
Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра інформатики факультету інформатики

Development of a course on learning the Rust programming

language and its usage in developing DApps using Substrate framework

Текстова частина до курсової роботи

за спеціальністю «Комп’ютерні науки» - 122

Керівник курсової роботи

старший викладач

Гороховський К.С.

___________________ (Підпис)

“___” _____________ 2022 року

Виконав студент

КН-3 Михайленко О. І.

“___” _____________ 2022 року

Київ 2022

Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ»

Кафедра інформатики факультету інформатики

ЗАТВЕРДЖУЮ

старший викладач

__________ Гороховський К.С.

„_____” _____________ 2021 р.

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ

на курсову роботу

студенту Михайленку Олександру Ігоровичу

факультету інформатики 3 курсу бакалаврської програми

ТЕМА: Development of a course on learning the Rust programming
language and its usage in developing DApps using Substrate framework

Зміст ТЧ до курсової роботи:
Індивідуальне завдання
Вступ
Розділ 1. Розробка курсу
Висновки
Список літератури
Додатки (за необхідністю)

Дата видачі „___” _________ 2021 р.

Керівник_______________

(підпис)

Завдання отримав_______________

(підпис)

Календарний план виконання роботи

№ Назва етапу курсової роботи Термін виконання
етапу

Примітка

1. Отримання завдання на

курсову роботу

01.10.2021

2. Огляд літератури за темою

роботи

01.11.2021

3. Проведення дослідження 01.12.2021

4. Написання програмного

застосунку

01.01.2022

5. Написання текстової частини 04.04.2022

6. Захист курсової роботи 20.05.2022

Студент ______________________________

Керівник _____________________________ “______”_______ 2022

Зміст

Календарний план виконання роботи 3

Chapter 1 6

Introduction 6

Welcome to the course! 6

This is going to be hard 7

This will not be graded 7

What will be covered 7

The motivation 8

Things you will acquire after the successful completion 8

The course is hard not just to be hard. It is meant to be rewarding. 8

Approximate learning plan 8

Week 1 8

Lecture: Meeting Rust 9

Practice: Rustlings 18

Week 2 19

Lecture: Advanced Rust 20

Lecture 2 29

Week 3 31

Lecture: Ethereum, smart contracts 31

Lecture: Substrate 39

Week 4 44

Practice: Substrate FRAME 44

Practice: runtime upgrades & governance 45

Week 5 46

Lecture - ink! and smart contracts 46

QnA - Integrating a real-world application with blockchain &
QnA with Gautam Dhameja 46

Our logical conclusion 47

Literature used 47

Abstract

Substrate is a versatile blockchain development framework, based on the Rust

programming language. While being well documented, Substrate is hard to

learn without a thought-through approach – just taking on the documentation

is not enough & will get the learner not much knowledge. Therefore, here we

develop a course that explains the Rust programming language, basic

blockchain development primitives, describes functioning models of different

popular blockchains, and finally gives an overview of Substrate with some

examples.

Chapter 1

Introduction

Welcome to the course!

Today marks the day we start learning Substrate and revising Rust. Our Rust revision will
be rather long because we want to make sure everyone gets a firm grasp of the required
concepts. For some, it will not be a revision. Instead, you will have to learn Rust from
scratch. In two weeks. In three days. So prepare yourself for the ultimate glory! You’ll have
fun, hehe.

This is going to be hard

This course will not be easy. Be ready for some good commitment, as Substrate itself is hard
and sometimes mundane (high build times). Nevertheless, we will try to make it as
interesting as possible! The estimated commitment for this course is 5hrs a week. This

includes 2 hours for the two meetings a week (1 hour for a meeting) and 3 hours for the
home tasks.

This will not be graded

Although this course is very serious in making someone understand Substrate, it is not a
certification, nor have I the right to certify people. The assignments will not be graded, and
I recommend everyone find a pair and do peer reviews of the home tasks. I encourage
discussing implementation details, general approach to the home tasks, and code details.

Since this course is not graded, you don’t get to profit from cheating. As opposed to what
they say at the universities (you’re only harming yourself by cheating), this really is the case
here. So, you can cheat, of course, I don’t really care, but I guarantee you’ll instantly lose
motivation in this course.

What will be covered

In this course, a couple of important things will be covered. This includes:

• Revision of Rust concepts, which are critical to understanding Substrate:
– Rust’s syntax
– Ownership & Borrowing
– Generics + Traits
– Smart Pointers
– Rust’s memory model
– Macros

• General blockchain development concepts:
– Blocks
– Crypto
– PKI
– Fees
– Consensus algorithms
– Intro to Smart Contracts

• Ethereum (revision):
– General architecture
– Smart contract execution platform architecture
– Gas model
– Use cases

• Substrate development key concepts:
– FRAME
– Runtime
– Storage
– Client libraries
– Integration

• High-level substrate concepts:
– Paraobjects
– Accounts
– PKI
– Randomness
– NPOS
– Crypto

• Substrate-based smart contracts.

But definitely not limited to.

The motivation

Why did we choose Substrate in the first place? Substrate is a great and very versatile
blockchain development framework. I personally enjoy working with it, and this was one of
the main motivations for teaching it :P The motivation to learn it are 1. High market
demand 2. Reflection of all common blockchain development principles in one place
(meaning endless space to practice those principles) 3. Despite a steep learning curve,
unmatched ease of practical (as in business) uses 4. Modernity and increasing adoption

Just take a look at teams who build in Substrate!

Things you will acquire after the successful completion

The course is hard not just to be hard. It is meant to be rewarding.

After completing the course successfully, you will learn a set of cutting-edge technologies
(Substrate, Polkadot, ink!, Rust), one super important skill (blockchain development), one
beautiful programming language (Rust), and a wider outlook on the current state of tech,
Web3 understanding and most definitely a job among the most interesting Web3
companies around the world.

Next up: Parity company pitch, 4ire company pitch.

Approximate learning plan

We plan this course to last 5 weeks.

So, the plan approximately goes like this:

Week 1
• Introduction <– you’re here
• Rust revision (basics)

Materials: The Book, Parity, 4ire, Homework: Complete chapters 1-10 of The Rust
Programming Language

https://substrate.io/ecosystem/projects/
https://doc.rust-lang.org/nightly/book/title-page.html
https://www.parity.io/
https://4irelabs.com/

Lecture: Meeting Rust

Alright! We’re here. Today marks the day we start learning Rust & blockchain development.
This course is very oriented toward self-education. Each week, we will have 2 meetings: a
lecture and a practice. Moreover, you will get one homework for the week. I don’t like
grades, so there will be no grading process. All that you do you do for yourself. Everyone
here knows what programming is & I advise you to write the best code you can.

So, let’s dive right into it:

• Rust homepage

Rust’s advantages

• Rust wiki page

https://www.rust-lang.org/
https://uk.wikipedia.org/wiki/Rust_(%D0%BC%D0%BE%D0%B2%D0%B0_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F)

Rust wiki page description

• Rust vs C++

• Steve Donovan’s Rust intro

Hello, World!

Compile error

https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popular-programming-languages/
https://stevedonovan.github.io/rust-gentle-intro/1-basics.html

Variable

For-loop

Nearly everything is an expression

Immutability

Functions

How returns work

Immutable references

Mutable references

Arrays

More on arrays: here

• The Book

Ownership intro

https://stevedonovan.github.io/rust-gentle-intro/1-basics.html#arrays-and-slices
https://doc.rust-lang.org/nightly/book/title-page.html

Ownership rules

Stack-allocated move semantics

Heap-allocated move semantics

So, as you can see, Rust is a general-purpose programming language, just like a multitude of
other languages. At the next meeting, we are going to practice Rust with Rustlings - a fun &
interactive way to learn Rust by correcting the code (just like RubyKoans).

Practice: Rustlings

Hey everyone! So today is our first practice. During practices, we will mostly look at the
code & practical aspects of things we learn during the lectures. I hope to see participation
from you, but if not, I will continue with the answer. Today we are going to take a look at
Rustlings. This is an interactive Rust learning app, which I have personally used and
attribute a lot of credit to my Rust knowledge to it. We’ll work on the problems in Rustlings
https://github.com/rust-lang/rustlings

What should we add here to make the code compile?

Let’s check the formatting information.

Week 2
• Rust revision (advanced)
• Blockchain development
• Ethereum

https://doc.rust-lang.org/rust-by-example/hello/print.html

Materials: The Book, What is bitcoin, What is Web3, Hyperledger Fabric

Homework: Create a simple CLI signer for ed25519 signatures. Possible libraries: clap,
ed25519, log

Lecture: Advanced Rust

Alright, since we need to move at a mad pace to complete the course, we’ll try & cover
everything we need in two lectures this week. The first lecture would be about higher-level
Rust, while the second would be about blockchain development. We need to understand
high-level Rust in order to be able to reflect blockchain concepts.

The high-level Rust we are going to talk about today is traits & generic mostly. Traits are the
behavior inheritance mechanism in Rust. They are similar to interfaces in other languages
(but not quite).

• Traits

Traits are collections of some data-agnostic behavior. That’s really the bottom line.

We can define a trait the following way:

https://doc.rust-lang.org/nightly/book/title-page.html
https://academy.binance.com/uk/articles/what-is-bitcoin
https://ethereum.org/en/web3/
https://www.hyperledger.org/use/fabric
https://doc.rust-lang.org/book/ch10-02-traits.html

Let’s look at how to implement a trait for a type:

As we can see, we don’t use the content field of NewsArticle. We don’t need the contents in
the summary.

Now, can the traits have a default implementation? Turns out they can! That is unlike in
many other languages.

Here, we don’t use self as we cannot know, which fields the implementer has.

Though, we can control that in a way - let’s take a look in the advanced traits section.

• Advanced Traits

Types in Rust might implement a lot of traits. It is not uncommon for some traits to have
methods with equal names. Moreover, if a type has a method, say, foo, it’s possible to
implement a multitude of traits with method foo on this type.

“When calling methods with the same name, you’ll need to tell Rust which one you want to
use. Consider the code in Listing 19-16 where we’ve defined two traits, Pilot and Wizard,
that both have a method called fly. We then implement both traits on a type Human that
already has a method named fly implemented on it. Each fly method does something

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name

different.” (https://doc.rust-lang.org/book/ch19-03-advanced-traits.html)

So, how do we differentiate between those different methods? How do we call them?

Question: What will this code do?

Below we show how to call the methods of different traits on some value.

“However, associated functions that are not methods don’t have a self parameter. When
there are multiple types or traits that define non-method functions with the same function
name, Rust doesn’t always know which type you mean unless you use fully qualified syntax.
For example, the Animal trait in Listing 19-19 has the associated non-method function
baby_name, and the Animal trait is implemented for the struct Dog. There’s also an associated
non-method function baby_name defined on Dog directly.”
(https://doc.rust-lang.org/book/ch19-03-advanced-traits.html)

Generally, to disambiguate the type, we need to use the following syntax: <Type as
Trait>::method(args)

Here’s an example that refers to our Animal hierarchy:

This is
heavily used in Substrate, as we will see later.

There’s also one more thing we need to know: supertraits and trait bounds. Let’s look at
another example from the Book.

Let’s take a look at the complete, working example.

Now, as we got traits fully out of the way, let’s dive into macros. It might seem intimidating
at the first glance, but I promise they’ll make sense in the end!

• Macros

So, in short, macros are a compile-time code generation tool. They are very different from
the macros we are used to in C and C++: these macros are hygienic. You can read more
about macro hygiene here.

https://doc.rust-lang.org/book/ch19-06-macros.html
https://en.wikipedia.org/wiki/Hygienic_macro

This example shows us the vec! macro. We can use vec to conveniently create vectors with
some elements (like with an initializer in cpp):

fn main() {
let my_vec = vec![1, 2, 3, 4, 5];
my_vec.into_iter().for_each(|item| println!("{item}"))
// this is a new syntax for printing captured vars,
// btw

}

So, in the macro definition, we can see some weird syntax with dollar signs, types, stars etc.
In our scope, we will not look into how macros work, but in general, those are syntactic
constructs that define some calling syntax and output some code on invocation (during
compilation).

So in our case, the vec! invocation will turn into this:

fn main() {
let my_vec = {

let mut temp_vec = Vec::new();
temp_vec.push(1);
temp_vec.push(2);
temp_vec.push(3);
temp_vec.push(4);
temp_vec.push(5);
temp_vec

};

my_vec.into_iter().for_each(|item| println!("{item}"))
}

Another type of macros is procedural macros. They look like this: #[some_attribute].

We won’t look much into them, only how to use them. The general difference between
procedural & declarative macros is that procedural macros are full-blown programs
running in the compiler, while declarative macros are kinda like functions for code
generation. Procedural macros operate on TokenStreams, while their declarative
counterparts operate on concrete language constructs: expressions, literals, types, visibility
items, and other stuff.

Today we’ve taken a look at the most important features of advanced Rust used in
Substrate. That’s on top of all of the basic features, of course. This is the end of our Rust
study/revision. Next, we will have some theoretical stuff to work through, but then we’ll get
to writing Substrate. This will be one big practice for Rust, as well as blockchain
development concepts we’ll learn about next.

Lecture 2

Hello again, everyone! Today is the second lecture of our week. In this lecture, we’ll be
talking about blockchains in general. We’ll work using a blockchain learning path kindly
provided by Kyrylo Gorokhovskyy to me. We’ll cover the basics as much as possible.

So, let’s start with simple things: primitives of blockchain technology.

https://github.com/protofire/blockchain-learning-path

After we got the crypto intricacies out of the way, let’s check how bitcoin works. This will
take some time.

After covering the most basic stuff (hashes, digital signatures, cryptography, PKI, and so
on), we will move on to covering bitcoin. Bitcoin is the first cryptocurrency, but it is really
advanced. Definitely worth understanding how it works.

This is the anatomy of the node:

After getting an understanding of how Bitcoin works, let’s take a look at its consensus
algorithm: Proof of Work. One great video on how bitcoin works.

Week 3

Homework: go through all of the materials, and finish the Ethereum article.

Lecture: Ethereum, smart contracts

Understanding the first advanced smart contract platform, Ethereum, is essential to
understanding the whole blockchain development fuss. Ethereum was the first blockchain
to show that one can write decentralized programs, which would be verified by all network
participants.

https://academy.binance.com/uk/articles/what-is-bitcoin
https://www.researchgate.net/publication/349787845_Blockchain_in_Cyberdefence_A_Technology_Review_from_a_Swiss_Perspective/figures?lo=1
https://academy.binance.com/uk/articles/proof-of-work-explained
https://www.youtube.com/watch?v=bBC-nXj3Ng4

You might ask, why they are called contracts. Well, to be fair, I don’t know. But I’m pretty
sure it was some gimmick to attract business people to adapt Ethereum. Anyways.

Today we’ll spend most of the lecture revising how Ethereum works, so prepare yourself for
a pretty big journey here.

Let’s look at the blockchain definition from the article:

https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df506369

A more detailed explanation of Ethereum’s paradigm:

Here we can see a diagram of how the state progresses within the blockchain. The possible
state changes between some block N and block N+1 can be described by a state transition
function. The state transition function is the whole collection of things that can change the
chain state - smart contract calls, logs, balance transfers, paying fees etc. In other words, we
can define everything that happens on a blockchain by its state transition function. This is a
common thing for all blockchains that contain any logic - even bitcoin. Bitcoin script
executions, UTXO assignment - those are the parts of the state transition function of bitcoin.
STF is an important term to remember, as Substrate also has its state transition function. In
Substrate, the state transition function is fully customizable and is named runtime.

This diagram shows us the results of the process of block production. When we produce
blocks, we might naturally get forks, because different validator nodes might be on different
blocks when producing the next block. To choose the correct block, we need some
mechanism. This mechanism is different from blockchain to blockchain, but since we’re

talking about Ethereum now, let’s look at GHOST.

Basically, we deem the blocks which base on the longest finalized chain as correct. Polkadot
has something similar:

We’re not going to get much deeper than that. This understanding of finality should be
enough.

Now, let’s look at the account model of Ethereum:

Below we can see a diagram of how transactions are initiated on Ethereum:

Now, let’s take a look at another important, defining thing in Ethereum & in account-based
blockchains as a whole. The state of the blockchain is described by the ledger (connected
blocks), but we also have the state, which is attached to each account. This state contains the
transactions initiated by this account, the balances, etc. For contracts, this state also
contains the code hash of the contract.

The state is described using Merkle Patricia trees, analogously called tries.

Let’s take a deeper look into the article and talk about gas and smart contracts.

If we still have time after taking on this beast of an article, well, we can have some QnA time
to discuss everything covered before.

Lecture: Substrate

Hello again, everyone! Today is the day we finally start learning Substrate. We’ve covered a
lot in the previous two weeks, so let’s use our knowledge in our main learning subject -
Substrate.

Substrate is a framework that allows us to build efficient, future-proof, and modular
blockchains with a LOT of features provided out-of-the-box.

Let’s take a look at the general architecture of Substrate. What provides the flexibility of
Substrate? The answer is FRAME. This architectural part is responsible for modularizing
functionality, allowing for hot swaps & runtime code upgrades.

• General node architecture

This is
the architecture of a substrate client (read substrate node). As we can see, it has a number
of things in it:

1) P2P Networking module

2) RPC module

3) Storage with the WASM runtime in it

4) Consensus module

https://docs.substrate.io/v3/getting-started/architecture/

5) Telemetry module

6) Native runtime

Let’s quickly take a look one by one:

• The P2P networking module is responsible for transaction propagation. When a
node receives a transaction via an RPC call, the node must propagate this transaction
to the peers so that the whole network executes it.

• RPC is responsible for receiving the transaction calls & hosting different host
function endpoints (as in chain-specific functions).

• Consensus is the module that is responsible for, you guessed it, consensus. The
consensus is pluggable, meaning we can choose different consensus algorithms for
different chains.

• Telemetry is just some endpoints that transmit node metrics.

• Native runtime is everything that’s available for use in and outside of the WASM
runtime: same and more functions, same and more modules. The native runtime was
created to overcome the slowness of the WASM runtime, but it cannot provide
guarantees of equal execution of STF between different nodes. Simply, if you’re
gonna expect equal computation results of equal calls on different nodes, you might
not get them.

• Runtime architecture

“The runtime of a blockchain is the business logic that defines its behavior. In Substrate-based
chains, the runtime is referred to as the "state transition function"; it is where Substrate developers
define the storage items that are used to represent the blockchain's state as well as the functions
that allow blockchain users to make changes to this state.”

https://docs.substrate.io/v3/concepts/runtime/

(https://docs.substrate.io/v3/concepts/runtime/)

As we can see, everything that makes a chain special in terms of its application logic is
compiled to WASM and stored in the storage. Everything else is either part of each
individual node (tx pool, finality, storage, block production, RPC, p2p server, native
runtime).

• FRAME

FRAME is an architectural approach to building a substrate node, which makes the chain
flexible and easily upgradeable. FRAME stands for the Framework for Runtime Aggregation
of Modularized Entities. That’s a mouthful.

Looking

https://docs.substrate.io/v3/runtime/frame/

at this diagram, we see the following: - Runtime. Runtime is composed of default/custom
FRAME pallets, execution module, support library, and the system module. - The Executive
is responsible for executing the transactions within a block, progressing block state, and
other core block-related things. - Runtime modules fill our runtime with logic - we can add
the Balances pallet to track the balances of an account, the Transaction Payment pallet to
enable the payments for the transaction execution, the Timestamp pallet to insert block
timestamps, etc. - The System module is mainly responsible for managing how our runtime
is constructed, managing transaction origins, etc. - The Support Library is just a collection
of useful traits, macros and other stuff related to our blockchain.

Out of all those things, those are the Runtime Modules we choose that make our runtime
special.

Now, let’s talk about the transactions, cause what is a blockchain without transactions?!

• Extrinsics

Let’s take a look at the definition of an extrinsic:

An extrinsic is a piece of information that comes from outside the chain and is included in a block.
Extrinsics fall into three categories: inherents, signed transactions, and unsigned transactions.

So, how is it different from transactions? Answer: A block in Substrate is composed of a header
and an array of extrinsics. The header contains a block height, parent hash, extrinsics root, state
root, and digest.

Basically, extrinsics are very similar to transactions. The difference is rather in the
etymology of the word itself - transactions are thought of as something that has a monetary
value (or execute some logic in the case of blockchains), while extrinsics are more generally
pieces of external information.

Frankly, we, Substrate devs, use transactions and extrinsic interchangeably.

Let’s talk about signed and unsigned transactions. The difference is mostly inferred from
the name. Signed transactions are signed by network participants (as in people), while
unsinged txs are not signed by anyone. This means we have to define custom validation
logic for those transactions. Signed transactions are like Ethereum transactions, while
unsigned transactions can be thought of more like system-related transactions. One must
use it with care because since no one signs those txs, no one pays the fee.

• Weights

https://docs.substrate.io/v3/concepts/extrinsics/
https://docs.substrate.io/v3/concepts/weight/

When we use our blockchain, the gas is used to provide to miners for the following:

Substrate does not use the concept of gas, as it doesn’t have predefined opcodes like the
smart contracts in Ethereum. Instead, we pay based on the length of our tx, state changes &
the time consumed for the computation. You might say that on each node the execution
times might be different, and you would be right. That’s why Substrate standardizes
hardware, based on which the weights are estimated.

inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight_fee];
final_fee = inclusion_fee + tip;

Materials: Substrate docs, Polkadot wiki

Week 4

Homework: Create a faucet that mints tokens to the requestor every, say, 16 blocks,
meaning the requestor cannot get tokens if 16 blocks had not passed since the last mint.
Also, since this transaction is lightweight and cannot be repeated more than 1 time in 16
blocks, disable transaction fees for that. The transaction must be signed. You can do the
minting using the Currency trait and setting it to pallet_balances’ implementation (Balances
in runtime/lib.rs). Use issue and resolve_into_existing methods. The implementation is totally
up to you (minting right away, approving mints by superuser/governance - how far you
want to go). More on that: tight pallet coupling, Currency trait.

Practice: Substrate FRAME

Alright, so here comes our practice. During the previous lecture, we discussed how
Substrate generally works, while also checking out Extrinsics & Weights. That’s the most
important info we should know to get right into Substrate development.

During this practice, we will complete this tutorial.

https://substrate.io/
https://wiki.polkadot.network/docs/getting-started
https://docs.substrate.io/how-to-guides/v3/pallet-design/tight-coupling/
https://docs.substrate.io/rustdocs/latest/frame_support/traits/tokens/currency/trait.Currency.html
https://docs.substrate.io/tutorials/v3/create-your-first-substrate-chain/

Let’s dive right into this. Before we start with the code, I’d like to go over some theoretical
aspects of a blockchain node, which are provided in the tutorial.

So, as we have seen before, a blockchain node consists of a couple of things. The storage is
responsible for storing all of the accounts / UTXO data, the code to run, blockchain
metadata & so on. Some nodes have a more extensive storage use (like Substrate, which
uses storage for all of the STF code), and some have a less extensive storage use (like
Bitcoin). The P2P networking is an essential part of a blockchain node since it is
responsible for propagating the transactions among the node’s peers and receiving such
gossip. The consensus says everything for itself. These data handling capabilities imply
having some RPC/REST set up to receive the transactions, which are ultimately this
extrinsic information. A runtime is that thing we talked about in the last lecture.

Now, let’s go to the page of this tutorial & complete it.

(If we have time, we might take on Nicks pallet tutorial).

Practice: runtime upgrades & governance

Hey! Getting familiar with Substrate already? Well, this week you’ll become even more
familiar with it. Today we are talking about more core features of Substrate that make it a
great framework. And the first one I’d like to talk about is forkless runtime upgrades. This
is a technique to update the runtime (remember, the state transition function) without
actually redeploying the nodes. This is possible thanks to a WASM runtime. Since the code
is just some bytes stored within the node’s storage under some key, we can easily update it,
just like we update values in a database. Of course, not all network participants can
arbitrarily update the code for all nodes. This requires some higher privileges. While it is
possible to do using pallet-sudo, having one privileged user within a decentralized network
isn’t typically a best practice. Instead, production chains (Polkadot, Kusama, Moonbeam,
Acala, etc.) use various governance mechanisms to vote for an upgrade and update the code
collectively. In this way, this DAO-based approach pretty much reflects modern
governmental systems, with elections, voting, etc.

So, without further ado, let’s get to it!

Forkless Upgrade tutorial

https://academy.binance.com/en/glossary/gossip-protocol
https://docs.substrate.io/tutorials/v3/add-a-pallet/
https://docs.substrate.io/tutorials/v3/forkless-upgrades/

To summarize, we checked out the Scheduler pallet & how to do forkless runtime upgrades.

Now, to do proper upgrades, we’ll have to use some decentralized approach for deciding on
the feasibility, security, and importance of an upgrade. pallet-collective will help us with that.
To wrap things up, I’d like to check out the governance, presented on Polkadot &
implemented using Substrate. here.

Week 5

Lecture - ink! and smart contracts

Hello everyone! Today is the beginning of week 4 of our course. Today’s topic is ink! and
smart contracts.

ink! and smart contracts in Substrate are definitely not the most popular thing in the
ecosystem. Although it’s rigorously discussed within the community, no parachain (as of
May 2022) supports WASM-based smart contracts in production (as in Polkadot, Kusama,
etc.).

Then why would we take a look at it?! Well, ultimately, it’s because we become better
programmers when we learn from different languages, frameworks, etc. Moreover, we start
to better understand the intrinsics of a system. In our case, we might compare
Solidity/Near SDK/Solana Programs/etc to ink! to see commonalities and differences.

Let’s dive right into it. ink! is an eDSL for pallet-contracts-based smart contracts. ink! is
compiled to WASM. So, in other words, ink! is a language in which we write smart contracts
(mind you, ink! is also valid Rust), then it compiles to WASM, then this WASM code gets
executed in pallet-contracts. pallet-contracts is a stack-based virtual machine that supports
WASM evaluation, memory, etc. As opposed to Solidity, ink! is not compiled to bytecode,
which means it does not have its set of opcodes to operate with. Consequently, the concept
of “gas” is very different in pallet-contracts rather than EVM.

With this general info, we might proceed & take a look at the practical part here!

Materials: ink! docs, Openbrush, ink! tutorial

Homework: Create a mintable-burnable PSP22 token using Openbrush (no UI integration
needed).

QnA - Integrating a real-world application with blockchain & QnA with Gautam Dhameja

Materials: How to integrate a blockchain with a business

So, this will be the last meeting in this course. We already covered a lot, had massive
amounts of practical tasks, and learned a bit about the usage of Substrate. Today I’d like to
invite Gautam Dhameja, Director of Solution Delivery @ Parity Technologies.

So, what I’d like to go through:

1. Parachains, parathreads, relay chains - how to go from a Substrate chain
running locally to the one real people are using

https://github.com/paritytech/substrate/tree/master/frame/collective
https://wiki.polkadot.network/docs/learn-governance
https://docs.substrate.io/tutorials/v3/ink-workshop/pt1/
https://paritytech.github.io/ink-docs/
https://openbrush.io/
https://docs.substrate.io/tutorials/v3/ink-workshop/pt1/
https://medium.com/swlh/blockchain-integration-a-step-by-step-guide-7371f49c72e1

2. What is the benefit of using Polkadot, as opposed to say Ethereumv2
3. Smart contracts vs custom blockchain
4. How to build a business model around a Substrate-based blockchain

Our logical conclusion

This course has come to an end. We’ve covered a lot. I am sure that those who attended
every meeting have learned something new, something that widens the outlook for the
developer inside. I will always be happy to see you as builders, somewhere in the Web3
space, or just quietly enjoying Rust, even as a fun activity.

Literature used

1. Rust homepage [Електронний ресурс] – Режим доступу до ресурсу:

https://www.rust-lang.org/

2. Teams who build in Substrate [Електронний ресурс] – Режим доступу до ресурсу:

https://substrate.io/ecosystem/projects/

3. Ukrainian Wikipedia Rust page [Електронний ресурс] – Режим доступу до ресурсу:

https://uk.wikipedia.org/wiki/Rust_(%D0%BC%D0%BE%D0%B2%D0%B0_%D0

%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2

%D0%B0%D0%BD%D0%BD%D1%8F)

4. Rust vs C++ [Електронний ресурс] – Режим доступу до ресурсу:

https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popul

ar-programming-languages/

5. Steve Donovan’s Rust intro [Електронний ресурс] – Режим доступу до ресурсу:

https://stevedonovan.github.io/rust-gentle-intro/1-basics.html

6. The Rust Programming Language [Електронний ресурс] – Режим доступу до

ресурсу: https://doc.rust-lang.org/nightly/book/title-page.html

7. Rustlings [Електронний ресурс] – Режим доступу до ресурсу:

https://www.rust-lang.org/

8. Symmetric vs Assymetric encryption [Електронний ресурс] – Режим доступу до

ресурсу:

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-dif

ferences

9. What is bitcoin [Електронний ресурс] – Режим доступу до ресурсу:

https://academy.binance.com/uk/articles/what-is-bitcoin

10. Blockchain in Cyberdefence: A Technology Review from a Swiss Perspective

[Електронний ресурс] – Режим доступу до ресурсу:

https://www.researchgate.net/publication/349787845_Blockchain_in_Cyberdefenc

e_A_Technology_Review_from_a_Swiss_Perspective/figures?lo=1

11. What is Proof of Work [Електронний ресурс] – Режим доступу до ресурсу:

https://academy.binance.com/uk/articles/proof-of-work-explained

12. How does Ethereum work, anyway? [Електронний ресурс] – Режим доступу до

ресурсу:

https://preethikasireddy.medium.com/how-does-ethereum-work-anyway-22d1df5

06369

https://www.rust-lang.org/

13. GRANDPA: A Byzantine Finality Gadget [Електронний ресурс] – Режим доступу до

ресурсу: https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf

14. Substrate Documentation [Електронний ресурс] – Режим доступу до ресурсу:

https://docs.substrate.io/v3/getting-started/overview/

15. Polkadot wiki [Електронний ресурс] – Режим доступу до ресурсу:

https://wiki.polkadot.network/docs/getting-started

16. Gossip Protocol [Електронний ресурс] – Режим доступу до ресурсу:

https://academy.binance.com/en/glossary/gossip-protocol

17. Substrate Tutorials [Електронний ресурс] – Режим доступу до ресурсу:

https://docs.substrate.io/tutorials/v3/

