V]IK 512.64+517.938
V. V. Plakhotnyk

CLASSIFICATION OF THE OBSERVABLE AND REACHABLE
DISCRETE LINEAR DYNAMIC SYSTEMS WITH
ONE-DIMENSION INPUT AND OUTPUT SPACES

Canonicalforms of the systems, given in the head, are described in this article.

Accordance [1], [2] a linear dynamic system is
the a triple (F,G, H) of operators: F : Q — @,
G:A— Q H:Q — B, where A is an input
vector space, B is an output vector space, () is a
state vector space. Everywhere bellow we will identify
operators with their matrices in some fixed basis. If
dimA = dimB = 1 and the matrix, which is a
collection of the columns (G|FG|...|F"1G) (the
matrix (H|HG)|...|HF™ 1)!) is a regular one then
the system is called a reachable one (an observable
one); here n = dim(@) and ¢ means an operator of the
matrix transposition. Let us construct a matrix M of
the system (F, G, H) in such a manner
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There are invariant definitions of equivalent systems,
but all of them are equivalent the next one, which will
be used.

Two systems (Fy, G, Hy) and (Fy,Ge, Hs) are
equivalent ones if there exists a regular matrix 7" such
that TFy, = F5T, TGy = Go, Hy = H,T.

The canonical forms of the equivalent classes for
systems which are only reachable or only observable
has been know (see [2], [3]).

Canonical forms of equivalent classes for the
systems which have only one of these properties
(reachable or observable) is long ago well known.
But it is impossible to use these results for obtaining
canonical forms of the systems which are reachable
and observable ones, because an additional restriction
(regularity condition) on matrix elements of the
known canonical forms leads to the essentially more
complicated forms.

The aim of this paper is to present canonical
forms of reachable and observable systems, where
all restrictions on matrix elements a;; have the form:
aij # 0, a;; = 1, a;; = 0 for some values 4, j.

Definition 1. Let M = < Z %; ) be a dynamic

system with one - dimension input and output spaces.
For a given elements p # 0,a1, ... ,am of a field let
us define the extension of the system M in such a way:
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Lemma 1. The system M is reachable if and only if
the system M is reachable.

The direct checking gives the following equalities:
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Here by symbols "*" we marked numbers, whose
value can be found, but they do not affect our
reasoning. Other elements can ber expressed by the
numbers So,B1,-.- ,0n-1, (0 = dim@), though
values of these numbers are also not essential.

Reachability of the system M means, that the
matrix columns given above, are linearly independent
ones. This condition, in view of a kind of the
first m matrices of this list, is equivalent to a
linear independence of the columns G, GG + FG,
G + BoFG + F?G,... ,Bn—2G + Bn3FG +
+ ... + BoF™ %G + F™~1G, that is equivalent to
a linear independence of the columns G, FG,
F2@,... ,F"'G. This gives the reachability of the
system M.

Lemma 2. The system M is observable if and only if
the system M is observable.

The direct checking gives the following equalities:

H=p(0 0 0 10)
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Observability of the system M means, that the
matrix rows given above, are linearly independent
ones. This condition, in view of a kind of the first
m matrices of this list is equivalent to the linear
independence condition of the rows H, foH + HF,
BiH+BoHF +HF?,. .., By_oH+pBp sHF +...+
+ BoHF™ % + HF™! 1t is equivalent to a linear
independence of the rows H, HF, HF,,... ,HF,_;.
This gives the observability of the system M.

Theorem 1. An arbitrary linear dynamic system with
one — dimensional input and output spaces, which is
reachable and observable, is equivalent to a system
which is consecutive extensions one of the systems as
starting points:
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where p # 0, and by symbols "*" some elements of
a field are marked.



Lemma 3. Linear dynamic systems
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are equivalent.

(The undefined elements "*" belong to the rows,
which numbers are 1, n + 1 for the first matrix and
1, m, m + 1 for the second one; the element p # 0
belongs to the m~th column, m > 1).

Really, let us change the first matrix by elementary
transformations of the form — adding the m-th column
multiple to the columns with the numbers m + 1,m +
+2,...,n.In this way one can last row, gets the which
coincide with the last row of the second matrix. Then
under inverse transformations the m+1,m+2,... ,n—
th rows will be added to the m~th row. Since other
rows, except first row, remain without changes we get
second matrix.

Lemma 4. Linear dynamic systems
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are equivalent.

(The uncertain elements of matrices of these
systems are marked by the symbol "*" ; they stand
in the rows number 1,2 and m + 1 of the first matrix,
and also in rows number 1 and m + 1 of the second
one; the element p # 0 stands in the column number
m2<m<n).

Really, if we shall change the first matrix by
elementary transformations, adding a column number
1, multiplied by the appropriate numbers, to columns
number 2, 3,. .. ,n, reducing its second row to a kind
given in the second matrix, at completion of inverse
transformations, rows number 2,3,... ,n of the first
matrix will be added to its first row. As other rows,
except the first and second one, will not change at such
transformations, we shall receive the second matrix.

Proof of theorem 1. Taking into consideration the
reachability of given system, we can conclude, (look
[1], [2]), that its matrix is the first matrix given in
the lemma 3. Thus, if m = n, the statement of the
theorem is trivial, as then the matrix of the system
will coincide with the one of matrices u,, given in the
theorem. Using the lemma 3, we receive the second
matrix of this lemma, which is equivalent to the first
one.

Let’s consider the matrix M, which is the special
case of the second matrix from the lemma 3 (if r = m)
and of the first matrix from the lemma 4 (if m = 1).
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— matrix, in which uncertain elements, signed by
symbol "* stand in rows number 1, 7 + 1 and m + 1,
where 1 <r <m , and element p # 0 — stands in
column number m.

By induction for r we shall prove, that this matrix
M is equivalent to the second matrix from lemma 4.

Base of an induction gives lemma 4, as foritr = 1.

Let’s change the matrix M by elementary
transformations: adding the column with number r,
multiplied by an appropriate number, to the columns
number r + 1,7 + 2,... ,n. By these transformations
we can get r+ 1-th row equal zero. Then under inverse
transformations the rows with the numbersr + 1,7 +
+2,...,n, will be added to the r—th row. Since other
rows (excepting 1-st and r-th ones) remain without
changes, we get a matrix of the similar form, where
parameter r has decreased on the 1.

According to the assumption of an induction such
matrix is equivalent to the second matrix given in the
lemma 4. It was necessary to prove.

To finish the proof of the theorem 1, it is enough to
note, that the second matrix given in lemma 4, is the
extension of a matrix of a smaller dimension, which
according to lemmas 1 and 2 are both reachable and
observable ones. Applying the given above reasons to
it, we shall after all receive a matrix, for whichm = n,
that is one of the matrices yu,, given in the theorem 1.
It complete the proof.

Theorem 2. Let systems My and My be a minimal
linear dynamic systems with one-dimensional inputs
and outputs spaces, and
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My = Mi(p;oa, ... ,am) = < 1 - >,

Hy | 0

M2'=M2(q;61";'7:3k)=( 522 G02 )

are their extension. Systems My and M, are equivalent
if and only if systems M, and My are equivalent ones
andk=m,p=q o;=B;foralli=1,2... ,m.

Let a map ¢ gets the equivalence of M; and M,
that is (pFl(p_l = F, (pGl =Gy, Hi = Hg(p. Let’s
take T = < gj
of the extension of linear dynamical systems we shall
receive equalities TF, = BT, TGy = Gz, Hy =
= H,T so systems M, and M, are equivalent, as it
was necessary to prove.

, then according to the definition

Lemma 5. If systems My = My(p;ay, ... ,0m) and
My = My(q; 51, -- . , Br) are equivalent, then k = m,

It is enough to prove that for any system,
whose matrix looks like given in lemma 4, the
place of an element p (in the column number m)
is unique determined by this system. Really, the
basis ej, e2,...,e, of state space ) gets out so
that the operator F' transforms subspaces, which are
constructed by the base vectors, according to the
circuit

G(A) = (e1) — (e1,e2) — (e1,e2,€3) =
$0. iy —> (61,62,... ,en) = Q

Then the number m will be the least natural
number, for which operator H acts nontrivial, that is
dim Fl = dim FzH(B], €3, ,en) ’r‘ 0. The equality
dimF; = dimF5 follows from consequences k = m
and , and it was necessary to prove.

Let’s return to the proving of the theorem 2.

Let’s assume, that the systems M; and M, are
equivalent.



Let’s sign (taking into account lemma 5):
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then according to the definition of extension we’ll
have
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Let’s sign also through p(X) and v(X') matrices,
which accordingly are formed from a matrix X by
withdrawing of the first row, or the last column.
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follows from the equivalence of systems M; and Mo,
for which TFy, = BT, TGy = G, Hy = H,T.

The next lemma follows directly from the last two
equalities.

The existence of a matrix T =

Lemma 6. The matrix P has a zero first column and
the matrix @) has a zero last rvow. The first column and
last row of a matrix R looks like

il

B3, 1.0 0 ).

Lemma 7.
P=0, Q=0.

Let us deduce from the matrix equality TF; =
= F,T, the next ones RHy + QF, = ¢2Q + H,S,
Py, +8G1 = GoR+F,P. As follows from the lemma
6, we have u(RH) = 0, u(H,S) = 0, v(SG,) =
= 0, »(G2R) = 0, and we shall receive equalities
MQF1) = p(p2Q) and v(Pep1) = v(Fap1).

From the first of them for rows g1, ¢2, ... ,qn-1,9n
of a matrix Q) we get

g2 F1 qQ

q3F1 Q2
gn-1F1 Gn—2

anF1 In-1

whence we shall receive ¢,—1 = g2 = ... =
= g2 = q; = 0 (as ¢, = 0 according to lemma 6), so,
we can see, that @) = 0.

From the second equality for columns
P1,P2,--- ,Pn-1,Pn Of a matrix P we shall receive
( P2 Pp3 Pn-1  Pn ) =
( apy  Fopo Fopny Fopn—i ).
From here, taking into account, that p; = 0 according
to lemma 6, we shall receive ps = p3 = ... =p,_1 =

= By =0, herice P =0:
Lemma 8. The matrix R is the unit.

Taking into account the previous lemma, from a
condition TFy = F»T of equivalence of systems we
shall receive Ry;1 = 2R, so, by rejecting the first
row, we get the equality

22 n— T2,m—1 r2,m 0
32 i T3,m-1 T3,m 0
Tm—1,2 Tm—1,m—-1 Tm—1,m 0
T'm,2 Tm,m—1 Tm,m 0
11 ri12 T1i,m-1 Ti,m
T21 r22 r2,m-1 T2,m
Tm—-2,1 Tm-2,2 Tm=2m—-1 Tm-=2m
Tm-1,1 Tm-1,2 Tm—-1,m-1 Tm-1m

Taking into account the lemma 6 (concerning to
the matrix R), we see, that R is the unit.

To finish the proof of the theorem 2, it is necessary
to use a condition of equivalence of systems, and of
as lemmas 7 and 8 once more.

The theorems 1 and 2 enable to find all canonical
varieties of reachable and observable linear dynamic
systems with one-dimensional inputs and outputs
spaces for a fixed dimension of the space @ and to
find out their quantity.

Corollary 1. If dimQ = n, then there exist 2"~!
canonical varieties of reachable and observable
systems with one- dimension input and output spaces.

Really, let a,, is a quantity of canonical varieties
in dimension n. To get all canonical varieties in
dimension n + 1 we must take advantage of the
theorem 1, to find all extensions of varieties in smaller
dimension and adding to them a variety p,41. All



the systems formed in such a way are not equivalent
according to the theorem 2, so they form canonical
varieties. We have equality

Gn+l1 =Qp+0ap-1+...+a2+a; +1.

As a; = 1 (only the variety u,), it’s easy to prove by
induction that a,, = 2"~1.

Example 1. To write out all canonical varieties for
n = 3, it is necessary at first to write out them in
dimension 2. Lets construct extensions of a degree
1 of system py to dimension 2, that is system [i; =

* P 1
= 1 = | 0 |, which together with system s
p2 010

will give a complete set of nonequivalent systems
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in dimension 2. Building extensions of degree 2 for
1 and extensions of degree 1 for s and for ji,
together with us we shall receive a complete set of
nonequivalent canonical forms in dimension 3:
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