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Abstract 

Procedural content generation (PCG) is used in a variety of products for            

different purposes. Most techniques are hidden due to commercial reasons, which           

forces engineers to invent PCG algorithms from the beginning for every concrete            

problem. Apart from concrete purpose, current work has an aim to create a public              

solution for a single problem, which is common in thousands of games.  

Firstly, this paper will define the specific benefits of PCG for a puzzle game.              

Problems that will be considered are customers retention, customers acquisition,          

session duration control. 

The second aim is to implement a suitable algorithm for a game that will              

solve problems above. 

 

Keywords - Procedural content generation, dynamic procedural content         

generation, customer retention, customers acquisition, session duration control,        

reinforcement learning, unity platform. 
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Introduction 

Procedural content generation (PCG) is a technology used for the generation           

of media[1]. Which could be both music, poetry, drawing for some purpose and             

textures, sounds, levels, maps and so on for games. There are two types of PCG:               

Static and Dynamic, each type has a specific set of purposes. Firstly, dynamic             

generation is a generation of content during the execution of the game, commonly             

it depends on customers' input or reaction. On the other hand, static generation is              

any content produced before runtime such as maps, levels and so on. 

There are two types of content to generate: ​technical​, which directly           

influences game mechanics and ​visual​ that serves as a part of a user interface. 

In addition, PCG for games has a classification [1]: 

1. Game Bits - fundamental units of game content like pixels in pictures.            

This type includes, but not limited to textures, sound, sound effects. 

2. Game Space - environment for games such as maps, terrain. 

3. Game Systems - simulate complex environments, entity interactions. 

4. Game Scenarios - organizations of levels, stories and puzzles. 

5. Game Design - set of rules and mechanics of the game. 

6. Derived Content - extra items to a game world like leaderboards or            

news. 

Current work will discover dynamic procedural content generation of game          

design elements. The game has a block puzzle genre. Currently, the block puzzle             

means a game where a customer is given an N x N grid and M different types of                  

puzzles. There are some amount of generated puzzles to put in a grid out of M                
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unique types. Aim of the game is to fill the grid using dynamically generated              

puzzles. When the user collects a row or column of N puzzles they will disappear.               

Game is endlessly remaining until there is no way to put the next puzzle in place. 

Apart from a visual component, the core of the game lies in the generation of               

puzzle elements, which ought to imply on factors including: 

1. Game balance 

2. Customers retention 

3. Customers acquisition 

4. Session duration 

Of course, a straightforward way to tackle the first problem may be a             

creation of difficulty levels and providing an ability to choose for customers, which             

is quite inefficient with a variety of players, who have extremely diverse skills             

together with different learning approaches. Thus, a solution is dynamic game           

balancing, which will be able to adapt as firmly as possible for every specific case. 

Moreover, the procedural way of balance control provides an opportunity          

not only to control difficulty but also a session duration, which will be quite useful               

in satisfaction problem-solving. 

The next section will explore the question of game balancing. Afterwards,           

customer retention together with the acquisition problems will be discussed as           

well. The final sections of work will dive into a case study and define a way of                 

solving problems above together with an algorithm implementation.  
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1. Game Balancing 

A game player’s satisfaction is influenced by different variables, like the           

graphical interface, the background story, the input devices, and, in particular,           

game balancing. Game balancing aims at providing a good level of challenge for             

the user and is recognized by the game development community as a key             

characteristic for a successful game  (Falstein 2004) [2].  

1.1. Dynamic Game Balancing 

Dynamic game balancing is a procedure that requires at least three fulfilled            

basic conditions. [2] First, the game ought to determine the customers' entry skills             

and experience, which obviously vary from a beginner to an advanced user. For             

instance, a novice in puzzles will not be able to understand most of the features at                

first and have to receive more long and easy game sessions, while an expert could               

become easily bored by a big deal of uncomplicated tasks that are only             

time-consuming. Second, players' performance in learning has to be tracked for           

providing an instant adaptation to acquired customers' skills. Nowadays it is not a             

secret that every person is diverse from others in his learning abilities and fast              

reaction to progress is a necessary ability. Third, adaptation has to be fluent and              

believable, so the player is not expected to feel that a machine is just adjusting               

parameters behind his eyes with an aim of improving his experience that will be              

quite disappointing rather than successful.  
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Many different approaches [2] to achieve a game balance have a mandatory            

function called "challenge function". Which measures a current difficulty that a           

user experiences by exploring game environmental parameters. 

Hunicke and Chapman’s [3] approach for adjusting the difficulty of a           

gaming environment. For instance, for tough game experience players receive          

more bonuses like weapons, extra life points and fewer opponents, which is quite             

useful for games that have an ability to provide such bonuses. On the other hand, a                

board game has no ability to use such an approach. 

The next approach is a modifying of Non-Player Characters' (NPC)          

behaviour which is usually controlled automatically and serves as intelligent          

agents. These agents typically use behavioural rules that are predefined in the            

development stage and switch between them based on domain-specific knowledge.          

In addition, there is a modification of this approach called dynamic scripting [4].             

Dynamic scripting is a set of rules for an NPC, where each rule has a probability                

(weight) for being used. Weights are updated dynamically during the game           

process, so an agent is able to easily adjust to a players' skills. However, the harder                

a game, the more rules needed to keep into account, implementation harder. In             

addition, an agent's progress is limited by the best rule, so highly skilled players              

could easily become bored. 

Finally, the last approach is teaching the agents with machine learning. With            

some predefined models at the beginning, the agent is improving through the game             

together with the player. Despite the convenience of this approach, it has            

limitations as well as other ones. For instance, as in the previous case, the agent's               

progress is restricted, so it cannot tackle uncommon behaviour or highly skilled            

users. Moreover, the agent is not able to degrade its progress in case of player's               
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skills degradation. As a result, it is a good strategy for providing a beginner on his                

way to become a pro rather than entertain sophisticated customers. 

1.2. Progress-Sensitive Game Balancing 

Another approach is a challenge-sensitive game balancing [2], which is          

usually implemented using reinforcement learning. Instead of predefining a         

specific behaviour to an agent or limiting his abilities to degrade, there is a way to                

teach an agent in advance. The main idea is to provide an ability to instantly adjust                

to a user's progress and play at the appropriate level at any time. Which requires               

solving of two tasks: competence - achieve as well as possible and performance -              

act as well as necessary. So, agents will be able to adapt to players' level including                

both capturing skills degradation cases and tackling with high performers. 

Firstly, competence ought to be solved using reinforcement learning by          

playing with itself which is called self-learning. Also, it could be done by training              

with other intelligent agents. Second, performance is solved by providing a correct            

policy for choosing rules for game balance creation. 

Current work is planned to use the progress-sensitive game balance in a way             

of creating an agent that first ought to learn how to solve the puzzle problem from                

any beginning stage. In addition, the agent has to detect whether it is possible to               

continue the game from a specific stage. Because of the reason that there is no end                

to the puzzle game, an agent needs no more than the ability to go ahead for N                 

steps. As a result, an agent is available at any time for customers supporting during               

the game. But, there are some questions including: "What is support?" and "What             

if the customer does not have support?". Which will be discussed in detail in the               

implementation section. 
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2. Customer retention and acquisition 

2.1. Explanation 

Retention on day N is a percentage of customers who used a service again              

on the day N. Usually, in an industrial case it is better to measure the retention on                 

day 1, day 3, day 7 or day 30. For instance, day 30 is 30 days after the retention                   

graph's beginning [5]. 

For instance, if an application has 10 thousand customers on day 1, which is              

100% then if it drops to 8000, day's 1 retention will be 80%. In case active users'                 

amount dropped down to 4000 on day seven, so 4000 users out of 10000 came               

back on this day. Thus, retention means the percentage of users who used the              

application again on day N. 

For a real example, retention of a game Bell Bird by Bellkross [6] will be               

demonstrated below. 

 

Figure 2.1.1 - Retention table 
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On figure 1, on January 26, there were 3 138 total users that entered the app.                

38.4% of which had come back after one week, that is 1205 unique users. So, the                

picture shows 61.6% users lose. In addition, users lose is increasing by each week              

and values of churn (opposite value to retention [7]) are 0%, 61.6%, 79.9%, 86.3%,              

89.4% and 92% accordingly. 

 

Figure 2.1.2 - Retention graph 

There is also the retention graph that demonstrates the percentage of users            

who return each day from Jan 26 to Mar 7. On day 4 retention has fallen to 80%                  

and steadily goes down to 2%. 

 



14 

To have an audience, a specific application has to have a churn rate lower              

than a number of acquired customers [8]. Which makes customer retention an            

important factor of a game in defining the game's lifetime value and expanding the              

audience. 

T V  Σ retention Average Revenue P er Daily Active UserL =  ×   

There is a list of things to do [8] to keep healthy retention within the game: 

2.1.1. First session and first-time user experience 

Obviously, there is no chance of keeping a customer, who received a            

negative experience during the first session and instantly left the game. Perfectly,            

the first experience shows the game's core design and features, so users are able to               

understand whether the idea matches their wishes. There could be negative           

outcomes of the unclear first session: Firstly, the idea meets the user's wishes in the               

long-term, but in the beginning, it is unclear, so the user will be lost. Secondly, the                

idea does not match a user's needs which is unclear from the first experience, as a                

result, the customer will both waste his time and end up unsatisfied. The first              

experience could be easily proven by the dynamic PCG, which could provide a             

special environment for a first session. 

For this purpose was created a classical approach named ​tutorial​, where the            

customer meets the game's world and explores the games' core features. The            

tutorial is a gate for both a game and a customer in long-term relationships. 

In addition, there is an ​instant games approach provided by google play.            

The instant games feature provides an opportunity to actually play the first game             

without fully downloading. That is an innovative feature that solves crucial           

problems. Firstly, there is no need to download a game for a customer to              
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understand whether he or she needs it, thus, the choice is more conscious.             

Secondly, it is reducing the chance of losing customers during product presentation            

on the market because instant experience increases a chance to provide a positive             

impression. 

2.1.2. Steady progression 

Not so obvious as the previous, but still the straightforward fact is that all              

extra features and elements should not be opened too fast. So, the game process has               

to be gradual. If a person achieves at once 10 thousand points, logically, the next               

aim will be at least 10001 points, but if there is no extra progression left - the game                  

becomes mundane. 

With the aim of achieving steady growth, games provide various resources,           

levels, achievements and other extra items which makes customers interested in           

further progression. But, content creation is not a single method of achieving            

gradual advancement. For instance, some puzzle games attract people without          

having long-term progression plans or a variety of content, the only thing they do              

is a ​restriction of session duration​. Thus, customers cannot achieve huge progress            

during a single session, otherwise, the user will become bored too fast because of              

an overwhelming amount of achievements. 

2.1.3. Other 

In addition, there are three more crucial elements that impact the game's 
retention and acquisition rate: 

● Bonuses and gifts 

● Keep reminding about the game. Customers need to be notified about           

updates, features and bonuses. 
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● Social interactions. Any interactions within people in the context of a game. 

Despite things as UX, UI, bonuses, gifts and marketing are important for CRA,             

they will not be analysed in depth.  

2.2. Summary 

Customer retention and acquisition (CRA) are complex problems that could          

be affected by a variety of factors. There is a thing that could be done for a positive                  

effect on CRA - improving the game's core logic in a way of adjusting it               

individually for every customer and every specific case. 

First, the initial user experience would be tackled as a specific case of a              

content generation where the main aim of a session will be acquisition rather than a               

long-term effect. Eventually, a session could be bright and short rather than            

ordinary and moderate. Instant games together with tutorials are common          

techniques for providing first positive impressions and game's logic understanding. 

Second, to retain customers, a game needs steady progression. Which could           

be implemented with a significant amount of content including levels, locations.           

As a result of this strategy, a player will be able to smoothly walk through the                

game.  

Third, there is a solution for games that are running out of content:             

modification of core game logic in a way of controlling the duration of customers'              

sessions. For instance, in an endless game without any levels, it is possible to make               

sessions easy to play until a customer reaches the best result.  
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3. Game definition 

Block Puzzle is a game, where the main mechanic is filling as many as              

possible cells with puzzles. The current game does not have levels or plot, the main               

idea is a smooth experience during the puzzles matching which makes the player             

relaxing during the process. 

3.1. Project logical structure 

 

Figure 3.1.1. Main game screen 

The game could be effectively decoupled on the two core components:           

puzzles row and puzzles grid. There are also such components as score, menu and              

so on, but they do not play a big role in the problem consideration. 
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3.1.1. Background Items Grid 

 

Figure 3.1.1.1 ​Background Items Grid 

Background Items Grid​ ​is a game area for puzzles that have a size 8x8. 

Grid could be ​filled​ with puzzles and released by puzzle destruction effects. There 

are two types of ​destruction​: simple and bonus. Simple destruction occurs when 

the grid has all the puzzles filled in a ​row​ or ​column​, while bonus destruction is 

done in case the player failed the game and decided to use a bonus to resume it. 
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Bonus destruction cleans up an area where any new puzzle could be placed again. 

 

Figure 3.1.1.2. Background Items Grid block scheme 
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3.1.2. Puzzles row 

 

Figure 3.1.2.1 Puzzles row 

Each turn player receives three puzzles, every of which has a specific type.             

Puzzles appear in the bottom ​puzzles row and could be dragged by a user and               

attached to the ​background items grid​. 
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Figure 3.1.2.2 Puzzles row block scheme 

3.1.3. Stars and rotations 

Every puzzle is rotatable, rotation exactly means rotation of the puzzle at 90             

degrees. There are no rotations at the beginning of the game, rotations could be              

earned by collecting stars during the puzzles' destruction. For a single rotation, the             

customer has to collect X stars and the user could have multiple rotations at a time. 
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3.1.4. Agent's role 

The task of an agent is to make a customers' experience as enjoyable as              

possible with puzzle generation. In case of a random probability for each puzzle             

type, the game immediately loses its session control and most sessions become            

chaotic. As a result, the game will fail in its core logic due to the lack of feedback                  

and an outcome on the customer's efforts that breaks all the motivation to play the               

game. 

The duration of a game session heavily depends on the player's progress. A             

session remains as long as puzzles successfully match the grid and there is a place               

for new ones. Success requires two factors: suitable puzzles to match and a player's              

ability to match them, where the first condition is required for the second one. In               

case of chaotic puzzle generation, the player's ability will not play any role during              

the game, so the game is not flexible according to the player skills which have to                

be fixed. A workaround for this is a removal of the first condition, puzzles need to                

be suitable for most of the cases. As a result, when the first condition is satisfied,                

there are some puzzles to match, the only influence on the game session left for a                

player's skill. Eventually, players will always be able to achieve higher. Of course,             

every session filled with achievements could become mundane after some time and            

the scheme may be improved and modified somehow. 

Thus, the task of the puzzle generation is laid on an agent which has to               

generate suitable puzzles at appropriate moments. Aim of an agent during the game             

is to generate appropriate puzzles that will be obviously suitable within the specific             

turn. 
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An agent has two roles: puzzles matching for the ability to provide hints and              

puzzle generation to empower the importance of player's skills in the game and             

reduce the influence of random factors. Puzzle matching is a short task on three              

turns which could be solved at the runtime algorithmically. But, puzzle generation            

is not such a trivial problem: First, puzzles ought to have a probability of being               

generated as evenly as possible to increase the variety of items for users. Second,              

the customer needs to feel all the features of the game, so during a session, he                

ought to earn and use as much rotation as possible too. Third, not all the customers                

have the same skill, so the generation ought to be adjusted for both newbies and               

pro gamers. And last, but not the least, customers have to be able to beat his best                 

score within three games, so he will not sit at the single place. 

Eventually, the solution of these cases lies in the right probability parameters            

for puzzles that have to be chosen after some experiments and control of these              

parameters to be relevant for the customer. 
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3.2. Project class diagram 

 
Figure 3.2.1 Class diagram 

The actual game has 5 logic modules: Core, External Services, Config,           

Puzzles Generation, File system. Most of the classes and relationships that serve            

for UI purpose were suppressed for the diagram simplicity. 

3.2.1 Core logic 

As has been written before, the core module is divided into two visual (and              

functional at the same time) parts called ​grid and ​puzzles and the third functional              

one, ​game lifecycle and logging​. 

3.2.1.1 Background Items Grid 
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Figure 3.2.1.1.1. Grid functional diagram 

Background items grid has a purpose of background items generation,          

attachment and destruction management. ​Background item​s serve as a sensor of           

puzzle movement. Background items grid has ​attached items manager that is           

delegated to control grid state with the next logic: 

1. C is a set of  background items in the gridG  

2. RC is a set of  rows and cols items in the gridG  

3.  x, x ε GC, F illed(x) rue if  x has been f illed with a puzzle∀   = t  

4.  x, x ε GRC, F illed(x) rue if  ∀ item, item ε x F illed(item) true∀   = t  =   

If every item or row/col is filled then row/col is filled 

5.  x, x ε GC, Distructible(x) rue if  x ε r, F illed(r) true, r ε GRC ∀   = t  =    

Coordinate is destructible if it is in the filled row. 

Star serves as a star object for background items grid that is spawned only in the                

destruction case. Background item star is a static star for background item. 

 



26 

3.2.1.2 Puzzles row 

 

Figure 3.2.1.2.1. Puzzles row functional diagram  

Active puzzles grid serves as the adapter between the customer and the            

puzzles generation module. Roughly speaking, everything it does - takes three           

puzzle types from the ​puzzle provider​ and presents them to the customer. 
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Figure 3.2.1.2.2 Active puzzles grid block scheme 

Rotations manager is responsible for rotations providing, for receiving ​S          

stars it provides a single ​rotation turn​. During the rotation turn the player is able               

to rotate generated puzzles any amount of time until one of the puzzles will be               

attached or the end of the game. 
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3.2.1.3 Game lifecycle and logging 

 
Figure 3.2.1.3.1. Game lifecycle and logging diagram 

This module has trivial tasks such as notifying about records and errors to a              

cloud service, game lifecycle control. 

3.2.2 Config 

 
Figure 3.2.2.1. Config class diagram 
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Config is a set of rules that are predefined in the file before the build               

procedure. The most interesting detail in the current scope is that config provides             

puzzle types predefined in the file. Entire config module in the program            

represented by the ​Data Provider​. 

3.2.3 Puzzles generation 

 
Figure 3.2.3.1. Puzzles generation class diagram 

Puzzles generation module is represented by ​Types Provider and ​Game          

Simulator classes. ​Puzzles Provider retrieves puzzles from the Game Simulator          

on demand. Eventually, it is a task of the current work. 

Game Simulator is a module that performs ​procedural content generation          

by simulating a three-turns in depth game with puzzles provided by Types            

Provider. 
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Figure 3.2.3.1. Game simulator block scheme 

To add up to a scheme, "Find best possible turn" is a search algorithm that               

finds all possible matches on the board and picks up a one with the best possible                

score. Score is defined by the following formula (some rules are taken by 3.2.1.1              

chapter):  

1. C is a set of  items in a puzzleP  

2. x, x ε P C, F (x) true if  x is f its in the grid∀   =   

3. x, y, x ε P C, y ε GC, Adj(x, y) true∀      =  

f  y is vertically or horizontally adjacent to the xi  

4. core Σ (F (x) Σ Adj(x)), where x ε P Cs =  +    

Procedural content generation occurs exactly in the game simulator. The          

most of the balance lies in the ​"Request a puzzle" step, where ​Types Provider              

provides a type for puzzle with a predefined probability. These parameters ought to             
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be learned using reinforcement learning with an intellectual agent with a learning            

environment. 

4. Reinforcement learning 

The tuning of probability parameters demands a big amount of experiments           

and sessions analysis in case it is provided by people, but reinforcement learning             

makes this process much faster and precisive and below will be explained why. 

4.1. Introduction 

"Reinforcement learning is an area of Artificial Intelligence; it has emerged           

as an effective tool towards building artificially intelligent systems and solving           

sequential decision making problems. Reinforcement Learning has achieved many         

impressive breakthroughs in recent years and it was able to surpass human level in              

many fields; it is able to play and win various games. Historically, reinforcement             

learning was efficient in solving some control system problems. Nowadays, it has a             

growing range of applications." (Hammoudeh, Ahmad. (2018). A Concise         

Introduction to Reinforcement Learning. 10.13140/RG.2.2.31027.53285.) [9] 
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Figure 4.1.1. Many Faces of Reinforcement Learning [10] 

For the current problem, reinforcement learning is a convenient type of           

learning that does not require a supervisor, but it differs from unsupervised            

learning that serves for finding a pattern within a collection of unstructured data.             

Supervised and unsupervised learning terms do not fully cover the classification of            

machine learning paradigms. Reinforcement learning is executing a series of          

experiments with an aim of reward maximization, it does not find a latent structure              

within a data. Reinforcement learning is considered to be an extra machine            

learning paradigm apart from supervised and unsupervised machine learning         

paradigms and other paradigms too. [11] 
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To achieve the best reward level an agent relies on steps from the past he               

remembered to be effective. This is called the exploitation of existing steps to             

achieve a reward. But, to have such steps in memory there is a need to make some                 

decisions, so actions made by the agent will be remembered and will be able to               

exploit that called exploration. To obtain a reward the agent has to exploit steps it               

already grasped and to have steps to exploit it has to explore them first. Eventually,               

the agent should try a lot of actions to find the best way to earn a reward. By the                   

way, the exploration-exploitation dilemma does not arise in both unsupervised and           

supervised learning types. [11] 

Reinforcement learning starts with an interactive reward-seeking agent. A         

reinforcement learning agent always has an explicit goal and an uncertain           

environment where it will find ways to interact to earn a reward. 

4.2. Elements 

Apart from an agent and an environment, reinforcement learning has four 

elements called: a policy, a reward signal, a value function and model which is an 

optional one. [11] This chapter will discuss theoretical aspects of the main 

elements of reinforcement learning based on explored literature and papers. 
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Figure 4.2.1 Agent and Environment [10] 

At each step ​t ​the ​agent executes action , receives observation and        at    ot   

receives scalar reward . The ​environment receives action , emits observation   rt      at    

 and sends out scalar reward . o t+1 rt+1  

4.2.1. Policy 

A policy is a definition of how a learning agent acts at a given moment.               

Policy could be considered as a mapping from incoming environments' states to            

concrete actions of the agent in these conditions. On the one hand, policy could be               

a simple function or a lookup table that directs from a state to an action. But, on the                  

other hand, policy easily could involve a computation such as a search progress.             
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The policy is the core of the reinforcement learning agent because of the reason it               

is the sufficient factor to determine the agent's behaviour. [11] 

4.2.2. Reward signal 

A reinforcement learning problem's goal is called reward signal. Each time           

period reinforcement learning agent receives a number from the environment          

called reward. The aim of the reward signal is to notify the agent about good or bad                 

actions in a way of sending positive or negative reward numbers respectively.            

Every action agent aims to maximize the reward it receives during the long run.              

For instance, an agent's reward could be compared to biological experience of            

pleasure and pain that are immediate in defining a problem during the learning             

process. [11] 

The reward is sent to an agent at any time based on some either agent's or                

environmental parameters. This process cannot be suppressed by the agent or           

influenced directly. The only way to earn reward is to provide a successful action              

or to influence the environment somehow. The reward is a direct way of altering              

the policy. The action followed by low reward will be changed to another one in               

the future. [11] 

4.2.3. Value function 

While the reward signal provides a short-term effect on the agent, a value             

function defines an outcome for a long run. "Value of a state is the total amount of                 

reward an agent can expect to accumulate over the future, starting from that state"              

[11]. Value function provides long-term strategy from the current state by looking            

at states the agent is likely to follow and accounting the reward available at these               
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states. For instance, controlled by a value function an agent will prefer path             

1->2->3->100 rather than 20->20->20->20. Projecting a value function on the          

human world, it is rather someones' annual plan of how much could be acquired              

following some plan. [11] 

4.2.4. Model 

The last element of the reinforcement learning system is an environmental           

model. The model allows agents to make predictions about how the environment            

will behave. For example, knowing current state and action, next both action and             

state could be predicted by the model. Common case of model usage is planning              

which means considering possible future situations before they are actually          

experienced. Reinforcement learning problems solving methods with model and         

planning usage called model-based, while opposite methods to them called          

model-free methods that are pure trial-and-error learners. [11] 

An accurate example of model-based reinforcement learning is the chess or           

checkers game. Almost everyone during the game thinks about the opponent's           

possible actions after the move which is direct model analysis. So, model-based            

agents are the same players that analyse the model. For instance, the agent could              

analyse the game board and all possible outcomes after the moves and as a result               

choose the most successful one. 
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5. Unity platform as a learning environment 

5.1. Introduction 

The agent needs an environment for the reinforcement learning process.          

Unity ML-Agents Toolkit [12] is an open source toolkit for creating and interacting             

with simulation environments using Unity platform. Unity toolkit enables the          

development of learning environments which are rich in sensory and physical           

complexity, provide compelling cognitive challenges, and support dynamic        

multi-agent interaction. [13] 

In recent years, during the variety of Reinforcement learning researches,          

learning environments played an important role in this development. For instance,           

Arcade Learning Environment [14] that is a platform and methodology for           

evaluating the development of general, domain-independent AI technology or         

VizDoom [15] which is a Doom-based AI Research Platform for Reinforcement           

Learning from Raw Visual Information and others. Creation of high-quality          

environments for machine learning algorithms is time-expensive and requires         

specialised domain knowledge, so creation of an environment for a specific case            

rather than using existing one is quite inefficient in terms of resource usage. These              

models not only served as sufficient learning environments, but also as           

environments for models that would be deployed in the real world later on that              

makes them quite important in the reinforcement learning history. [13] 

Current chapter will provide discovered properties of a simulation platform,          

and present the Unity platform itself.  
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5.2. Environment properties 

Models are able to solve increasingly hard tasks that require an increasing            

complexity of simulated environments in order to algorithms being explored.          

Defined complexity keys of the environment are believed to be: sensory, physical,            

cognitive and social. [13] 

Sensory complexity - This complexity is required for a variety of real-world            

decision making problems, for instance, self-driving cars, household robots. [13] 

Physical complexity - Plenty of researchers interested in solving problems          

using AI not only using sensory analysis, but also in a way of a complex               

interaction with an environment. [17] The need of complex interactions often           

comes in a real-world problem. Usually, the main goal of such problems is to              

transfer the experience from the environment to the real-world. This approach is            

quite useful for robotic applications. [13] 

Cognitive complexity - The next complexity is a cognitive which is also            

called combinatorial complexity. A sufficient example of such an environment is           

Go game that has served as a learning environment without having both complex             

visual and physical interactions. Cognitive complex tasks are able to present           

hallmarks of human intelligence and hierarchical structure. In addition, tasks may           

be presented in a consecutive manner, so independent examples without a context            

of previous cases (except from the first example) are not valid. Cognitive tasks             

often occur in the real world with people. [13] 

Social complexity - The outstanding progress in acquiring complex skills by           

learning in mammals believed to be achieved due to communication skills. [18]            

Development of social skills and relations within a group of agents is a particular              
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interest in a variety of researches in the AI field. In addition, the ability of               

communication is a key feature of the ecosystem's development in the world,            

which would be desirable to simulate. An environment that allows a study of             

communication and social relationships should provide a multi-agent        

communication framework for communication between agents from a similar         

group and from different distributions as well. [13] 

5.3. Simulation properties 

While environment properties define a sufficient environment for the         

learning process, there are some prerequisites for the simulation process.          

Simulation environments must be easily controlled by a customer who is usually a             

researcher. [13] 

First, is a fast and distributed simulation. Depending on the method used,            

modern machine learning algorithms require billions of pieces of data in order to             

find an optimal solution. One of the most important advantages of the            

environmental simulation is that environmental simulation is usually faster than a           

physical one. Therefore, environmental simulation has to be as fast as possible            

while providing a flow of experiments. In addition to speed, simulation ideally            

should be runnable in parallel, so it provides a significantly greater throughput of             

data compared to the physical world. The faster algorithms could be trained, the             

greater speed of receiving outcomes from an experiment. [13] 

Second property is a flexible control. As any software, simulators should be            

convenient to use and provide flexible control to the researcher making           

opportunities of environmental simulation as far as possible to the real-world one.            

Using a simulator as a black box could be enough for some experiments, but there               
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are some approaches such as ​Curriculum Learning​, ​Domain Randomization or          

adaptive task selection. In these approaches dynamic feedback between the training           

process and the agents is crucial. [13] 

Curriculum Learning is a learning process where an agent receives a           

sequence of tasks for invocation to achieve a final result. This method was used to               

achieve approximately human-level performance in a VizDoom competition. It is          

assumed that to achieve a success in such approach there is a need to influence the                

simulation. [13] 

As an example of curriculum learning could be considered a task of training             

a penguin agent to catch the fish in a lake and feed his baby. This task has been                  

already solved in a blog called "Immersive limit". [19] 

 

Figure 5.1 - Penguins collecting fish using neural networks to make decisions [19] 
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This concrete task has been solved by a curriculum learning approach. The            

final aim is to feed a baby as fast as possible. But, the first task looks like "Feed a                   

baby as fast as possible by considering the feed range as 6 meters and do it until                 

reward value X will be met". The second task considers the range as 4 meters and                

reward value Y. And so forth until the end of curriculum with the final task where                

the range is range of penguins collision with maximum possible reward. 

During the simulation there are parameters to configure in the curriculum           

such as measure for lesson from the curriculum finishing, threshold in the reward             

for each level, minimum lessons length before going to the next lesson, so a chance               

of random result is reduced and fish speed together with radius are also configured.              

This example shows how convenient the learning process with curriculum could be            

in terms of simulation controlling. 

Another technique is a ​Domain Randomization that requires flexible         

control over the simulator. This approach learns from an environment during the            

simulation, so the experience could be projected on a real world. The approach will              

work if a virtual environment is sufficient in terms of functional elements to cover              

the real world. This is especially important in case an agent's behaviour depends on              

visual components of the environment. Domain Randomization usually means         

modifying of textures, lighting, physics, and object placement within a scene.           

Without this approach trained models usually end up having a "reality gap" and             

perform bad in the real world. [13] 

5.4. Unity Editor 

Unity Editor is a graphical user interface used to create the content for 2D,              

3D, AR, VR experiences. 
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Figure 5.4.1. Unity Editor 

The Unity Editor together with external services provides next extra          

opportunities for AI research [13]: 

1. Custom scenes creation. Unity provides an ability for creation of scenes with            

any complexity, from a race environment for cars to a 2D environment for             

games. 

2. Record demonstrations. Unity Editors' play mode provides an ability to          

demonstrate any simulation flow on the scene. 

3. Provide demonstrations on a wide range of devices. The Unity Editor is            

compatible with more than 20 platforms, so a project could be runned on a              

variety of devices. 
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5.5. ML-Agents Core Toolkit 

The ML-Agents Core Toolkit is a two-part module that provides all           

necessary technologies for the simulation environment. It has two components:          

ML-Agents SDK that is a part of Unity Editor written in C# and a Python package                

that communicates with the environment in Unity using SDK. [13] 

5.5.1. ML-Agents SDK 

ML-Agents SDK makes it possible to make a Unity's Scene into a learning             

environment using three SDK entities: Agent, Brain and Academy. [13] 

 

Figure 5.5.1.1. Learning Environment [13] 

The Learning Environment contains Agents, Brains and an Academy.         

Agents are responsible for collecting observations and taking actions. Brains are           

responsible for providing a policy for agents it has. The academy is responsible for              

entire environment simulation management. [13] 

The agent component is used to indicate a GameObject as an Agent who is              

responsible for observing the game world. Each Agent linked to a single Brain at a               
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time. There is possible to create a multi-agent environment by using more than a              

single agent in the environment by simple objects' duplication. [13] 

Brain components make decisions for all their linked agents by providing           

them a policy. Brains has a definition of an area observation, so the policy will be                

valid in the specific observed environment. Agent is able to be linked to a brain               

only by having observations and actions defined. Brain's decision could be           

concluded in several ways including player input, scripts, internally embedded          

neural network models or via interaction with Python API. Thence, policy           

providing respectively could be referred as Player, Heuristic, Internal and External.           

Multiple brains makes it possible to take a place of multiple policies. [13] 

The Academy module is responsible for simulation step tracking,         

environment reset functionality, target simulation speed and frame rate setting. In           

addition, the Academy could define reset parameters that could be used to change             

configuration of the environment during runtime. [13] 

Once an agent is placed in the scene then the environment could be enabled              

together with a Markov Decision Process (MDP) or Partially Observable MDP 

(POMDP). Where observations, reward functions and scoring are placed in the           

agent. Moreover, scoring could be provided by the environment. [13] 

Observations could be provided in two ways: As ray-casts, auditory signals,           

Agent position and so on for complex environments or via the numerical vector for              

vector environments. Actions could be sent by discrete signals like arrays of            

integers or as continuous variables (floating point numbers array). [13] 

Agents could ask a brain for a decision at a fixed or dynamic interval. The               

reward function could be modified at runtime as well. Simulation could be finished             

in several ways: for a single agent or for a whole environment. Besides, it happens               
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after reaching max steps count predefined in Unity Editor. And last, but not the              

least, it is possible to configure environmental reset variables from the Python API. 

5.5.2 Python module 

The Python package (​https://pypi.org/project/mlagents/​) contains code that       

could be used to launch and interact with Unity executables and with Unity Editor              

as well. Communication between Unity and Python is made using gRPC. [13] 

6. Learning process 

6.1. Learning environment 

For the purpose of agent learning there is a need for a specific Unity              

environment, where the agent will be able to do observations and receive a reward              

based on its actions. Thus, only sufficient for a simulation architecture elements            

will remain. 

 

Figure 6.1.1. Learning Environment class diagram 

There are no more external API and File system modules, in addition, UI             

modules were extremely cut off as well.  

 

https://pypi.org/project/mlagents/
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For a simulation purpose there is a need to define two main simulation             

elements: the learning area and the agent. 

The learning environment is an object that knows and is able to reset every              

stateful object on the scene such as ​BackgroundItemsGrid​, RotationsManager​,         

PuzzlesProvider​ and​ ScoreManager​. 

Puzzles Area (Some code was removed for simplicity purpose): 

public class ​PuzzlesArea ​: Area 

{ 

   [SerializeField]   ​private ​BackgroundItemsGrid ​backgroundItemsGrid​; 

   [SerializeField]   ​private ​RotationsManager ​rotationsManager​; 

   [SerializeField]   ​private ​PuzzlesProvider ​puzzlesProvider​; 

   [SerializeField]   ​private ​AreaScoreManager ​scoreManager​; 

   ​private void ​Start​() => ResetArea(); 

   ​public override void ​ResetArea() { 

       ​if ​(​backgroundItemsGrid​.​IsPrepared​) ​backgroundItemsGrid​.Reset(); 

       ​if ​(​rotationsManager​.​IsPrepared​) ​rotationsManager​.Reset(); 

       ​if ​(​puzzlesProvider​.​IsPrepared​) ​puzzlesProvider​.Reset(); 

       ​if ​(​scoreManager​.​IsPrepared​) ​scoreManager​.Reset(); 

   } 

} 

6.2. Intellectual agent 

The intellectual agent has to receive an ​action from the brain, make a             

request for an action or a decision. Obviously, it has to receive a ​reward signal​.               

 



47 

And last, but not the least it has to receive ​observations​. The agent is a               

PuzzleTypesProvider that operates in a vector space. 

The action is a vector with length that equals the number of puzzle types to               

choose. Every value is a probability for concrete type to be chosen that normalizes              

then with a formula: ​where P is a set of    typeP robabilityi =  
pi

∑
j

j < |P |
pj

       

probabilities for a puzzle type. 
The reward is defined by the next rules: 

1. CD is a set of  disposed items in the grid.G  

2. CA is a set of  attached items in the grid.G  

3. f  is a turn fee.t −   

4.  is a set of  normalized probabilities for puzzles types.P  

5. f  is a median fee. mf   b, where a and b are parametric.m −  =  |P |
median(P ) − a

*    

6. r m = GridSize RewardP erDisposedRow GridSize2 + 2 * 2  + Max(P uzzleSize)2 
 

Where mr is a maximum reward. 

7. eward r = mr 

( + ) − (tf  + mf )∑
i

i < |GCA|
xi ∑

j

j < |GCD|
yj

 

 

6.3. Results 

This chapter will introduce a result of the learning process. 

Thus, the best score achieved by an agent during learning sessions was 1154.             

The reward is 313 and has a growing passion. To introduce the last result, the               
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puzzle types, there is a need to explain the format. Puzzle type could be              

represented by an id, coordinates and color. 

Coordinates are represented in a specific way of filling a 5x5 grid with             

symbols, where p - mean puzzle, s - star, e - empty space. For instance,  

- ​Id​: 22 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   pppee 
   pspee 
   pppee 
 ​Color​: Pink 

in the game looks in this way: 

 
Figure 6.3.1. puzzle picture 

All the puzzle types are provided in the Listing 1. And the resulting vector of               

probabilities looks like this: [0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),         

0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),        

0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6), 0.041(6),        

0.041(6), 0.041(6), 0.041(6)] that is means equal probability for all the puzzles.            
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This result seems to be the best for an agent due to the reason that the zero distance                  

between the puzzle types' probabilities paid well in terms of reward. This result is              

applicable and shows how much might be earned in a straightforward way using             

given puzzle types and parameters by the search algorithm, 1000+ points for a             

single flow is more than good due to the possibilities of a game simulator that               

could boost this result providing more applicable puzzles in specific situations. 

7. Conclusion 

Procedural content generation is an instrument for enhancing customers'         

satisfaction in a way of controlling game balancing. Game balancing could be            

dynamic or progress-sensitive, progress-sensitive game balancing is more        

applicable for customers satisfaction, but requires a learning process. Unity          

platform is a multifunctional learning environment that allows to create both           

physical and vector-based environments for reinforcement learning. 

7.1. Practical results 
Within this work has been accomplished 

● Review of dynamic and progress-sensitive game balancing 

● Analysis of customer retention and acquisition 

● Discussion of customers retention and acquisition problems in the context of           

balancing in procedural content generation 

● Deconstruction of the balancing problem for the specific block puzzle game 

● Searching of benefits of the PCG balance in terms of customers retention            

and acquisition 

● Definition of procedural puzzles generation algorithm 
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● Definition of reinforcement learning problem for configuration of        

probabilities for the PCG algorithm 

● Revision of the reinforcement learning elements 

● Review of the Unity platform as a learning environment 

● Implementation of the learning environment and the intellectual agent for          

the PCG balance problem solution 

● Listing of the learning process results 

● Analysis of the algorithm performance  

○ Average session score duration without the PCG algorithm is nearly          

400 points that lasts nearly three minutes 

○ Average session score with the PCG algorithm is 1200 points that           

lasts nearly  eight minutes 
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Listing 1 
 
- ​Id​: 0 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eeeee 
   seeee 
 ​Color​: Green 
- ​Id​: 1 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eeeee 
   ppeee 
 ​Color​: Green 
- ​Id​: 2 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eeeee 
   pppee 
 ​Color​: Green 
- ​Id​: 3 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 

   eeeee 
   pppse 
 ​Color​: Blue 
- ​Id​: 4 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   peeee 
   peeee 
 ​Color​: Green 
- ​Id​: 5 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   peeee 
   peeee 
   peeee 
 ​Color​: Green 
- ​Id​: 6 
 ​Coordinates​: | 
   eeeee 
   peeee 
   peeee 
   peeee 
   seeee 
 ​Color​: Blue 
- ​Id​: 7 
 ​Coordinates​: | 

   eeeee 
   eeeee 
   eeeee 
   ppeee 
   ppeee 
 ​Color​: Orange 
- ​Id​: 8 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   ppsee 
   eepee 
   eepee 
 ​Color​: Purple 
- ​Id​: 9 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eppee 
   ppeee 
 ​Color​: Red 
- ​Id​: 10 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   peeee 
   ppeee 
   epeee 

 



54 

 ​Color​: Red 
- ​Id​: 11 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   peeee 
   sppee 
 ​Color​: Purple 
- ​Id​: 12 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   ppeee 
   peeee 
 ​Color​: Red 
- ​Id​: 13 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   pppee 
   pppee 
   pppee 
 ​Color​: Turquoise 
- ​Id​: 14 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eeeee 
   ppppp 
 ​Color​: Turquoise 

- ​Id​: 15 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   pppee 
   eepee 
   eepee 
 ​Color​: Purple 
- ​Id​: 16 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   epeee 
   pppee 
 ​Color​: Purple 
- ​Id​: 17 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   epeee 
   pspee 
 ​Color​: Turquoise 
- ​Id​: 18 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   ppeee 
   epeee 
 ​Color​: Red 
- ​Id​: 19 

 ​Coordinates​: | 
   eeeee 
   eeeee 
   epeee 
   ppeee 
   peeee 
 ​Color​: Red 
- ​Id​: 21 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   ppeee 
   epsee 
 ​Color​: Purple 
- ​Id​: 22 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   pppee 
   pspee 
   pppee 
 ​Color​: Pink 
- ​Id​: 23 
 ​Coordinates​: | 
   eeeee 
   eeeee 
   eeeee 
   eeeee 
   ppspp 
 ​Color​: Pink 
 

 


