MiHicTepCTBO OCBITH 1 HAYKH YKpaiHU
HAILIOHAJIBHUM YHIBEPCUTET «KME€BO-MOI' MJISTHChKA AKAJIEMIS»

Kadenpa inpopmaruku dakynprery iHHOpMATHKU

Development of a course on learning the Rust programming
language and its usage in developing DApps using Substrate framework
TekcToBa YacTHHA 10 KypCOBOI po00TH

3a cneniaabHicTio «Komn'oTepHi Hayku» - 122

KepiBHMK KypCcOBOi po0oTH
CTapIIvi BUKJIa1a4y
T'opoxoBcwkuii K.C.

(ITigmuc)

“ 2022 poky

Buxonas cTyiaeHT
KH-3 Muxaiineuxo O. I.
“ 2022 poky

Kwuis 2022
MiHiCTepCcTBO OCBITH 1 HAyKH YKpaiHH
HAIIOHAJIbHUI YHIBEPCUTET «KMEBO-MOTMJISTHCHKA AKAJIEMIS»

Kadenpa inpopmaruku pakynbreTy iHOOPMATUKH

3ATBEPIIKYIO
CTapIHI/Iﬁ BHUKJIaga4

['opoxocwkuit K.C.

o 2021 p.

IHAMBIAVYAJIbHE 3ABJJAHHA
Ha KypCOBY po0OTy
crtyaenty Muxannenky Onekcannpy [roposuuy
bakynereTy 1HQOpMaTHKH 3 Kypcy 0akaniaBpChKOl MporpaMu

TEMA: Development of a course on learning the Rust programming
language and its usage in developing DApps using Substrate framework

3mict TY a0 KypcoBoi poboTu:
[aauBinyansHe 3aBOaHHs
Beryn

Po3znin 1. Po3pobka kypcy
BucHoBku

Cnucoxk jiteparypu

Jlonatkwm (3a HEOOX1AHICTIO)

JlaTa Bumaui ” 2021 p.

|} S——

KepiBHuk
(migrmuc)

3aB,Z[aHH}I OoTpHUMaB

(mizmuc)

Kanengapuuii njianH BUKOHAHHSA po00TH

Ne Ha3ga eranmy KypcoBoi podoTu Tepmin BUKOHAHHSA Ipumirka
eTamy
1. OTpumaHHs 3aBIaHHS HA 01.10.2021
KypCOBY poOOTY
2. Ornsia niTeparypu 3a TEMOIO 01.11.2021
poboTtu
3. [IpoBeneHHs JOCTIKEHHS 01.12.2021
4, Hanucanns nmporpamuoro 01.01.2022
3aCTOCYHKY
5. Hanucanus tekcroBoi vactunu | 04.04.2022
6. 3axuCT KypcoBOi poOOTH 20.05.2022
CryneHr
KepiBHuk “ ” 2022

3MmicT

Kasnenaapumii njian BAUKOHAHHSA po0oTH
Chapter 1
Introduction
Welcome to the course!
This is going to be hard
This will not be graded
What will be covered

The motivation

Things you will acquire after the successful completion

The course is hard not just to be hard. It is meant to be rewarding.

Approximate learning plan

Week 1
Lecture: Meeting Rust
Practice: Rustlings

Week 2
Lecture: Advanced Rust
Lecture 2

Week 3
Lecture: Ethereum, smart contracts
Lecture: Substrate

Week 4
Practice: Substrate FRAME

O©O &0 &0 0O &0 X0 N N N o0 o0 o W

BB W W W NN R
BB O R R O O O ®

Practice: runtime upgrades & governance
Week 5
Lecture - ink! and smart contracts

QnA - Integrating a real-world application with blockchain &
QnA with Gautam Dhameja

Our logical conclusion

Literature used

45
46
46

46
47
47

Abstract
Substrate is a versatile blockchain development framework, based on the Rust
programming language. While being well documented, Substrate is hard to
learn without a thought-through approach - just taking on the documentation
is not enough & will get the learner not much knowledge. Therefore, here we
develop a course that explains the Rust programming language, basic
blockchain development primitives, describes functioning models of different
popular blockchains, and finally gives an overview of Substrate with some

examples.

Chapter 1

Introduction

Welcome to the course!

Today marks the day we start learning Substrate and revising Rust. Our Rust revision will
be rather long because we want to make sure everyone gets a firm grasp of the required
concepts. For some, it will not be a revision. Instead, you will have to learn Rust from
scratch. In two weeks. In three days. So prepare yourself for the ultimate glory! You'll have
fun, hehe.

This is going to be hard

This course will not be easy. Be ready for some good commitment, as Substrate itself is hard
and sometimes mundane (high build times). Nevertheless, we will try to make it as
interesting as possible! The estimated commitment for this course is Shrs a week. This

includes 2 hours for the two meetings a week (1 hour for a meeting) and 3 hours for the
home tasks.

This will not be graded

Although this course is very serious in making someone understand Substrate, it is not a
certification, nor have I the right to certify people. The assignments will not be graded, and
[recommend everyone find a pair and do peer reviews of the home tasks. | encourage
discussing implementation details, general approach to the home tasks, and code details.

Since this course is not graded, you don’t get to profit from cheating. As opposed to what
they say at the universities (you're only harming yourself by cheating), this really is the case
here. So, you can cheat, of course, | don’t really care, but I guarantee you'll instantly lose
motivation in this course.

What will be covered
In this course, a couple of important things will be covered. This includes:

. Revision of Rust concepts, which are critical to understanding Substrate:
- Rust’s syntax
- Ownership & Borrowing
- Generics + Traits
- Smart Pointers
- Rust’s memory model
- Macros
General blockchain development concepts:
- Blocks
- Crypto
- PKI
- Fees
- Consensus algorithms
- Intro to Smart Contracts
Ethereum (revision):
- General architecture
- Smart contract execution platform architecture
- Gas model
- Usecases
Substrate development key concepts:
- FRAME
- Runtime
- Storage
- Client libraries
- Integration

e High-level substrate concepts:
- Paraobjects
- Accounts
- PKI
- Randomness
- NPOS
- Crypto
e Substrate-based smart contracts.

But definitely not limited to.

The motivation

Why did we choose Substrate in the first place? Substrate is a great and very versatile
blockchain development framework. I personally enjoy working with it, and this was one of
the main motivations for teaching it :P The motivation to learn it are 1. High market
demand 2. Reflection of all common blockchain development principles in one place
(meaning endless space to practice those principles) 3. Despite a steep learning curve,
unmatched ease of practical (as in business) uses 4. Modernity and increasing adoption

Just take a look at teams who build in Substrate!

Things you will acquire after the successful completion

The course is hard not just to be hard. It is meant to be rewarding.

After completing the course successfully, you will learn a set of cutting-edge technologies
(Substrate, Polkadot, ink!, Rust), one super important skill (blockchain development), one
beautiful programming language (Rust), and a wider outlook on the current state of tech,
Web3 understanding and most definitely a job among the most interesting Web3
companies around the world.

Next up: Parity company pitch, 4ire company pitch.

Approximate learning plan
We plan this course to last 5 weeks.
So, the plan approximately goes like this:

Week 1
e Introduction <- you're here
e Rustrevision (basics)

Materials: The Book, Parity, 4ire, Homework: Complete chapters 1-10 of The Rust
Programming Language

https://substrate.io/ecosystem/projects/
https://doc.rust-lang.org/nightly/book/title-page.html
https://www.parity.io/
https://4irelabs.com/

Lecture: Meeting Rust

Alright! We're here. Today marks the day we start learning Rust & blockchain development.
This course is very oriented toward self-education. Each week, we will have 2 meetings: a
lecture and a practice. Moreover, you will get one homework for the week. [don’t like
grades, so there will be no grading process. All that you do you do for yourself. Everyone
here knows what programming is & I advise you to write the best code you can.

So, let’s dive right into it:

e Rusthomepage

Why Rust?

Performance Reliability

Rust is blazingly fast and memory- Rust’s rich type system and ownership
efficient: with no runtime or garbage model guarantee memory-safety and
collector, it can power performance- thread-safety — enabling you to eliminate
critical services, run on embedded many classes of bugs at compile-time.
devices, and easily integrate with other

languages.

Rust’s advantages

¢ Rust wiki page

Productivity

Rust has great documentation, a friendly
compiler with useful error messages, and
top-notch tooling — an integrated
package manager and build tool, smart
multi-editor support with auto-
completion and type inspections, an
auto-formatter, and more.

https://www.rust-lang.org/
https://uk.wikipedia.org/wiki/Rust_(%D0%BC%D0%BE%D0%B2%D0%B0_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F)

The official Rust logo

Paradigms Multi-paradigm: concurrent,
functional, generic,
iImperative, structured

Designed by Graydon Hoare

Developer The Rust Foundation

First appeared July 7, 2010; 11 years ago

Stable release 1.61.0l'1 # / May 19, 2022; 7
days ago

Typing Affine, inferred, nominal,
discipline static, strong

Rust wiki page description

. Rust vs C++

Both Rust and C++:

» compile to native code,

e have no runtime,

« have no garbage collection,

« have direct access to memory (if it is needed),

« are low-level programming languages—they operate close to the
hardware.

. Steve Donovan’s Rust intro

Hello, World!

The original purpose of "hello world", ever since the first C version was written, was to
test the compiler and run an actual program.

fn main() {
println! ("Hello, World!");

}

$ rustc hello.rs
$./hello
Hello, World!

Hello, World!

Rust is a curly-braces language with semicolons, C++-style comments and a main
function - so far, so familiar. The exclamation mark indicates that this is a macro call. For
C++ programmers, this can be a turn-off, since they are used to seriously stupid C macros
- but | can ensure you that these macros are more capable and sane.

For anybody else, it's probably "Great, now | have to remember when to say bang!".
However, the compiler is unusually helpful; if you leave out that exclamation, you get:

error[E0425]: unresolved name “println~
-=> hello2.rs:2:5

2 | println("Hello, World!");
| Annnnnn did you mean the macro “println!~?

Compile error

https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popular-programming-languages/
https://stevedonovan.github.io/rust-gentle-intro/1-basics.html

The next step is to introduce a variable:

// letl.rs

fn main() {
let answer = 42;
println!("Hello {}", answer);

Variable

// forl.rs
fn main() {
for i in 0..5 {
println! ("Hello {}", i);
}

The range is not inclusive, so i goes from O to 4. This is convenient in a language which
indexes things like arrays from 0.

And interesting things have to be done conditionally:

// for2.rs
fn main() {
for i in 0..5 {

if i 8 2 == 0 {
println! ("even {}", 1i);
} else {
println! ("odd {}", 1);
}
}
}
even 0
odd 1
even 2
odd 3
even 4

For-loop

This does the same, written in a more interesting way:

fn main() {
for i in 0..5 {
let even_odd = if i % 2 == 0 {"even"} else {"odd"};
println!("{} {}", even odd, i);

Traditionally, programming languages have statements (like it)and expressions (like 1+i
). In Rust, nearly everything has a value and can be an expression. The seriously ugly C
'ternary operator' i & 2 == 0 ? "even" : "odd" isNot needed.

Nearly everything is an expression
Adding Things Up

Computers are very good at arithmetic. Here is a first attempt at adding all the numbers
from 0 to 4:

>

fn main() {
let sum = 0;
for i in 0..5 {
sum += 1i;
}

println! ("sum is {}", sum);

But it fails to compile:

error[E0384]: re-assignment of immutable variable “sum®
—--> addl.rs:5:9

3 | let sum = 0;

| --- first assignment to “sum”
4 | for i in 0..5 {
5 | sum += i;

|

raasna~t re-assignment of immutable variable

'Immutable'? A variable that cannot vary? 1et variables by default can only be assigned a
value when declared. Adding the magic word mut (please make this variable mutable)

does the trick:

fn main() {
let mut sum = 0;
for i in 0..5 {
sum += i;
}

println!("sum is {}", sum);

Immutability

Function Types are Explicit

Functions are one place where the compiler will not work out types for you. And this in
fact was a deliberate decision, since languages like Haskell have such powerful type
inference that there are hardly any explicit type names. It's actually good Haskell style to
put in explicit type signatures for functions. Rust requires this always.

Here is a simple user-defined function:

S
fn sqr(x: f64) -> f64 {
return x * Xx;
}
fn main() {
let res = sqr(2.0);
println!("square is {}", res);
}
Functions
A few more examples of this no-return expression style:
> .

fn abs(x: £64) -> f64 {
if x > 0.0 {
X
} else {
-x

}

fn clamp(x: £64, x1: f64, x2: f64) -> f64 {
if x < x1 {
x1
} else if x > x2 {
x2
} else {
X

}

It's not wrong to use return, but code is cleaner without it. You will still use return for
returning early from a function.

How returns work

Values can also be passed by reference. A reference is created by s and dereferenced by

* .

fn by ref(x: &i32) -> i32{
*x + 1

}

fn main() {

let 1 = 10;
let resl = by _ref(&i);
let res2 = by ref(&4l);

println! ("{} {}", resl,res2);

Immutable references

What if you want a function to modify one of its arguments? Enter mutable references:

fn modifies(x: &mut £64) {
*x = 1.0;

}

fn main() {
let mut res = 0.0;
modifies (&mut res);
println! ("res is {}", res);

This is more how C would do it than C++. You have to explicitly pass the reference (with
&) and explicitly dereference with = . And then throw in mut because it's not the default.
(I've always felt that C++ references are too easy to miss compared to C.)

Basically, Rust is introducing some friction here, and not-so-subtly pushing you towards

returning values from functions directly. Fortunately, Rust has powerful ways to express
things like "operation succeeded and here's the result" so smut isn't needed that often.
Passing by reference is important when we have a large object and don't wish to copy it.

>

The type-after-variable style applies to 1et as well, when you really want to nail down the

type of a variable:

let bigint: i64 = 0;

Mutable references

'S

Arrays and Slices

All statically-typed languages have arrays, which are values packed nose to tail in
memory. Arrays are indexed from zero:

fn main() {
let arr = [10, 20, 30, 40];
let first = arr[0];
println! (, first);

for i in 0..4 {
println! (, i,arr[i]);
}

println! (;, arr.len());

And the output is:

first 10
[0] 10
[1] 20
[2] 30
[3] 40
length 4

Arrays

More on arrays: here

. The Book

What Is Ownership?

Ownership is a set of rules that governs how a Rust program manages memory. All
programs have to manage the way they use a computer's memory while running. Some
languages have garbage collection that constantly looks for no-longer used memory as
the program runs; in other languages, the programmer must explicitly allocate and free
the memory. Rust uses a third approach: memory is managed through a system of
ownership with a set of rules that the compiler checks. If any of the rules are violated, the
program won't compile. None of the features of ownership will slow down your program
while it's running.

Ownership intro

https://stevedonovan.github.io/rust-gentle-intro/1-basics.html#arrays-and-slices
https://doc.rust-lang.org/nightly/book/title-page.html

Ownership Rules

First, let's take a look at the ownership rules. Keep these rules in mind as we work
through the examples that illustrate them:

e Each value in Rust has a variable that's called its owner.
e There can only be one owner at a time.
¢ When the owner goes out of scope, the value will be dropped.

Ownership rules

Ways Variables and Data Interact: Move

Multiple variables can interact with the same data in different ways in Rust. Let's look at
an example using an integer in Listing 4-2.

let x = 5; alll R
let vy X3

Listing 4-2: Assigning the integer value of variable x to y

We can probably guess what this is doing: “bind the value 5 to x;then make a copy of
the value in x and bind it to y .” We now have two variables, x and y, and both equal
5. This is indeed what is happening, because integers are simple values with a known,
fixed size, and these two 5 values are pushed onto the stack.

Stack-allocated move semantics

The length is how much memory, in bytes, the contents of the string is currently using.
The capacity is the total amount of memory, in bytes, that the string has received from
the allocator. The difference between length and capacity matters, but not in this context,
so for now, it's fine to ignore the capacity.

When we assign s1 to s2,the string data is copied, meaning we copy the pointer, the
length, and the capacity that are on the stack. We do not copy the data on the heap that
the pointer refers to. In other words, the data representation in memory looks like Figure
4-2.

sl
name |[value
ptr \
len 5
capacity| 5 index |value
0 h
s2 1 ©
name |val 2 1
ptr 7/ 3 1
len 5 4 0
capacity| 5

Heap-allocated move semantics

So, as you can see, Rust is a general-purpose programming language, just like a multitude of
other languages. At the next meeting, we are going to practice Rust with Rustlings - a fun &

interactive way to learn Rust by correcting the code (just like RubyKoans).

Practice: Rustlings

Hey everyone! So today is our first practice. During practices, we will mostly look at the
code & practical aspects of things we learn during the lectures. I hope to see participation
from you, but if not, I will continue with the answer. Today we are going to take a look at

Rustlings. This is an interactive Rust learning app, which I have personally used and

attribute a lot of credit to my Rust knowledge to it. We'll work on the problems in Rustlings

https://github.com/rust-lang/rustlings

introl.rs

About this "I AM NOT DONE® thing:

We sometimes encourage you to keep trying things on a given exercise, even
after you already figured it out. If you got everything working and feel

ready for the next exercise, remove the "I AM NOT DONE' comment below.

Execute the command "rustlings hint introl® for a hint.
I AM NOT DONE

main() {
println!("Hello and");
println! (r#" welcome to... "#);
println! (r#" o "#);
printin!(r#" _ _ _ _ _ | || (U_ _ __ _ ___ "#);
printin!(ra" | ' | | |/ | | || 2N/ _ 7/ __| "#);
printtnt(r#" | | | (] N NI LT (] N\ #);
printin! (r#" |_| N__,_ | /N__|_I_I_| 1INy |7/ "#);
println! (r#" |/ "i#);
println!();
println!("This exercise compiles successfully. The remaining exercises contain a compiler");
println!("or logic error. The central concept behind Rustlings is to fix these errors and");
println!("solve the exercises. Good luck!");

What should we add here to make the code compile?

// intro2.rs
// Make the code print a greeting to the world.

// Execute "rustlings hint intro2 for a hint.

// 1 AM NOT DONE

fn main() {
println!("Hello {}!");

Let’s check the formatting information.

Week 2
e Rustrevision (advanced)
e Blockchain development
e Ethereum

https://doc.rust-lang.org/rust-by-example/hello/print.html

Materials: The Book, What is bitcoin, What is Web3, Hyperledger Fabric

Homework: Create a simple CLI signer for ed25519 signatures. Possible libraries: clap,
ed25519, log

Lecture: Advanced Rust

Alright, since we need to move at a mad pace to complete the course, we’ll try & cover
everything we need in two lectures this week. The first lecture would be about higher-level
Rust, while the second would be about blockchain development. We need to understand
high-level Rust in order to be able to reflect blockchain concepts.

The high-level Rust we are going to talk about today is traits & generic mostly. Traits are the
behavior inheritance mechanism in Rust. They are similar to interfaces in other languages
(but not quite).

. Traits

Traits: Defining Shared Behavior

A trait defines functionality a particular type has and can share with other types. We can
use traits to define shared behavior in an abstract way. We can use trait bounds to specify
that a generic type can be any type that has certain behavior.

Note: Traits are similar to a feature often called interfaces in other languages,
although with some differences.

Traits are collections of some data-agnostic behavior. That's really the bottom line.

We can define a trait the following way:

pub trait Summary {
fn summarize(&self) -> String;

}

https://doc.rust-lang.org/nightly/book/title-page.html
https://academy.binance.com/uk/articles/what-is-bitcoin
https://ethereum.org/en/web3/
https://www.hyperledger.org/use/fabric
https://doc.rust-lang.org/book/ch10-02-traits.html

Let’s look at how to implement a trait for a type:

pub struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,
}

impl Summary for NewsArticle {
fn summarize(&self) -> String {
format! ("{}, by {} ({})", self.headline, self.author, self.location)
1
1

pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,

}

impl Summary for Tweet {
fn summarize(&self) -> String {
format! ("{}: {}", self.username, self.content)

}

As we can see, we don’t use the content field of NewsArticle. We don’t need the contents in
the summary.

Now, can the traits have a default implementation? Turns out they can! That is unlike in
many other languages.

pub trait Summary {
fn summarize(&self) -> String {
String::from(" (Read more...)")

}

Here, we don’t use self as we cannot know, which fields the implementer has.
Though, we can control that in a way - let’s take a look in the advanced traits section.
e Advanced Traits

Types in Rust might implement a lot of traits. It is not uncommon for some traits to have
methods with equal names. Moreover, if a type has a method, say, foo, it’s possible to
implement a multitude of traits with method foo on this type.

“When calling methods with the same name, you'll need to tell Rust which one you want to
use. Consider the code in Listing 19-16 where we’ve defined two traits, Pilot and Wizard,
that both have a method called fly. We then implement both traits on a type Human that
already has a method named fly implemented on it. Each fly method does something

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name

different.” (https://doc.rust-lang.org/book/ch19-03-advanced-traits.html)

trait Pilot {
fn fly(&self);
1

trait Wizard {
fn fly(&self);
}

struct Human;

impl Pilot for Human {
fn fly(&self) {
println! ("This 1is your captain speaking.");
}
1

impl Wizard for Human {
fn fly(&self) {
println! ("Up!");
}
}

impl Human {
fn fly(&self) {
println! ("*waving arms furiouslyx*");

}

So, how do we differentiate between those different methods? How do we call them?

Question: What will this code do?

fn main() {
let person = Human;

person.fly();

Below we show how to call the methods of different traits on some value.

To call the fly methods from either the Pilot trait or the wizard trait, we need to use
more explicit syntax to specify which fly method we mean. Listing 19-18 demonstrates
this syntax.

Filename: src/main.rs

fn main() {

let person = Human;
Pilot::fly(&person);
Wizard: :fly(&person) ;
person.fly();

Listing 19-18: Specifying which trait's fly method we want to call

Running this code prints the following:

$ cargo run
Compiling traits-example v0.1.0 (file:///projects/traits—-example)
Finished dev [unoptimized + debuginfo] target(s) in 0.46s
Running ‘target/debug/traits-example’
This is your captain speaking.
Up!
*waving arms furiouslyx

“However, associated functions that are not methods don’t have a self parameter. When
there are multiple types or traits that define non-method functions with the same function
name, Rust doesn’t always know which type you mean unless you use fully qualified syntax.
For example, the Animal trait in Listing 19-19 has the associated non-method function
baby_name, and the Animal trait is implemented for the struct Dog. There’s also an associated
non-method function baby_name defined on Dog directly.”
(https://doc.rust-lang.org/book/ch19-03-advanced-traits.html)

trait Animal {
fn baby_name() -> String;
}

struct Dog;

impl Dog {
fn baby_name() -> String {
String::from("Spot")
1
1

impl Animal for Dog {
fn baby_name() -> String {
String:: from("puppy")

}
}

fn main() {
println! ("A baby dog is called a {}", Dog::baby_name());
1

In main, we call the Dog::baby_name function, which calls the associated function
defined on Dog directly. This code prints the following:

$ cargo run
Compiling traits-example v0.1.0 (file:///projects/traits-example)
Finished dev [unoptimized + debuginfo] target(s) in 0.54s
Running "target/debug/traits-example’
A baby dog is called a Spot

This output isn't what we wanted. We want to call the baby_name function that is part of

the Animal trait that we implemented on Dog so the code prints A baby dog is called
a puppy . The technique of specifying the trait name that we used in Listing 19-18 doesn't
help here; if we change main to the code in Listing 19-20, we'll get a compilation error.

Filename: src/main.rs

fn main() {) @ 3y
println! ("A baby dog is called a {}", Animal::baby_name());
1

Generally, to disambiguate the type, we need to use the following syntax: <Type as
Trait>::method(args)
Here’s an example that refers to our Animal hierarchy:

fn main() { & » @
println! ("A baby dog is called a {}", <Dog as Animal>::baby_name());

}

This is
heavily used in Substrate, as we will see later.
There’s also one more thing we need to know: supertraits and trait bounds. Let’s look at
another example from the Book.

For example, let's say we want to make an OutlinePrint trait with an outline_print

method that will print a value framed in asterisks. That is, given a Point struct that

implements Display to resultin (x, y),when we call outline_print ona Point

instance that has 1 for x and 3 for y, it should print the following:

kkkkkkkkkk
* *
x (1, 3)
* *
kkkkkkkkkk

use std::fmt;

trait OutlinePrint: fmt::Display {
fn outline_print(&self) {
let output = self.to_string();
let len = output.len();
println! ("{}", "x".repeat(len + 4));

println! ("x{}*", "™ ".repeat(len + 2));
println! ("x {} *", output);

println! ("x{}*", " ".repeat(len + 2));
println! ("{}", "*".repeat(len + 4));

Because we've specified that outlinePrint requires the Display trait, we can use the
to_string function that is automatically implemented for any type that implements
Display . If we tried to use to_string without adding a colon and specifying the
Display trait after the trait name, we'd get an error saying that no method named
to_string was found for the type &self in the current scope.

Let's see what happens when we try to implement outlinePrint on a type that doesn't
implement Display, such as the Point struct:

Filename: src/main.rs

struct Point {
x: 132,
y: 32,

}

impl OutlinePrint for Point {}

We get an error saying that Display is required but not implemented:

$ cargo run

Compiling traits-example v0.1.0 (file:///projects/traits-example)
error[EG277]: ‘Point’ doesn't implement ‘std::fmt::Display’

--> src/main.rs:20:6

20 impl OutlinePrint for Point {}

|
| AAAAAAAAAAAA *Point’ cannot be formatted with the default formatter
|

help: the trait ‘std::fmt::Display’ is not implemented for ‘Point’
= note: in format strings you may be able to use "{:2?}° (or {:#2?} for prett)
note: required by a bound in ‘OutlinePrint’
--> src/main.rs:3:21
I
3 | trait OutlinePrint: fmt::Display {
[AAAAAAAAAAAA required by this bound in ‘OutlinePrint’

For more information about this error, try ‘rustc --explain E0277".
error: could not compile ‘traits-example' due to previous error

Let’s take a look at the complete, working example.

use std::fmt;

impl fmt::Display for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write! (f, "({}, {})", self.x, self.y)
}

Now, as we got traits fully out of the way, let’s dive into macros. It might seem intimidating
at the first glance, but I promise they’ll make sense in the end!

. Macros

So, in short, macros are a compile-time code generation tool. They are very different from
the macros we are used to in C and C++: these macros are hygienic. You can read more
about macro hygiene here.

https://doc.rust-lang.org/book/ch19-06-macros.html
https://en.wikipedia.org/wiki/Hygienic_macro

We've used macros like println! throughout this book, but we haven't fully explored
what a macro is and how it works. The term macro refers to a family of features in Rust:
declarative macros with macro_rules! and three kinds of procedural macros:

e Custom #[derive] macros that specify code added with the derive attribute used
on structs and enums

e Attribute-like macros that define custom attributes usable on any item

* Function-like macros that look like function calls but operate on the tokens specified
as their argument

#[macro_export]
macro_rules! vec {
($($xzexpr),x) => {
{
let mut temp_vec = Vec::new();
$(
temp_vec.push($x);
)*

temp_vec

This example shows us the vec! macro. We can use vec to conveniently create vectors with
some elements (like with an initializer in cpp):

fn main() {
let my_vec =vec![1, 2, 3, 4, 5];
my_vec.into_iter().for_each(|item| println!("{item}"))
// this is a new syntax for printing captured vars,
// btw

}

So, in the macro definition, we can see some weird syntax with dollar signs, types, stars etc.
In our scope, we will not look into how macros work, but in general, those are syntactic
constructs that define some calling syntax and output some code on invocation (during
compilation).

So in our case, the vec! invocation will turn into this:

fn main() {
let my_vec = {

let mut temp_vec = Vec::new();
temp_vec.push(1);
temp_vec.push(2);
temp_vec.push(3);
temp_vec.push(4);
temp_vec.push(5);

temp_vec

my_vec.into_iter().for_each(|item| println!("{item}"))

}
Another type of macros is procedural macros. They look like this: #[some_attribute].

We won’t look much into them, only how to use them. The general difference between
procedural & declarative macros is that procedural macros are full-blown programs
running in the compiler; while declarative macros are kinda like functions for code
generation. Procedural macros operate on TokenStreams, while their declarative
counterparts operate on concrete language constructs: expressions, literals, types, visibility
items, and other stuff.

Today we’ve taken a look at the most important features of advanced Rust used in
Substrate. That’s on top of all of the basic features, of course. This is the end of our Rust
study/revision. Next, we will have some theoretical stuff to work through, but then we’ll get
to writing Substrate. This will be one big practice for Rust, as well as blockchain
development concepts we’ll learn about next.

Lecture 2

Hello again, everyone! Today is the second lecture of our week. In this lecture, we’ll be
talking about blockchains in general. We’ll work using a blockchain learning path kindly
provided by Kyrylo Gorokhovskyy to me. We'll cover the basics as much as possible.

So, let’s start with simple things: primitives of blockchain technology.

https://github.com/protofire/blockchain-learning-path

What is Symmetric Encryption?

Symmetric Encryption

Secret Same Key Secret
Key Key

A4Sh*L@9.
T6=#/>B#1
R06/J2.>1L
1PRL39P20
——”

Decryption

Plain Text Cipher Text Plain Text

This is the simplest kind of encryption that involves only one secret key to cipher and decipher information. Symmetric
encryption is an old and best-known technique. It uses a secret key that can either be a number, a word or a string of

random letters. It is a blended with the plain text of a message to change the content in a particular way. The sender and
the recipient should know the secret key that is used to encrypt and decrypt all the messages. Blowfish, AES, RC4, DES,

RC5, and RC6 are examples of symmetric encryption. The most widely used symmetric algorithm is AES-128, AES-192, and

AES-256.

The main disadvantage of the symmetric key encryption is that all parties involved have to exchange the key used to
encrypt the data before they can decrypt it.

What is Asymmetric Encryption?

Asymmetric Encryption

Public Different Keys
Key

Secret
Key

A4Sh*L@9.
T6=#/>B#1
R06/J2.>1L
1PRL39P20
_'

Decryption

Plain Text Cipher Text Plain Text

After we got the crypto intricacies out of the way, let’s check how bitcoin works. This will

take some time.

After covering the most basic stuff (hashes, digital signatures, cryptography, PKI, and so
on), we will move on to covering bitcoin. Bitcoin is the first cryptocurrency, but it is really
advanced. Definitely worth understanding how it works.

This is the anatomy of the node:

Application layer Programmable currency
Contract layer Script code Smart contracts
Incentive layer Currency issue mechanism Currency distribution
Consensus layer PowW PoS
Transmisson Verification
Network layer P2P network oo e
Data blocks Chain structure Time stamp
Data layer
Hash functions Merkle tree Digital signature
Flaed l Processing Secure Network
ardware layer units COprocessors connectivity

After getting an understanding of how Bitcoin works, let’s take a look at its consensus
algorithm: Proof of Work. One great video on how bitcoin works.

Week 3

Homework: go through all of the materials, and finish the Ethereum article.

Lecture: Ethereum, smart contracts

Understanding the first advanced smart contract platform, Ethereum, is essential to
understanding the whole blockchain development fuss. Ethereum was the first blockchain
to show that one can write decentralized programs, which would be verified by all network
participants.

https://academy.binance.com/uk/articles/what-is-bitcoin
https://www.researchgate.net/publication/349787845_Blockchain_in_Cyberdefence_A_Technology_Review_from_a_Swiss_Perspective/figures?lo=1
https://academy.binance.com/uk/articles/proof-of-work-explained
https://www.youtube.com/watch?v=bBC-nXj3Ng4

You might ask, why they are called contracts. Well, to be fair, I don’t know. But I'm pretty
sure it was some gimmick to attract business people to adapt Ethereum. Anyways.

Today we’ll spend most of the lecture revising how Ethereum works, so prepare yourself for
a pretty big journey here.
Let’s look at the blockchain definition from the article:

Blockchain definition

A blockchain is a “cryptographically secure transactional singleton machine

with shared-state.” [1] That’s a mouthful, isn’t it? Let’s break it down.

* “Cryptographically secure” means that the creation of digital currency is
secured by complex mathematical algorithms that are obscenely hard to
break. Think of a firewall of sorts. They make it nearly impossible to cheat the
system (e.g. create fake transactions, erase transactions, etc.)

* “Transactional singleton machine” means that there’s a single canonical
instance of the machine responsible for all the transactions being created in
the system. In other words, there’s a single global truth that everyone
believes in.

¢ “With shared-state” means that the state stored on this machine is shared
and open to everyone.

Ethereum implements this blockchain paradigm.

https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df506369

A more detailed explanation of Ethereum’s paradigm:
The Ethereum blockchain paradigm explained

The Ethereum blockchain is essentially a transaction-based state machine. In
computer science, a state machine refers to something that will read a series of

inputs and, based on those inputs, will transition to a new state.

input: 0, output: 0

input: 1, output: 0 B

input: 0,
output: 0 input: 0,
output: 1
input: 1,
output: 0

~ C

input: 1,
output: 0

With Ethereum’s state machine, we begin with a “genesis state.” This is
analogous to a blank slate, before any transactions have happened on the
network. When transactions are executed, this genesis state transitions into some
final state. At any point in time, this final state represents the current state of

Ethereum.

transition transition
LI

Here we can see a diagram of how the state progresses within the blockchain. The possible
state changes between some block N and block N+1 can be described by a state transition
function. The state transition function is the whole collection of things that can change the
chain state - smart contract calls, logs, balance transfers, paying fees etc. In other words, we
can define everything that happens on a blockchain by its state transition function. This is a
common thing for all blockchains that contain any logic - even bitcoin. Bitcoin script
executions, UTXO assignment - those are the parts of the state transition function of bitcoin.
STF is an important term to remember, as Substrate also has its state transition function. In
Substrate, the state transition function is fully customizable and is named runtime.

Earlier, we defined a blockchain as a transactional singleton machine with

shared-state. Using this definition, we can understand the correct current state

is a single global truth, which everyone must accept. Having multiple states (or

chains) would ruin the whole system, because it would be impossible to agree on

which state was the correct one. If the chains were to diverge, you might own 10

coins on one chain, 20 on another, and 40 on another. In this scenario, there

would be no way to determine which chain was the most “valid.”

Whenever multiple paths are generated, a “fork” occurs. We typically want to
avoid forks, because they disrupt the system and force people to choose which

chain they “believe” in.

Fork

»\
\ Fork
Fork

This diagram shows us the results of the process of block production. When we produce
blocks, we might naturally get forks, because different validator nodes might be on different
blocks when producing the next block. To choose the correct block, we need some
mechanism. This mechanism is different from blockchain to blockchain, but since we're

talking about Ethereum now, let’s look at GHOST.
In simple terms, the GHOST protocol says we must pick the path that has had

the most computation done upon it. One way to determine that path is to use
the block number of the most recent block (the “leaf block™), which represents
the total number of blocks in the current path (not counting the genesis block).
The higher the block number, the longer the path and the greater the mining
effort that must have gone into arriving at the leaf. Using this reasoning allows

us to agree on the canonical version of the current state.

Genesis

. Canonical
block

blockchain

Basically, we deem the blocks which base on the longest finalized chain as correct. Polkadot
has something similar:

Fork Choice

Bringing BABE and GRANDPA together, the fork choice of Polkadot becomes clear. BABE
must always build on the chain that has been finalized by GRANDPA. When there are forks
after the finalized head, BABE provides probabilistic finality by building on the chain with
the most primary blocks.

The last finalized block

by GRANDPA L
On last finalized block,
\ / [} B B B but not most primaries
| | | | | | On last finalized block,
[chain with most primaries
A \ On last finalized block,
[} || B but not most primaries
\ | _ | | || _ _ Not built on last
finalized block

Longest chain with most primaries on last finalized GRANDPA block

In the above image, the black blocks are finalized, and the yellow blocks are not. Blocks
marked with a "1" are primary blocks; those marked with a "2" are secondary blocks. Even
though the topmost chain is the longest chain on the latest finalized block, it does not
qualify because it has fewer primaries at the time of evaluation than the one below it.

We’re not going to get much deeper than that. This understanding of finality should be
enough.

Now, let’s look at the account model of Ethereum:
Accounts

The global “shared-state” of Ethereum is comprised of many small objects
(“accounts”) that are able to interact with one another through a message-
passing framework. Each account has a state associated with it and a 20-byte

address. An address in Ethereum is a 160-bit identifier that is used to identify
any account.

There are two types of accounts:

» Externally owned accounts, which are controlled by private keys and have
no code associated with them.

» Contract accounts, which are controlled by their contract code and have
code associated with them.

Externally owned Contract
account account

<code>
<code>

Below we can see a diagram of how transactions are initiated on Ethereum:

Fired in response to the
transaction set in
motion by externally

Transaction set in
motion by an externally
owned account

l owned account
E);t;rnn;:Iy - " Contract internal Contract
1

Account Transaction Account
account
Externally Externally
owned . tion owned
account account

Now, let’s take a look at another important, defining thing in Ethereum & in account-based
blockchains as a whole. The state of the blockchain is described by the ledger (connected
blocks), but we also have the state, which is attached to each account. This state contains the
transactions initiated by this account, the balances, etc. For contracts, this state also
contains the code hash of the contract.

The state is described using Merkle Patricia trees, analogously called tries.

82ks

99%ao0 9sks

8akd 52js Oakd 7kma

\

/ \ /f \\x / \ / \

/ \\ / /

yoyo: 12 | |dawg: 23 welp: 45 | | nahh: 32 eth: 30 icos: 91 cray: 12 cray: 19

Let’s take a deeper look into the article and talk about gas and smart contracts.

If we still have time after taking on this beast of an article, well, we can have some QnA time
to discuss everything covered before.

Lecture: Substrate

Hello again, everyone! Today is the day we finally start learning Substrate. We’ve covered a
lot in the previous two weeks, so let’s use our knowledge in our main learning subject -
Substrate.

Substrate is a framework that allows us to build efficient, future-proof, and modular
blockchains with a LOT of features provided out-of-the-box.

Let’s take a look at the general architecture of Substrate. What provides the flexibility of
Substrate? The answer is FRAME. This architectural part is responsible for modularizing
functionality, allowing for hot swaps & runtime code upgrades.

. General node architecture

RPC

p2pP
NETWORKING

CONSENSUS
Wasm
Runtime
STORAGE
TELEMETRY

SUBSTRATE CLIENT

the architecture of a substrate client (read substrate node). As we can see, it has a nu’Ir‘:llll)SelrS
of things in it:

1) P2P Networking module

2) RPC module

3) Storage with the WASM runtime in it

4) Consensus module

https://docs.substrate.io/v3/getting-started/architecture/

5) Telemetry module

6) Native runtime

Let’s quickly take a look one by one:

The P2P networking module is responsible for transaction propagation. When a
node receives a transaction via an RPC call, the node must propagate this transaction
to the peers so that the whole network executes it.

RPC is responsible for receiving the transaction calls & hosting different host
function endpoints (as in chain-specific functions).

Consensus is the module that is responsible for, you guessed it, consensus. The
consensus is pluggable, meaning we can choose different consensus algorithms for
different chains.

Telemetry is just some endpoints that transmit node metrics.

Native runtime is everything that’s available for use in and outside of the WASM
runtime: same and more functions, same and more modules. The native runtime was
created to overcome the slowness of the WASM runtime, but it cannot provide
guarantees of equal execution of STF between different nodes. Simply, if you're
gonna expect equal computation results of equal calls on different nodes, you might
not get them.

Runtime architecture

“The runtime of a blockchain is the business logic that defines its behavior. In Substrate-based
chains, the runtime is referred to as the "state transition function"; it is where Substrate developers
define the storage items that are used to represent the blockchain's state as well as the functions
that allow blockchain users to make changes to this state.”

https://docs.substrate.io/v3/concepts/runtime/

(https://docs.substrate.io/v3/concepts/runtime/)

RUNTIME

Written in Rust Application logic
that makes this

e . chain special
Built into both native & Wasm

FORK CHOICE Tx POOL
STORAGE CONSENSUS

Written in Rust

Built into native

libp2p jsonRPC

As we can see, everything that makes a chain special in terms of its application logic is
compiled to WASM and stored in the storage. Everything else is either part of each
individual node (tx pool, finality, storage, block production, RPC, p2p server, native
runtime).

e FRAME

FRAME is an architectural approach to building a substrate node, which makes the chain
flexible and easily upgradeable. FRAME stands for the Framework for Runtime Aggregation
of Modularized Entities. That's a mouthful.

RUNTIME
(APIs, Execution Environment)

EXECUTIVE MODE
(orchestration)

SUPPORT

LIBRARY
RUNTIME MODULES

(from FRAME or custom)

SYSTEM MODULE
(core Types, Utils, Events)

Looking

https://docs.substrate.io/v3/runtime/frame/

at this diagram, we see the following: - Runtime. Runtime is composed of default/custom
FRAME pallets, execution module, support library, and the system module. - The Executive
is responsible for executing the transactions within a block, progressing block state, and
other core block-related things. - Runtime modules fill our runtime with logic - we can add
the Balances pallet to track the balances of an account, the Transaction Payment pallet to
enable the payments for the transaction execution, the Timestamp pallet to insert block
timestamps, etc. - The System module is mainly responsible for managing how our runtime
is constructed, managing transaction origins, etc. - The Support Library is just a collection
of useful traits, macros and other stuff related to our blockchain.

Out of all those things, those are the Runtime Modules we choose that make our runtime
special.

Now, let’s talk about the transactions, cause what is a blockchain without transactions?!
. Extrinsics
Let’s take a look at the definition of an extrinsic:

An extrinsic is a piece of information that comes from outside the chain and is included in a block.
Extrinsics fall into three categories: inherents, signed transactions, and unsigned transactions.

So, how is it different from transactions? Answer: A block in Substrate is composed of a header
and an array of extrinsics. The header contains a block height, parent hash, extrinsics root, state
root, and digest.

Basically, extrinsics are very similar to transactions. The difference is rather in the
etymology of the word itself - transactions are thought of as something that has a monetary
value (or execute some logic in the case of blockchains), while extrinsics are more generally
pieces of external information.

Frankly, we, Substrate devs, use transactions and extrinsic interchangeably.

Let’s talk about signed and unsigned transactions. The difference is mostly inferred from
the name. Signed transactions are signed by network participants (as in people), while
unsinged txs are not signed by anyone. This means we have to define custom validation
logic for those transactions. Signed transactions are like Ethereum transactions, while
unsigned transactions can be thought of more like system-related transactions. One must
use it with care because since no one signs those txs, no one pays the fee.

e Weights

https://docs.substrate.io/v3/concepts/extrinsics/
https://docs.substrate.io/v3/concepts/weight/

When we use our blockchain, the gas is used to provide to miners for the following:

e Memory usage
Storage input and output

Computation

Transaction and block size

State database size

Substrate does not use the concept of gas, as it doesn’t have predefined opcodes like the
smart contracts in Ethereum. Instead, we pay based on the length of our tx, state changes &
the time consumed for the computation. You might say that on each node the execution

times might be different, and you would be right. That’s why Substrate standardizes
hardware, based on which the weights are estimated.

Substrate defines one unit of weight as one picosecond of execution time, that is 10" weight = 1 second, or

1,000 weight = 1 nanosecond, on fixed reference hardware (Intel Core i7-7700K CPU with 64GB of RAM and an
NVMe SSD).

Benchmarking on reference hardware makes weights comparable across runtimes, which allows
composability of software components from different sources. In order to tune a runtime for different
validator hardware assumptions, you can set a different maximum block weight. For example, in order to
allow validators to participate that are only half as fast as the reference machine, the maximum block weight

should be half of the default, keeping the default block time.

How fees are calculated

The final fee for a transaction is calculated using the following parameters:

base fee: This is the minimum amount a user pays for a transaction. It is declared as a base weight in

the runtime and converted to a fee using WeightToFee .

weight fee: A fee proportional to the execution time (input and output and computation) that a

transaction consumes.
length fee: A fee proportional to the encoded length of the transaction.

tip: An optional tip to increase the priority of the transaction, giving it a higher chance to be included by

the transaction queue.

The base fee and proportional weight and length fees constitute the inclusion fee. The inclusion fee is the

minimum fee that must be available for a transaction to be included in a block.

inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight _fee];
final_fee = inclusion_fee + tip;

Materials: Substrate docs, Polkadot wiki
Week 4

Homework: Create a faucet that mints tokens to the requestor every, say, 16 blocks,
meaning the requestor cannot get tokens if 16 blocks had not passed since the last mint.
Also, since this transaction is lightweight and cannot be repeated more than 1 time in 16
blocks, disable transaction fees for that. The transaction must be signed. You can do the
minting using the Currency trait and setting it to pallet_balances’ implementation (Balances
in runtime/lib.rs). Use issue and resolve_into_existing methods. The implementation is totally
up to you (minting right away, approving mints by superuser/governance - how far you
want to go). More on that: tight pallet coupling, Currency trait.

Practice: Substrate FRAME

Alright, so here comes our practice. During the previous lecture, we discussed how
Substrate generally works, while also checking out Extrinsics & Weights. That’s the most
important info we should know to get right into Substrate development.

During this practice, we will complete this tutorial.

https://substrate.io/
https://wiki.polkadot.network/docs/getting-started
https://docs.substrate.io/how-to-guides/v3/pallet-design/tight-coupling/
https://docs.substrate.io/rustdocs/latest/frame_support/traits/tokens/currency/trait.Currency.html
https://docs.substrate.io/tutorials/v3/create-your-first-substrate-chain/

Let’s dive right into this. Before we start with the code, I'd like to go over some theoretical
aspects of a blockchain node, which are provided in the tutorial.

At a high level, a blockchain node consists of the following key components:

Data handling capabilities for external or information

e A

So, as we have seen before, a blockchain node consists of a couple of things. The storage is
responsible for storing all of the accounts / UTXO data, the code to run, blockchain
metadata & so on. Some nodes have a more extensive storage use (like Substrate, which
uses storage for all of the STF code), and some have a less extensive storage use (like
Bitcoin). The P2P networking is an essential part of a blockchain node since it is
responsible for propagating the transactions among the node’s peers and receiving such
gossip. The consensus says everything for itself. These data handling capabilities imply
having some RPC/REST set up to receive the transactions, which are ultimately this
extrinsic information. A runtime is that thing we talked about in the last lecture.

Now, let’s go to the page of this tutorial & complete it.
(If we have time, we might take on Nicks pallet tutorial).
Practice: runtime upgrades & governance

Hey! Getting familiar with Substrate already? Well, this week you’ll become even more
familiar with it. Today we are talking about more core features of Substrate that make it a
great framework. And the first one I'd like to talk about is forkless runtime upgrades. This
is a technique to update the runtime (remember, the state transition function) without
actually redeploying the nodes. This is possible thanks to a WASM runtime. Since the code
is just some bytes stored within the node’s storage under some key, we can easily update it,
just like we update values in a database. Of course, not all network participants can
arbitrarily update the code for all nodes. This requires some higher privileges. While it is
possible to do using pallet-sudo, having one privileged user within a decentralized network
isn’t typically a best practice. Instead, production chains (Polkadot, Kusama, Moonbeam,
Acala, etc.) use various governance mechanisms to vote for an upgrade and update the code
collectively. In this way, this DAO-based approach pretty much reflects modern
governmental systems, with elections, voting, etc.

So, without further ado, let’s get to it!

Forkless Upgrade tutorial

https://academy.binance.com/en/glossary/gossip-protocol
https://docs.substrate.io/tutorials/v3/add-a-pallet/
https://docs.substrate.io/tutorials/v3/forkless-upgrades/

To summarize, we checked out the Scheduler pallet & how to do forkless runtime upgrades.

Now, to do proper upgrades, we’ll have to use some decentralized approach for deciding on
the feasibility, security, and importance of an upgrade. pallet-collective will help us with that.
To wrap things up, I'd like to check out the governance, presented on Polkadot &
implemented using Substrate. here.

Week 5
Lecture - ink! and smart contracts

Hello everyone! Today is the beginning of week 4 of our course. Today’s topic is ink! and
smart contracts.

ink! and smart contracts in Substrate are definitely not the most popular thing in the
ecosystem. Although it’s rigorously discussed within the community, no parachain (as of
May 2022) supports WASM-based smart contracts in production (as in Polkadot, Kusama,
etc.).

Then why would we take a look at it?! Well, ultimately, it's because we become better
programmers when we learn from different languages, frameworks, etc. Moreover, we start
to better understand the intrinsics of a system. In our case, we might compare
Solidity/Near SDK/Solana Programs/etc to ink! to see commonalities and differences.

Let’s dive right into it. ink! is an eDSL for pallet-contracts-based smart contracts. ink! is
compiled to WASM. So, in other words, ink! is a language in which we write smart contracts
(mind you, ink! is also valid Rust), then it compiles to WASM, then this WASM code gets
executed in pallet-contracts. pallet-contracts is a stack-based virtual machine that supports
WASM evaluation, memory, etc. As opposed to Solidity, ink! is not compiled to bytecode,
which means it does not have its set of opcodes to operate with. Consequently, the concept
of “gas” is very different in pallet-contracts rather than EVM.

With this general info, we might proceed & take a look at the practical part here!
Materials: ink! docs, Openbrush, ink! tutorial

Homework: Create a mintable-burnable PSP22 token using Openbrush (no Ul integration
needed).

QnA - Integrating a real-world application with blockchain & QnA with Gautam Dhameja
Materials: How to integrate a blockchain with a business

So, this will be the last meeting in this course. We already covered a lot, had massive
amounts of practical tasks, and learned a bit about the usage of Substrate. Today I'd like to
invite Gautam Dhameja, Director of Solution Delivery @ Parity Technologies.

So, what I'd like to go through:

1. Parachains, parathreads, relay chains - how to go from a Substrate chain
running locally to the one real people are using

https://github.com/paritytech/substrate/tree/master/frame/collective
https://wiki.polkadot.network/docs/learn-governance
https://docs.substrate.io/tutorials/v3/ink-workshop/pt1/
https://paritytech.github.io/ink-docs/
https://openbrush.io/
https://docs.substrate.io/tutorials/v3/ink-workshop/pt1/
https://medium.com/swlh/blockchain-integration-a-step-by-step-guide-7371f49c72e1

2. Whatis the benefit of using Polkadot, as opposed to say Ethereumv2
3. Smart contracts vs custom blockchain
4. How to build a business model around a Substrate-based blockchain

Our logical conclusion

This course has come to an end. We’ve covered a lot. I am sure that those who attended
every meeting have learned something new, something that widens the outlook for the
developer inside. [will always be happy to see you as builders, somewhere in the Web3
space, or just quietly enjoying Rust, even as a fun activity.

Literature used
1. Rust homepage [Enexkrponnmii pecypc] - Pexum pgoctymy 10 pecypey:

https://www.rust-lang.org/

10.

11.

12.

Teams who build in Substrate [Enextponnuii pecypc] - Pexum goctymy ao pecypcy:
https://substrate.io/ecosystem/projects/

Ukrainian Wikipedia Rust page [Enexrponnwuii pecypc| — Pexxum moctymy mo pecypcy:
https://uk.wikipedia.org/wiki/Rust_(%D0%BC%D0%BE%D0%B2%D0%B0_%D0
%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2
%D0%B0%D0%BD%D0%BD%D1%8F)

Rust vs C++ [Enextponnuii pecypc] - Pexum pocrymy 10 pecypcy:
https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popul
ar-programming-languages/

Steve Donovan’s Rust intro [Enexrponnmii pecypc] - Pexxum nocrtymy a0 pecypcy:
https://stevedonovan.github.io/rust-gentle-intro/1-basics.html

The Rust Programming Language [Enexkrponnuii pecypc] - Pexum mgoctymy 10
pecypcy: https://doc.rust-lang.org/nightly /book/title-page.html

Rustlings [EnexTtponnmii pecypc] - Pexxum jmoctymy 10 pecypcy:

https://www.rust-lang.org/

Symmetric vs Assymetric encryption [Enmexrponuuii pecypc] - Pexum moctymy 10

pecypey:
https://www.ssl2buy.com /wiki/symmetric-vs-asymmetric-encryption-what-are-dif
ferences
What is bitcoin [Enexrponnmii pecypc] - Pexum pmoctymy 1o pecypcy:

https://academy.binance.com/uk/articles/what-is-bitcoin

Blockchain in Cyberdefence: A Technology Review from a Swiss Perspective
[EnexTpoHHMH pecypc] - Pexum JOCTYILy 110 pecypcy:
https://www.researchgate.net/publication/349787845_Blockchain_in_Cyberdefenc
e_A_Technology_Review_from_a_Swiss_Perspective/figures?lo=1

What is Proof of Work [Enexrponnuii pecypc] - Pexum noctymy mo pecypcey:
https://academy.binance.com/uk/articles/proof-of-work-explained

How does Ethereum work, anyway? [Enextponnwmii pecypc] - Pexxum moctymy mo
pecypey:
https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df5
06369

https://www.rust-lang.org/

13. GRANDPA: A Byzantine Finality Gadget [Enexrponnwuii pecypc| - Pexxum nocrymy a0
pecypcy: https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf

14. Substrate Documentation [Emekrponnmii pecypc] — Pexum moctymy mo pecypcy:
https://docs.substrate.io/v3/getting-started /overview/

15. Polkadot wiki [Enextponnuii pecypc] - Pexum goctymy 1o pecypcy:
https://wiki.polkadot.network/docs/getting-started

16. Gossip Protocol [Enexkrponnuii pecypc] - Pexum poctymy 1m0 pecypcey:
https://academy.binance.com/en/glossary/gossip-protocol

17. Substrate Tutorials [Enexkrponnuii pecypc] - Pexum poctymy A0 pecypey:

https://docs.substrate.io/tutorials/v3/

