers game. Almost everyone during the game thinks about the opponent's

possible actions after the move which is direct model analysis. So, model-based

agents are the same players that analyse the model. For instance, the agent could

analyse the game board and all possible outcomes after the moves and as a result

choose the most successful one.

37

5. Unity platform as a learning environment

5.1. Introduction

The agent needs an environment for the reinforcement learning process.

Unity ML-Agents Toolkit [12] is an open source toolkit for creating and interacting

with simulation environments using Unity platform. Unity toolkit enables the

development of learning environments which are rich in sensory and physical

complexity, provide compelling cognitive challenges, and support dynamic

multi-agent interaction. [13]

In recent years, during the variety of Reinforcement learning researches,

learning environments played an important role in this development. For instance,

Arcade Learning Environment [14] that is a platform and methodology for

evaluating the development of general, domain-independent AI technology or

VizDoom [15] which is a Doom-based AI Research Platform for Reinforcement

Learning from Raw Visual Information and others. Creation of high-quality

environments for machine learning algorithms is time-expensive and requires

specialised domain knowledge, so creation of an environment for a specific case

rather than using existing one is quite inefficient in terms of resource usage. These

models not only served as sufficient learning environments, but also as

environments for models that would be deployed in the real world later on that

makes them quite important in the reinforcement learning history. [13]

Current chapter will provide discovered properties of a simulation platform,

and present the Unity platform itself.

38

5.2. Environment properties

Models are able to solve increasingly hard tasks that require an increasing

complexity of simulated environments in order to algorithms being explored.

Defined complexity keys of the environment are believed to be: sensory, physical,

cognitive and social. [13]

Sensory complexity - This complexity is required for a variety of real-world

decision making problems, for instance, self-driving cars, household robots. [13]

Physical complexity - Plenty of researchers interested in solving problems

using AI not only using sensory analysis, but also in a way of a complex

interaction with an environment. [17] The need of complex interactions often

comes in a real-world problem. Usually, the main goal of such problems is to

transfer the experience from the environment to the real-world. This approach is

quite useful for robotic applications. [13]

Cognitive complexity - The next complexity is a cognitive which is also

called combinatorial complexity. A sufficient example of such an environment is

Go game that has served as a learning environment without having both complex

visual and physical interactions. Cognitive complex tasks are able to present

hallmarks of human intelligence and hierarchical structure. In addition, tasks may

be presented in a consecutive manner, so independent examples without a context

of previous cases (except from the first example) are not valid. Cognitive tasks

often occur in the real world with people. [13]

Social complexity - The outstanding progress in acquiring complex skills by

learning in mammals believed to be achieved due to communication skills. [18]

Development of social skills and relations within a group of agents is a particular

39

interest in a variety of researches in the AI field. In addition, the ability of

communication is a key feature of the ecosystem's development in the world,

which would be desirable to simulate. An environment that allows a study of

communication and social relationships should provide a multi-agent

communication framework for communication between agents from a similar

group and from different distributions as well. [13]

5.3. Simulation properties

While environment properties define a sufficient environment for the

learning process, there are some prerequisites for the simulation process.

Simulation environments must be easily controlled by a customer who is usually a

researcher. [13]

First, is a fast and distributed simulation. Depending on the method used,

modern machine learning algorithms require billions of pieces of data in order to

find an optimal solution. One of the most important advantages of the

environmental simulation is that environmental simulation is usually faster than a

physical one. Therefore, environmental simulation has to be as fast as possible

while providing a flow of experiments. In addition to speed, simulation ideally

should be runnable in parallel, so it provides a significantly greater throughput of

data compared to the physical world. The faster algorithms could be trained, the

greater speed of receiving outcomes from an experiment. [13]

Second property is a flexible control. As any software, simulators should be

convenient to use and provide flexible control to the researcher making

opportunities of environmental simulation as far as possible to the real-world one.

Using a simulator as a black box could be enough for some experiments, but there

40

are some approaches such as ​Curriculum Learning​, ​Domain Randomization or

adaptive task selection. In these approaches dynamic feedback between the training

process and the agents is crucial. [13]

Curriculum Learning is a learning process where an agent receives a

sequence of tasks for invocation to achieve a final result. This method was used to

achieve approximately human-level performance in a VizDoom competition. It is

assumed that to achieve a success in such approach there is a need to influence the

simulation. [13]

As an example of curriculum learning could be considered a task of training

a penguin agent to catch the fish in a lake and feed his baby. This task has been

already solved in a blog called "Immersive limit". [19]

Figure 5.1 - Penguins collecting fish using neural networks to make decisions [19]

41

This concrete task has been solved by a curriculum learning approach. The

final aim is to feed a baby as fast as possible. But, the first task looks like "Feed a

baby as fast as possible by considering the feed range as 6 meters and do it until

reward value X will be met". The second task considers the range as 4 meters and

reward value Y. And so forth until the end of curriculum with the final task where

the range is range of penguins collision with maximum possible reward.

During the simulation there are parameters to configure in the curriculum

such as measure for lesson from the curriculum finishing, threshold in the reward

for each level, minimum lessons length before going to the next lesson, so a chance

of random result is reduced and fish speed together with radius are also configured.

This example shows how convenient the learning process with curriculum could be

in terms of simulation controlling.

Another technique is a ​Domain Randomization that requires flexible

control over the simulator. This approach learns from an environment during the

simulation, so the experience could be projected on a real world. The approach will

work if a virtual environment is sufficient in terms of functional elements to cover

the real world. This is especially important in case an agent's behaviour depends on

visual components of the environment. Domain Randomization usually means

modifying of textures, lighting, physics, and object placement within a scene.

Without this approach trained models usually end up having a "reality gap" and

perform bad in the real world. [13]

5.4. Unity Editor

Unity Editor is a graphical user interface used to create the content for 2D,

3D, AR, VR experiences.

42

Figure 5.4.1. Unity Editor

The Unity Editor together with external services provides next extra

opportunities for AI research [13]:

1. Custom scenes creation. Unity provides an ability for creation of scenes with

any complexity, from a race environment for cars to a 2D environment for

games.

2. Record demonstrations. Unity Editors' play mode provides an ability to

demonstrate any simulation flow on the scene.

3. Provide demonstrations on a wide range of devices. The Unity Editor is

compatible with more than 20 platforms, so a project could be runned on a

variety of devices.

43

5.5. ML-Agents Core Toolkit

The ML-Agents Core Toolkit is a two-part module that provides all

necessary technologies for the simulation environment. It has two components:

ML-Agents SDK that is a part of Unity Editor written in C# and a Python package

that communicates with the environment in Unity using SDK. [13]

5.5.1. ML-Agents SDK

ML-Agents SDK makes it possible to make a Unity's Scene into a learning

environment using three SDK entities: Agent, Brain and Academy. [13]

Figure 5.5.1.1. Learning Environment [13]

The Learning Environment contains Agents, Brains and an Academy.

Agents are responsible for collecting observations and taking actions. Brains are

responsible for providing a policy for agents it has. The academy is responsible for

entire environment simulation management. [13]

The agent component is used to indicate a GameObject as an Agent who is

responsible for observing the game world. Each Agent linked to a single Brain at a

44

time. There is possible to create a multi-agent environment by using more than a

single agent in the environment by simple objects' duplication. [13]

Brain components make decisions for all their linked agents by providing

them a policy. Brains has a definition of an area observation, so the policy will be

valid in the specific observed environment. Agent is able to be linked to a brain

only by having observations and actions defined. Brain's decision could be

concluded in several ways including player input, scripts, internally embedded

neural network models or via interaction with Python API. Thence, policy

providing respectively could be referred as Player, Heuristic, Internal and External.

Multiple brains makes it possible to take a place of multiple policies. [13]

The Academy module is responsible for simulation step tracking,

environment reset functionality, target simulation speed and frame rate setting. In

addition, the Academy could define reset parameters that could be used to change

configuration of the environment during runtime. [13]

Once an agent is placed in the scene then the environment could be enabled

together with a Markov Decision Process (MDP) or Partially Observable MDP

(POMDP). Where observations, reward functions and scoring are placed in the

agent. Moreover, scoring could be provided by the environment. [13]

Observations could be provided in two ways: As ray-casts, auditory signals,

Agent position and so on for complex environments or via the numerical vector for

vector environments. Actions could be sent by discrete signals like arrays of

integers or as continuous variables (floating point numbers array). [13]

Agents could ask a brain for a decision at a fixed or dynamic interval. The

reward function could be modified at runtime as well. Simulation could be finished

in several ways: for a single agent or for a whole environment. Besides, it happens

45

after reaching max steps count predefined in Unity Editor. And last, but not the

least, it is possible to configure environmental reset variables from the Python API.

5.5.2 Python module

The Python package (​https://pypi.org/project/mlagents/​) contains code that

could be used to launch and interact with Unity executables and with Unity Editor

as well. Communication between Unity and Python is made using gRPC. [13]

6. Learning process

6.1. Learning environment

For the purpose of agent learning there is a need for a specific Unity

environment, where the agent will be able to do observations and receive a reward

based on its actions. Thus, only sufficient for a simulation architecture elements

will remain.

Figure 6.1.1. Learning Environment class diagram

There are no more external API and File system modules, in addition, UI

modules were extremely cut off as well.

https://pypi.org/project/mlagents/

46

For a simulation purpose there is a need to define two main simulation

elements: the learning area and the agent.

The learning environment is an object that knows and is able to reset every

stateful object on the scene such as ​BackgroundItemsGrid​, RotationsManager​,

PuzzlesProvider​ and​ ScoreManager​.

Puzzles Area (Some code was removed for simplicity purpose):

public class ​PuzzlesArea ​: Area

{

 [SerializeField] ​private ​BackgroundItemsGrid ​backgroundItemsGrid​;

 [SerializeField] ​private ​RotationsManager ​rotationsManager​;

 [SerializeField] ​private ​PuzzlesProvider ​puzzlesProvider​;

 [SerializeField] ​private ​AreaScoreManager ​scoreManager​;

 ​private void ​Start​() => ResetArea();

 ​public override void ​ResetArea() {

 ​if ​(​backgroundItemsGrid​.​IsPrepared​) ​backgroundItemsGrid​.Reset();

 ​if ​(​rotationsManager​.​IsPrepared​) ​rotationsManager​.Reset();

 ​if ​(​puzzlesProvider​.​IsPrepared​) ​puzzlesProvider​.Reset();

 ​if ​(​scoreManager​.​IsPrepared​) ​scoreManager​.Reset();

 }

}

6.2. Intellectual agent

The intellectual agent has to receive an ​action from the brain, make a

request for an action or a decision. Obviously, it has to receive a ​reward signal​.

47

And last, but not the least it has to receive ​observations​. The agent is a

PuzzleTypesProvider that operates in a vector space.

The action is a vector with length that equals the number of puzzle types to

choose. Every value is a probability for concrete type to be chosen that normalizes

then with a formula: ​where P is a set of typeP robabilityi =
pi

∑
j

j < |P |
pj

probabilities for a puzzle type.
The reward is defined by the next rules:

1. CD is a set of disposed items in the grid.G

2. CA is a set of attached items in the grid.G

3. f is a turn fee.t −

4. is a set of normalized probabilities for puzzles types.P

5. f is a median fee. mf b, where a and b are parametric.m − = |P |
median(P) − a

*

6. r m = GridSize RewardP erDisposedRow GridSize2 + 2 * 2 + Max(P uzzleSize)2

Where mr is a maximum reward.

7. eward r = mr

(+) − (tf + mf)∑
i

i < |GCA|
xi ∑

j

j < |GCD|
yj

6.3. Results

This chapter will introduce a result of the learning process.

Thus, the best score achieved by an agent during learning sessions was 1154.

The reward is 313 and has a growing passion. To introduce the last result, the

48

puzzle types, there is a need to explain the format. Puzzle type could be

represented by an id, coordinates and color.

Coordinates are represented in a specific way of filling a 5x5 grid with

symbols, where p - mean puzzle, s - star, e - empty space. For instance,

- ​Id​: 22
 ​Coordinates​: |
 eeeee
 eeeee
 pppee
 pspee
 pppee
 ​Color​: Pink

in the game looks in this way:

Figure 6.3.1. puzzle picture

All the puzzle types are provided in the Listing 1. And the resulting vector of

probabilities looks like this: [0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),

0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),

0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),

0.041(6), 0.041(6), 0.041(6)] that is means equal probability for all the puzzles.

49

This result seems to be the best for an agent due to the reason that the zero distance

between the puzzle types' probabilities paid well in terms of reward. This result is

applicable and shows how much might be earned in a straightforward way using

given puzzle types and parameters by the search algorithm, 1000+ points for a

single flow is more than good due to the possibilities of a game simulator that

could boost this result providing more applicable puzzles in specific situations.

7. Conclusion

Procedural content generation is an instrument for enhancing customers'

satisfaction in a way of controlling game balancing. Game balancing could be

dynamic or progress-sensitive, progress-sensitive game balancing is more

applicable for customers satisfaction, but requires a learning process. Unity

platform is a multifunctional learning environment that allows to create both

physical and vector-based environments for reinforcement learning.

7.1. Practical results
Within this work has been accomplished

● Review of dynamic and progress-sensitive game balancing

● Analysis of customer retention and acquisition

● Discussion of customers retention and acquisition problems in the context of

balancing in procedural content generation

● Deconstruction of the balancing problem for the specific block puzzle game

● Searching of benefits of the PCG balance in terms of customers retention

and acquisition

● Definition of procedural puzzles generation algorithm

50

● Definition of reinforcement learning problem for configuration of

probabilities for the PCG algorithm

● Revision of the reinforcement learning elements

● Review of the Unity platform as a learning environment

● Implementation of the learning environment and the intellectual agent for

the PCG balance problem solution

● Listing of the learning process results

● Analysis of the algorithm performance

○ Average session score duration without the PCG algorithm is nearly

400 points that lasts nearly three minutes

○ Average session score with the PCG algorithm is 1200 points that

lasts nearly eight minutes

51

References

1. https://www.researchgate.net/publication/331717755_A_Short_Introduction

_to_Procedural_Content_Generation_Algorithms_for_Videogames

2. https://www.researchgate.net/publication/220978366_Dynamic_Game_Bala

ncing_An_Evaluation_of_User_Satisfaction

3. Robin Hunicke; V. Chapman (2004). "AI for Dynamic Difficulty

Adjustment in Games". Challenges in Game Artificial Intelligence AAAI

Workshop. San Jose. pp. 91–96.

4. https://link.springer.com/article/10.1007/s10994-006-6205-6#Bib1

5. https://blog.count.ly/how-to-simply-calculate-user-retention-and-loyalty-7c2

72ee73edd#.gfmnvv1up

6. https://play.google.com/store/apps/details?id=com.bellkross&hl=en

7. https://middlesexconsulting.com/churn-rate-retention-rate-metrics/

8. https://thetool.io/2018/user-retention-mobile-apps-games

9. https://www.researchgate.net/publication/323178749_A_Concise_Introducti
on_to_Reinforcement_Learning

10.D. Silver, “Deep reinforcement learning,” in International Conference on
Machine Learning (ICML), 2016.

11. R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction, 2nd
ed. Cambridge, MA: Mit Press, 2017.

12.https://github.com/Unity-Technologies/ml-agents
13.https://www.researchgate.net/publication/327570403_Unity_A_General_Pla

tform_for_Intelligent_Agents
14.Bellemare, M. G. et al. “The Arcade Learning Environment: An Evaluation

Platform for General Agents.” Journal of Artificial Intelligence Research 47
(2013): 253–279. Crossref. Web.

https://www.researchgate.net/publication/331717755_A_Short_Introduction_to_Procedural_Content_Generation_Algorithms_for_Videogames
https://www.researchgate.net/publication/331717755_A_Short_Introduction_to_Procedural_Content_Generation_Algorithms_for_Videogames
https://www.researchgate.net/publication/220978366_Dynamic_Game_Balancing_An_Evaluation_of_User_Satisfaction
https://www.researchgate.net/publication/220978366_Dynamic_Game_Balancing_An_Evaluation_of_User_Satisfaction
https://link.springer.com/article/10.1007/s10994-006-6205-6#Bib1
https://blog.count.ly/how-to-simply-calculate-user-retention-and-loyalty-7c272ee73edd#.gfmnvv1up
https://blog.count.ly/how-to-simply-calculate-user-retention-and-loyalty-7c272ee73edd#.gfmnvv1up
https://play.google.com/store/apps/details?id=com.bellkross&hl=en
https://middlesexconsulting.com/churn-rate-retention-rate-metrics/
https://thetool.io/2018/user-retention-mobile-apps-games
https://www.researchgate.net/publication/323178749_A_Concise_Introduction_to_Reinforcement_Learning
https://www.researchgate.net/publication/323178749_A_Concise_Introduction_to_Reinforcement_Learning
https://github.com/Unity-Technologies/ml-agents
https://www.researchgate.net/publication/327570403_Unity_A_General_Platform_for_Intelligent_Agents
https://www.researchgate.net/publication/327570403_Unity_A_General_Platform_for_Intelligent_Agents
https://arxiv.org/abs/1207.4708
https://arxiv.org/abs/1207.4708
https://arxiv.org/abs/1207.4708

52

15.https://arxiv.org/abs/1605.02097
16.E. Todorov, T. Erez and Y. Tassa, "MuJoCo: A physics engine for

model-based control," ​2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems​, Vilamoura, 2012, pp. 5026-5033. doi:
10.1109/IROS.2012.6386109

17.A. Bicchi and V. Kumar, "Robotic grasping and contact: a review,"
Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA, 2000, pp. 348-353 vol.1.

18.https://www.researchgate.net/publication/24357265_Primate_Vocalization_
Gesture_and_the_Evolution_of_Human_Language

19.https://www.immersivelimit.com/tutorials/reinforcement-learning-penguins-
part-1-unity-ml-agents

https://arxiv.org/abs/1605.02097
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/6386109
https://ieeexplore.ieee.org/document/844081
https://ieeexplore.ieee.org/document/844081
https://ieeexplore.ieee.org/document/844081
https://ieeexplore.ieee.org/document/844081
https://www.researchgate.net/publication/24357265_Primate_Vocalization_Gesture_and_the_Evolution_of_Human_Language
https://www.researchgate.net/publication/24357265_Primate_Vocalization_Gesture_and_the_Evolution_of_Human_Language
https://www.immersivelimit.com/tutorials/reinforcement-learning-penguins-part-1-unity-ml-agents
https://www.immersivelimit.com/tutorials/reinforcement-learning-penguins-part-1-unity-ml-agents

53

Listing 1

- ​Id​: 0
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eeeee
 seeee
 ​Color​: Green
- ​Id​: 1
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eeeee
 ppeee
 ​Color​: Green
- ​Id​: 2
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eeeee
 pppee
 ​Color​: Green
- ​Id​: 3
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee

 eeeee
 pppse
 ​Color​: Blue
- ​Id​: 4
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 peeee
 peeee
 ​Color​: Green
- ​Id​: 5
 ​Coordinates​: |
 eeeee
 eeeee
 peeee
 peeee
 peeee
 ​Color​: Green
- ​Id​: 6
 ​Coordinates​: |
 eeeee
 peeee
 peeee
 peeee
 seeee
 ​Color​: Blue
- ​Id​: 7
 ​Coordinates​: |

 eeeee
 eeeee
 eeeee
 ppeee
 ppeee
 ​Color​: Orange
- ​Id​: 8
 ​Coordinates​: |
 eeeee
 eeeee
 ppsee
 eepee
 eepee
 ​Color​: Purple
- ​Id​: 9
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eppee
 ppeee
 ​Color​: Red
- ​Id​: 10
 ​Coordinates​: |
 eeeee
 eeeee
 peeee
 ppeee
 epeee

54

 ​Color​: Red
- ​Id​: 11
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 peeee
 sppee
 ​Color​: Purple
- ​Id​: 12
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 ppeee
 peeee
 ​Color​: Red
- ​Id​: 13
 ​Coordinates​: |
 eeeee
 eeeee
 pppee
 pppee
 pppee
 ​Color​: Turquoise
- ​Id​: 14
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eeeee
 ppppp
 ​Color​: Turquoise

- ​Id​: 15
 ​Coordinates​: |
 eeeee
 eeeee
 pppee
 eepee
 eepee
 ​Color​: Purple
- ​Id​: 16
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 epeee
 pppee
 ​Color​: Purple
- ​Id​: 17
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 epeee
 pspee
 ​Color​: Turquoise
- ​Id​: 18
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 ppeee
 epeee
 ​Color​: Red
- ​Id​: 19

 ​Coordinates​: |
 eeeee
 eeeee
 epeee
 ppeee
 peeee
 ​Color​: Red
- ​Id​: 21
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 ppeee
 epsee
 ​Color​: Purple
- ​Id​: 22
 ​Coordinates​: |
 eeeee
 eeeee
 pppee
 pspee
 pppee
 ​Color​: Pink
- ​Id​: 23
 ​Coordinates​: |
 eeeee
 eeeee
 eeeee
 eeeee
 ppspp
 ​Color​: Pink

