
Ministry of Education and Science of Ukraine

National University of "Kyiv-Mohyla Academy"

Network Technologies Department of the Faculty of Informatics

Development of a methodology for using microservice architecture in the

construction of information systems

Master thesis

in specialty “Computer Science and Information Technologies” 112

Master’s work supervisor

senior lecturer, candidate of technical science

Cherkasov D. I.

(signature)

“____” ____________ 2021 yr.

Made by student

Zhylenko O.V.

“____” ____________ 2021 yr.

Kyiv 2021

1

Ministry of Education and Science of Ukraine

National University of "Kyiv-Mohyla Academy"

Department of Computer Science of the Faculty of Informatics

APPROVED

Head of the Department of Informatics

PhD, associate professor

_______________________ S.S. Gorokhovsky

(signature)_____________________________

“____” ____________ 2020 yr.

INDIVIDUAL TASK

for master’s work

For the student of the Faculty of Informatics of 2 course of studying

THEME Development of a methodology for using microservice architecture in

the construction of information systems

Output data:

Content of master thesis:

Individual task

Calendar plan

Abstract

Introduction

Part 1: Microservice architecture overview

Part 2: Requirements to microservice architecture

Part 3: Developing methodology for writing application using microservice

architecture

Results

References

Applications

Issue date “____” ____________ 2020 yr. Supervisor __________________

 (signature)

Task received __________________

(signature)__________

2

Theme: Development of a methodology for using microservice architecture in the

construction of information systems

Calendar plan of coursework execution:

№ Stage name Deadline Notes

1. Getting of master’s work topic 30.09.2020

2. Searching of appropriate literature 05.10.2020

3. Reviewing materials and building

the structure of master’s work

10.12.2020

4. Reviewing microservice

architecture and writing first part

10.01.2021

5. Researching in requirements for

microservice architecture

23.02.2021

6. Writing second part 15.03.2021

7. Developing methodology for

writing services using

microservice architecture

30.03.2021

8. Writing third part 15.04.2021

9. Writing master’s results 20.05.2021

10. Master’s work analysis with the

supervisor

22.05.2021

11. Master’s work changing according

to the supervisor’s remarks

23.05.2021

12. Creating of presentation 01.06.2021

13. Defending of the master’s work 17.06.2021

Student Zhylenko O.V.

Supervisor Cherkasov D. I.

“____” ________________

3

Contents

Abstract ... 4

Introduction .. 5

1. Microservice architecture overview ... 7

1.1. Microservice architecture definition .. 7

1.2. The twelve-factor app .. 9

2. Requirements to microservice architecture ... 18

2.1. Requirements definition ... 18

2.2. Quality attributes .. 19

Observability .. 19

Portability ... 20

Security... 20

Maintainability ... 20

3. Developing methodology for writing application using microservice

architecture ... 22

3.1. Observability guides .. 22

3.2. Portability guidelines ... 35

3.3. Security guidelines ... 45

3.4. Maintainability guidelines ... 47

3.5. Prototype .. 51

Results .. 65

References ... 66

4

Abstract

In this work will be defined what is microservice architecture, the most important

quality attributes and system level requirements. We will gather guidelines grouped by

quality attributes that should be used to reduce in future total cost of ownership system

under develop. Created methodology will be used in synthetic Java project to demonstrate

it on real example.

Key words: Microservice, Total cost of ownership, Quality attribute, Observability,

Portability, Security, Maintainability.

5

Introduction

The concept of Total Cost of Ownership is universal, widely used, and not new.

Commonly TCO is calculated for physical assets but it is not so popular for intellectual

like informational systems. Usually we consider this concept afterwards when system

already in production and costs of ownerships become too expensive. Systems cannot be

controlled by engineers in effective way, not enough information is collected, root cause

analysis takes too much time, etc. Issues in production and delays resolving that can cause

to huge reputational damage for company and even to penalty fees if issue violate some

constraints established by regulator on market.

Solving such types of problems requires a lot of efforts and can’t be done in short

terms. What attributes must have the system to reduce risk of getting these problems in

future? What system requirements system should satisfy? Defining of system level

requirements is most effective on early stages in the system's design phase. Also,

nowadays It is really difficult to imagine enterprise system that consist of only one

deployment artifact. Great example is microservices architecture which is extremely

popular now. Distributed systems add new challenges and extra complexity to

implementation which will satisfy system requirements.

There are a lot of sources which give recommendation how to divide system to

services based on business capabilities. Even more can be found which give general

principles how to build microservices from technical point of view. Most of them ether

too general to start using them in real world without significant adaptation ether cover

only certain aspect without referencing to system level requirements. Great example of

guidelines is The Twelve Factor App (8). It is very popular now but it does not provide

concrete example of applying each point for real system.

The objective of this paper is to define quality attributes and requirements to build

a system based on microservice architecture and develop methodology which consist of

technical guidelines.

6

Object of the study is microservices quality attributes, system level requirements

and best practices for building systems based on microservice architecture.

The research methods include analyzing of available articles, papers, ongoing

researches and development of a guidelines for building distributed systems.

7

1. Microservice architecture overview

1.1. Microservice architecture definition

The microservice is a software development technique, which is a variant of the

service-oriented architectural style or SOA (Service oriented architecture). Unfortunately,

there isn’t any unified definition for microservices. Martin Fowler said next: “In short, the

microservice architectural style is an approach to developing a single application as a suite

of small services, each running in its own process and communicating with lightweight

mechanisms, often an HTTP resource API.” [4]

Usually when we are talking about microservices we mean self-contained pieces of

business functionality which has clear interfaces. Common aspect of microservices is they

tend to be built as cloud-native application. Microservice application has structure as a

collection of loosely coupled services which are built around business capabilities. Each

service is deployed independently and we tend to reduce centralize management for

services. Other interesting aspect is each service can be written in different programming

language and use different storage type.

To deep dive into microservice architecture definition it makes sense to compare it

with the monolithic architecture which was standard architectural style during long year.

Each application which is built using monolithic style is as a single unit. Often this unit

consist of three main layers: representation layer (static content like HTML pages and

javascript files) a database (usually this is relational database management system like

Oracle), and business layer which is represented as a server-side application. The server-

side application handle HTTP requests, perform domain logic, manipulate with data from

the data storage, decide what HTML view should be presented to the client and return it.

This server-side application is a monolith. If we want to introduce any changes to the

system, we have to deploy new version of monolith.

All logic that handles requests runs in single process. This logic is divided by

classes, functions, namespaces, etc. It depends on language that is used to build the

8

application. Running monolithic application on developers’ local machines requires a lot

of efforts in most cases. Monolith can be scaled horizontally behind load balancer. To

release such application to production deployment pipeline is used.

When people start to deploy more application to the cloud, they start feeling deeply

drawback of such architecture. Even small changes require to rebuild and deploy whole

monolith. Also, it is difficult to keep good modular structure and loose coupling between

modules. It’s impossible to scale some feature independently.

Figure 1.1.1. Microservices vs monolithic applications [4]

These led to the microservice architectural style. Developers start building

applications as suite of services. Services can be deployed and scaled independently.

There is a clear module boundaries and services can be written even in different

programming languages. Also, each service can be managed by different team.

9

1.2. The twelve-factor app

 The well-known "twelve factor application" methodology was drafted by

developers Heroku and was presented by Adam Wiggins in 2011. The methodology is a

set of rules for developing services that are widely used for launching, scaling and

deploying applications. Since nowadays in most cases software delivered as services it

became very popular.

 According to official website the motivation of methodology is to raise awareness

of some systemic problems we’ve seen in modern application development, to provide a

shared vocabulary for discussing those problems, and to offer a set of broad conceptual

solutions to those problems with accompanying terminology [8].

 Let’s deep dive in each point of methodology:

I. Codebase. One codebase tracked in revision control, many deploys.

All application code must be under version control. We should deploy artifact for

development, testing, and production servers that are built from a single repository.

Deployments may contain code in various branches that have not yet been added to the

release. If you have several applications using common code, then the common code must

be separated into a separate library and declared as a dependency. If you have several

loosely coupled applications in one repository, then you must divide the application into

several, each of which must be a twelve-factor application.

10

Figure 1.2.1. Single code base principle [22]

II. Dependencies. Explicitly declare and isolate dependencies

Applications should not have implicit dependencies. All dependencies, both system

and libraries, must be written in the dependency manifest. All modern languages provide

a package manager with a dependency manifest. For Java applications we have all

dependencies in Maven pom file, for Node.js application – in package.json. In addition to

the same application work on different platforms, this will allow new developers to join

the project faster, or to connect new dependencies faster. Docker should be mentioned

here, which isolates and explicitly declares even the dependencies of the OS.

III. Config. Store config in the environment

Configuration is all parameters that can be changed depending on where the application

is started:

• logins, passwords and database addresses;

• third party services and API keys.

11

The code is environment independent as opposed to configuration. Therefore, the code

should be stored in the repository, and the configuration in the environment. If you can

grant public access to our code without compromising personal accounts, you are doing

everything right. A fairly popular option is to use pre-built configuration sets

(development, test and production). This separation is not a good solution, since adding

new environments (QA, UAT, PERF) disproportionately increases the number of

parameters that need to be maintained.

IV. Backing services. Treat backing services as attached resources

Third-party services are databases, mail services, caching servers, and APIs for various

services. A twelve-factor application does not have to distinguish between local and

remote services. Each service is a pluggable resource, the data for connecting to resources

must be stored in the configuration. Replacing the local database with remote (Amazon

RDS for example), or replacing the local mail server with a third-party one, should not

affect the application code.

Figure 1.2.2. Backing service principle [22]

12

V. Build, release, run. Strictly separate build and run stages

Application deployment consists of three distinct phases:

• Build is the transformation of code into an executable package - downloading

dependencies, compiling files and resources;

• Release - merging assembly with configuration. The release is immediately ready

to run in runtime;

• Execution - launching a number of processes from the release.

When developing an application of twelve factors, these stages must be strictly

separated. The build is initiated by the developer when he is ready to push the changes.

This may be a longer process, but after that changes in the release code cannot be made.

On the other hand, the execution phase should be as simple as possible so that it can be

performed automatically in case errors, without developer involvement.

Figure 1.2.3. Build, release, run principle [22]

VI. Processes. Execute the app as one or more stateless processes

The application must run as one or more processes that do not store their internal state.

An application can use data in RAM or on disk as temporary storage. For example, when

transforming images. But any user data must be in persistent storage (pluggable resource).

13

First of all, this is related to session data, since the next user connection may occur to

another process (due to a hardware failure, or a processor reboot).

VII. Port binding. Export services via port binding

Java application can be run inside Tomcat or Jetty but the 12-factor application is

completely self-contained and does not rely on a web server. This is usually done with a

dependency declaration to add a web server library to your application. Spring Boot,

Quarkus, Micronaut, Play Framework comply with this principle.

VIII. Concurrency. Scale out via the process model

Different processes must be handled different tasks. For example, HTTP requests can

be processed by a web process, while long-running background tasks can be processed by

a worker process. This will allow in the future to scale only those processes that are

necessary.

Figure 1.2.4. Process scaling by specialization

It is important that processes should not be run as daemon process. The process

manager must monitor the application's output stream and respond to errors and process

crashes.

14

IX. Disposability. Maximize robustness with fast startup and graceful shutdown

This is a logical consequence of processes that do not store their state. Maximize

reliability with processes that start quickly and shut down gracefully, even if they crash.

Background processes must return the current task to the queue, and processes that handle

requests must complete requests correctly. Every task of any process must be available

for re-execution (for example, using transactions).

15

X. Dev/prod parity. Keep development, staging, and production as similar as possible

There is a significant difference between development and deployment - it is done by

different people, at different times, and with different tools. When introducing twelve

factor application methodology, you should try to get development and deployment as

similar as possible:

• The time gap - the code should reach the production version in a few hours after

the developer wrote it;

• The personnel gap- the developer should be involved in the deployment of his

code and monitor its work in progress;

• The tools gap - the development environment should match the testing

environment (third-party services, OS) as much as possible.

Figure 1.2.5. The tools gap

XI. Logs. Treat logs as event streams

A log is a stream of events and should be treated like a stream of events. An application

should not write data to the log file itself, and manage files (archive or delete). The twelve

16

factor application outputs a log of its work to stdout. The manager who launches the

process must direct the logic to the analysis or archiving system. This allows you to

aggregate events from different processes, including both application processes and third-

party services. The log analysis system allows you to analyze the current state of the entire

system, as well as the analysis of previous work. In the developer's environment, the logs

are simply viewed in the console.

Figure 1.2.6. Logs stream

17

XII. Admin processes. Run admin/management tasks as one-off processes

One-time administration processes (migrations, database fixes) must follow the same

rules as other processes:

• The task code must be in the repository to match the code of the main application;

• Dependencies must be declared in the main dependency manifest in order for the

process to be executed in normal deployment;

• The configuration of the task must be in environment variables so that it can be

executed in different environments.

18

2. Requirements to microservice architecture

2.1. Requirements definition

The requirement is a usable representation of the need, which helps to determine

what kind of value should be delivered to fulfill it. There is multiple classification of

requirements. For example, BABOK has described 4 types of requirements:

• Business Requirements

• Stakeholders Requirements

• Solution Requirements

• Transition Requirements

As per BABOK guide, the business requirement is defined as: Statements of goals,

objectives, and outcomes that describe why a change has been initiated. They can apply

to the whole of an enterprise, a business area, or a specific initiative. [6]

Stakeholder requirements as per BABOK guide: Describe the needs of stakeholders

that must be met in order to achieve the business requirements.[6]

Solution requirements as per BABOK guide: Describe the capabilities and qualities

of a solution that meets the stakeholder requirements. They provide the appropriate level

of detail to allow for the development and implementation of the solution.[6]

Transition Requirements as per BABOK: Describe the capabilities that the solution

must have and the conditions the solution must meet to facilitate transition from the

current state to the future state, but which are not needed once the change is complete.

They are differentiated from other requirements types because they are of a temporary

nature.[6]

Classification provided above more suitable for business analyst and that is why we

will use simplified classification which is more accurate from technical point of view.

19

Let’s define following categories of requirements:

• Functional requirements

• Non-functional requirements

o Quality attributes

o Constraints

Functional requirements define the behavior of a system or its component. How to

behave or react on stimulations at runtime and what the system must perform and how to

typically described by functional requirements. They describe specific functionality that

define what a system is supposed to do (calculations, technical details, data manipulation

and processing are involved)

Quality attribute requirements are qualifications of functional requirements or of

the overall product. They usually answer questions like ‘how fast the function must be

performed’ or ‘what is the time to deploy product’. We can consider quality attributes as

qualifications of functional requirement. SEI proposed next definition of quality attribute:

“A quality attribute (QA) is a measurable or testable property of a system, that is used to

indicate how well the system satisfies the needs of its stakeholders”.[7]

Constraint is a design decision taken with zero degree of freedom. This decision

was already made and you cannot influence on it in order to change. A great example of

constraints can be restriction to use specific language because client has competency, or

specific cloud provider.

2.2. Quality attributes

Observability

Observability is a measure of how well internal states of a system can be inferred

from information of its external outputs. Usually developers confuse monitoring and

observability. Observability is a property of a system but monitoring is the process. During

20

monitoring process where we translate outputs that we receive from application and

infrastructure. The outputs can be logs and metrics. The main goal of monitoring is

collecting all information necessary to be able to provide meaningful actions. Monitoring

will not be helpful if system and its components don’t externalize their state adequately.

Portability

Portability is the ability to deploy a product in various environments in a predictable

way. This quality attribute includes containerization, configuration, versioning. The

default tool for centonization is Docker. Configuration and versioning are implemented in

different way and may be various depends on standards in organization.

Security

Security is the ability of the application resist to incorrect or malicious behavior of

clients. This quality attributes includes next main areas:

1. Authentication and authorization of clients.

2. Translation, interpretation and protection of data.

3. Dependency and configuration management.

4. Auditing, logging, monitoring.

There are several projects which provide list of top vulnerabilities. OWASP and CWE

are most popular among them. Developers should consider these lists during system

development. For example, OWASP Top 10 which represents a broad consensus about

the most critical security risks to web applications (https://owasp.org/www-project-top-

ten/), can be used in during application development.

Maintainability

Maintainability is the ability to change a product with a predictable effort. To

control maintainability static code analysis tools can be used. However, these tools may

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

21

not provide enough checks to ensure maintainability, so additionally developers should

follow the code review practice.

Here are some recommendations:

1. Minimize source code

 Lombok library can be used to auto-generate getters, setter and constructors in Java

applications.

2. Prefer declarative configurations

 Use declarative clients instead of request builders to consume data from HTTP services.

3. Prefer infrastructure solutions

 Configure a reverse proxy instead to enable CORS. In any case application framework

should not be used for this purpose.

22

3. Developing methodology for writing application using microservice

architecture

3.1. Observability guides

Correlations

Systems have a high-level task that corresponds to the customer operation. In most

cases system process more than one such type of operation at same time which cause to

mess during investigation. Furthermore, one user operation in distributed systems can be

translated to several interactions between parts of the system across multiple location. All

log messages will be gathered by centralized logging tool. To make it straightforward to

investigate problem, log message must be group in next way that each group is related to

particular user operation.

Correlation ID is used to uniquely identify each user invocation. Correlation ID

must be generated for each service that has external interface. If we are talking about Web

application it would be controller which handle HTTP incoming requests. It might be

service which reads data from event bus or queue. Once correlation ID is generated it must

be propagated to all downstream service, message brokers and event busses.

23

Monitoring

Metrics must be collected and aggregated in single place. Errors, utilization,

throughput and latency are the most important metrics. Prometheus and Grafana quite

popular in nowadays. First one is used to store metrics while the second one to visualize

them.

Figure 3.1.1. Grafana dashboard

Logging

Logs must be collected from every part of the system and stored outside node on

which application is hosted. We should have single place to view, correlate logs and

analyze them if needed. In microservice architecture we have distributed sources the

number of which are increases during the time. Application should log events as they

appear but this is not application responsibility to decide where to route logs. This is

deployment configuration.

24

Figure 3.1.2. Types of logging [9]

But still we have to now where logs should go since this is environment

configuration, we should use STDOUT and STERR as places to send log records. In

service-oriented architecture it is common to have services written in different languages

with different framework that has its own approach to redirecting logs. Since we are using

STDOUT and STDERR it gives us guarantee of consistent way of collecting logs. Also,

application can be written not only in different languages but also can be work on different

OS. STDOUT and STDERR are inherent aspects of any OS by design so it provides

consistence between all services.

Error handling

When HTTP server successfully receives clients request it must notify whether

request was processed successfully or not.

25

In HTTP protocol we status codes which can be divided in 5 categories:

• 1xx (Informational) – server acknowledges a request

• 2xx (Success) – server completed the request successfully

• 3xx (Redirection) – further actions are required from client in order to complete

the request

• 4xx (Client error) – client sent an invalid request

• 5xx (Server error) – server failed to process a valid request due to an error on

server side

Using the response code, a client can understand the result of a particular request and

providing proper status code must be the very first in error handling mechanism.

Let’s review some commonly used response codes

• 400 Bad Request – client sent an invalid request (required field is missing for

example

• 401 Unauthorized – service failed to authenticate the client

• 403 Forbidden – client authenticated but does not have permission to access the

requested resource

• 404 Not Found – the requested resource does not exist

• 412 Precondition Failed – some conditions in the request header fields was not

satisfied

• 500 Internal Server Error – error on the server

• 503 Service Unavailable – the requested service is not available now

500 errors signal that some issues or exceptions happens on the server during

request processing. This is internal error and it should not bother client. But we should try

to minimize these types of responses to the client, so we should try to catch all such

internal error and send corresponding status code wherever possible. For example, if

26

requested resource doesn't exist, we should return 404 instead of 500 status. It does not

mean that 500 should not be used. It must be returned when unexpected situation happened

like service outage.

Of course, just having the status code in most cases is not enough to understand the

reason of problem so additionally more information must be provided. Developers start to

add new fields to response body which cases to variety of error response so IETF devised

RFC 7807[10] in order to generalize error-handling schema

Schema consist of five attributes [10]:

• "type" (string) - A URI reference [RFC3986] that identifies the problem type. This

specification encourages that, when dereferenced, it provides human-readable

documentation for the problem type (e.g., using HTML [W3C.REC-html5-

20141028]). When this member is not present, its value is assumed to be

"about:blank".

• "title" (string) - A short, human-readable summary of the problem type. It

SHOULD NOT change from occurrence to occurrence of the problem, except for

purposes of localization (e.g., using proactive content negotiation; see [RFC7231],

Section 3.4).

• "status" (number) - The HTTP status code ([RFC7231], Section 6) generated by the

origin server for this occurrence of the problem.

• "detail" (string) - A human-readable explanation specific to this occurrence of the

problem.

• "instance" (string) - A URI reference that identifies the specific occurrence of the

problem. It may or may not yield further information if dereferenced.

27

Here is what provided in RFC 7807 document as response example:

 HTTP/1.1 403 Forbidden

 Content-Type: application/problem+json

 Content-Language: en

 {

 "type": "https://example.com/probs/out-of-credit",

 "title": "You do not have enough credit.",

 "detail": "Your current balance is 30, but that costs 50.",

 "instance": "/account/12345/msgs/abc",

 "balance": 30,

 "accounts": ["/account/12345",

 "/account/67890"]

 }

Comply to RFC 7807 is optional and is recommended in big organization where very

difficult to agreed on standard error message schema across all units.

Let’s review error messages from such a giant company like Twitter and Facebook.

curl -X GET https://api.twitter.com/1.1/statuses/update.json?include_entities=true

Here is a Twitter API response:

{

 "errors": [

 {

 "code":215,

 "message":"Bad Authentication data."

 }

]

}

As you can see response contains list of errors but in our case, we have only error in

list.

28

Let's call Facebook Graph API:

curl -X GET

https://graph.facebook.com/oauth/access_token?client_id=oleksii&client_secret=sc&gr

ant_type=some

Next error occurs:

{

 "error": {

 "message": "Missing redirect_uri parameter.",

 "type": "OAuthException",

 "code": 191,

 "fbtrace_id": "AWswcVwbcqagrHgjG80MtqJ"

 }

}

There is common code field in both responses. It is very convenient to have error codes.

First of all, behind single HTTP Status code can be several reasons. Having additional

business error identifier help to granularly distinguish it. Second point is having number

error identifies simplify analyzing of problems for non-human clients.

Health checks

Our soft has dependencies on computer hardware, libraries which are maintained by

other teams. None of them cannot provide 100% guarantees that everything will work

perfect all the time. It’s impossible to build 100% reliable software on top of unreliable

components because of that it’s obvious that service is going to fail sometime after release

to production. Mechanism how to detect this failure before users do should be

implemented. And if it does, you have to detect it somehow. We all agree that it's better

to do it before end-users do.

Here are types of failures which can cause in Java application:

• Bugs. Can be introduced by developer during coding. There is some correlation

between number of bugs and line of codes. Steve McConnell in his book said that

industry average about 15 - 50 errors per 1000 lines of delivered

code [20].

29

• Memory Leaks. When the garbage collector fails to recycle specific area of the

heap memory leaks can occurs. This area grows over time. After some period of

time out of memory can happen but until that number of garbage collector pauses

will be increased significantly which reduce the performance of whole application.

• Thread Leaks. Unclosed resources or threads which are not managed properly, can

cause to thread leaks. This will lead your JVM to a stall while the CPU is going to

spin at 100%.

• Configuration Issues. Configuration issues are tricky since they can be caught in

the same environment they are referring to. It means production configuration

issues can be reproduced during production deployment only.

• Deadlocks. JVM do not offer deadlock detection. This means that threads hanging

in deadlock will wait forever until application is stopped.

• Connection Pool Misconfigurations. Connection pool settings should be reviewed

carefully, in other can there is a risk that connection pool will start causing failures.

Redundancy is the simplest way to introduce fault-tolerance into any system.

Introducing redundancy for services means making the process redundant. Have multiple

processes running at the same time. If one of them start behave in a wrong way then others

can take the workload. Of course, some kind of coordination is required in other case it

will not work. Usually, coordination is done by using health check mechanism.

The coordination can be a container orchestrator or a load balancer. The main role is

to hide implementation details from the clients. Coordinator uses cluster of services and

show them as a single logical unit. In order to do this the workload must be scheduled to

those services only which are reported to be healthy. Coordinator asks each running

process in the cluster about their health status. Using this information further actions can

be taken. Coordination strategy based on health status information is not our topic so we

list some most used of them:

30

• Restarts

• Alerting

• Traffic shaping

• Scaling

• Deployments

Figure 3.1.3. Coordinator actions [21]

How let’s review the ways how health checks can be implemented.

No health checks. It is the easiest option. In this case orchestrator can still restart

container if it stopped but it cannot apply other strategies. Container orchestrator able to

catch memory leaks if JVM exits with OutOfMemoryError. In case of a thread leak

transactions will become slower until they completely stall. Alerts can be set up based on

the type of HTTP responses if L7 load balancing is used but it is not possible to set alerts

if TCP load balancer is used because of the lack of interpretation of the HTTP response

codes.

31

Shallow health checks. In this implementation we just usually just verify if the HTTP

pool is able to provide some kind of response. Static content or empty page with an HTTP

2xx response code is returned.

Here is simple health check response:

{

 "status": "UP"

}

If it falls under a predefined threshold, the service report itself as unhealthy. In

Kubernetes, for example, we have can configure a liveness/readiness probe for containers.

It will restart service automatically if it reports as unhealthy. In such case issues with the

HTTP pool, like thread leaks and deadlocks can be recovered. Also fault that a more

generic can be process (memory leaks). But issues that occurs further in the stack cannot

be checked (trying to save data in database for example). In this scenario we will get

response from health check but load balancer will not be able to handle this situation

(Usually health checks are integrated with load balancers and load balancer route traffic

to healthy services). There are 3 options how to deal with this situation:

• Try to store the request in the service and retry later. The request will be lost if

coordinator restart service.

• Fail fast. Caller should retry. The problem is moved to one layer above.

• Include database in the health indicator. This led to deep health checks.

Deep health checks. Deep health checks include the surrounding of service. For

example, Spring Boot has a lot of automatically configured health indicators in started

Actuator. Here's an example of deep health check:

{

 "status":"DOWN",

 "details":{

 "serviceA":{

 "status":"UP",

 "details":{

 "Service A":"Available"

32

 }

 },

 "serviceB":{

 "status":"DOWN",

 "details":{

 "Service B":"Not Available"

 }

 },

 "db":{

 "status":"UP",

 "details":{

 "database":"H2",

 "hello":1

 }

 },

 "diskSpace":{

 "status":"UP",

 "details":{

 "total":250790436864,

 "free":36591120384,

 "threshold":10485760

 }

 }

 }

}

In such implementation it makes sense to have multiple health check endpoints for the

controlling logic (like in Kubernetes). Different actions can be applied for different

failures. Liveness, readiness and startup probes can be good examples. The traffic will be

forwarder to a service only if its dependencies are accessible. This all-or-nothing approach

might be too restrictive if we are taking into account upstream dependencies with deep

health checks.

Let’s consider situation when database dependency is not accessible. There might be

two different root causes of this problem: some problem with connection pool (we reach

limits) or some problems with database. In case of database issues other services will be

unhealthy also and load balancer will remover every instance. In practice, it does not make

sense to totally stop processing requests. This bug with health checks can cause outage of

production. Load balancing settings should be revisited in a such way that upper limit of

instances that can be removed is set.

Other important point is health check synchronization with circuit breaker

configuration. If real service data on which we have dependency is not available and

33

circuit breaker return cached data should this service be considers as healthy or unhealthy?

This deep health check limitation can be solved but unfortunately not easily. Synthetic

request can be sent with some period of time. For example, we can query data from

database. It is mor difficult with message queues and event buses because we have to send

some message which can trigger corresponding activity on consumer side. Value in

message must be distinguishable by consumers from real messages. Also, synthetic traffic

must be filtered somehow in monitoring infrastructure but this produce more overhead

than shallow health checks.

Passive health checks. The main idea of passive health checks is to not validate status

of resources every time and mark resource as unhealthy when the failure rate is higher

than the configured threshold. Service should not be removed forever, so time limit for

the removal should be implemented. After a while, we can check services health again to

see if the situation is getting better. This health check approach is very similar to circuit

breaker pattern. I see only benefit of using passive health checks is that we do not need to

synchronize the configuration with other fault-tolerant patterns (circuit breakers,

fullbacks, etc.). It makes sense to this type of health checks when it is provided by

framework or other tool like proxy, load balancer. For example, Envoy offers this

functionality by default which is named as outlier detection.

Tracing

Trace must be propagated to all services, message brokers and event buses. This

information must be collected on aggregation tool.

Let’s review why it is so important. When performance bottlenecks happen, developers

spend a lot of time on monitoring and parsing logs. When logging the timings of individual

operations into a log file, it is difficult to understand what is the cause of this operation or

to track the sequence of actions or the time shift of one operation relative to another in

different services.

34

Here are the problems which can be solved by tracing:

1. Find performance leaks within one service and across the entire execution tree

between all participating services. For example:

a. Lots of short sequential calls between services.

b. Long waits for I/O operations, such as transferring data over the network

or reading from disk.

c. Long data parsing.

d. Long operations requiring CPU.

e. Portions of code that are not needed to get the final result and can be

deleted, or run delayed.

2. Clearly understand in what sequence what is called and what happens when an

operation is performed.

Figure TODO: 3.1.4. Microservices calls topology [24]

Without trace or detailed documentation for the entire process, it is very difficult

to understand what is happening in microservice topology which is present in

figure above.

3. Collecting information about the execution tree for analysis in future. At each

stage of execution, additional information can be added to the trace that is

35

available at this stage and then figure out what input data led to such a scenario.

For example:

a. User ID

b. Rights

c. Type of selected method

d. Log or execution error

4. Traces can be transformed into subset of metrics that can be analyzed in future.

3.2. Portability guidelines

Containerization

Using containers is production standard in nowadays and Docker is default tool for this

purpose. However not always developers think how they build images. In simplest cases

it can cause to not optimal image size and performance for allocated resources, long image

build stage. But in worst case it can expose critical vulnerabilities.

Here are some recommendations that can help create optimal for production docker

images.

Static layers should be at the top of changing layers. This will reduce build time.

If changing layers are put above static layer in docker file if will cause to rebuilding all

bottom layers.

Here is example of wrong docker file:

COPY lib/* /deployment/lib/

COPY sample-app.jar /deployment/

RUN apt-get update

RUN apt-get -y install openjdk-8-jdk ssh

36

This file should be changed in next way:

RUN apt-get update

RUN apt-get -y install openjdk-8-jdk ssh

COPY lib/* /deployment/lib/

COPY sample-app.jar /deployment/

Figure 3.2.1. Docker layers by update frequency [16]

Try to use specific names when copying files. If wildcard is used in copy command

can break cache if new file will be created in directory with the target file. This is not

critical in some cases it’s necessary to use wildcard but you have to be careful with them.

Initial docker file:

 COPY *-app.jar /deployment/

How it can be changed:

 COPY sample-app.jar /deployment/app.jar

37

Group layers. Try to group your commands into as much as possible. It reduces

layers count, cache size and as a result images size.

Bad practice:

RUN apt-get update

RUN apt-get -y install openjdk-8-jdk ssh

Can be combined to:

RUN apt-get update \

 && apt-get -y install \

 openjdk-8-jdk ssh

Reduce image size use flags --no-install-recommends for apt-get command. It

will not install unnecessary staff.

Before:

RUN apt-get -y install openjdk-8-jdk

After:

RUN apt-get -y install --no-install-recommends openjdk-8-jdk

Remove apt manager cache. Use rm -rf /var/lib/apt/lists/* command for

apt-get.

Before:

 RUN apt-get update \

 && apt-get -y install --no-install-recommends openjdk-8-jdk

After:

 RUN apt-get update \

 && apt-get -y install --no-install-recommends openjdk-8-jdk

 && rm -rf /var/lib/apt/lists/*

Choose base image carefully. When we put our application in Docker container,

we build on existing image on which we reference in FROM statement in Dockerfile. It is

38

absolutely essential to using well-maintained base image. We have to be sure that image

was patched for security issues and does not contains malware software or scripts. Use

certified images from Docker Hub or images from software vendor like Oracle, Red Hat

and other if you or your company pay for support. During base image selection try to using

a smaller base image as possible It will help keep the final image size small. For example,

Alpine or Google’s Distroless are small. But you have be aware that if you use Alpine

Linux as base image, you’re using musl and not glibc (the GNU C Library). This

potentially might impact your application’s performance and supportability. Google’s

distroless image use glibc. You can take a look at Project Portola. Official documentation

states that goal of this Project is to provide a port of the JDK to the Alpine Linux

distribution, and in particular the musl C library [13].

Other option is using minimal Linux base image like Alpine and then install all

necessary tools by yourself (JRE, npm, etc..) if you prefer to not using community baes

images. However, you have to plan this base image will be updated when some new toll

version is released. It is critical because it will keep you up to date with security updates.

Be careful with automatic Docker image generation tools. There are a lott of

great tools and plugins for build system which create Docker images and even able to

publish them to registry. From a developer perspective, this looks convenient since they

do not need to maintaining Dockerfiles. An example for Java application can be JIB

Maven plugin. It must be configured and then can be called using mvn jib:dockerBuild

command. Here is a basic JIB configuration:

<plugin>

 <groupId>com.google.cloud.tools</groupId>

 <artifactId>jib-maven-plugin</artifactId>

 <version>3.0.0</version>

 <configuration>

 <to>

 

 </to>

 </configuration>

</plugin>

39

Something similar can be done with Spring Boot if you are using version 2.3 and

up by calling next maven command:

mvn spring-boot:build-image

In both cases, these containers are relatively small. That is because they are using

distroless images or build packs as a base image. But other important questions is whether

these containers are safe? Deeper investigation is required but event even then we cannot

be sure whether this status is maintained in the future. It does not mean that that these

tools should not be used for Docker images creating. Investigation of container security

aspects must be performed and scanning containers is a good start. Having full control of

Docker image creating by managing our own Dockerfile in a proper way is more

preferable approach.

Using multi-stage builds. Sometimes not needed to install all required staff on

machine that using for building application distributing. In such case distribution can be

build inside docker images. Since it produces a lot of files which are not needed for

execution multi-stage builds are essential in such cases. Image is built using all the tools

needed and second stage where we create the actual production image.

Here is example of multi-stage Dockerfile:

FROM maven:3.6.3-jdk-11-slim AS build

RUN mkdir /project

COPY . /project

WORKDIR /project

RUN mvn clean package -DskipTests

FROM adoptopenjdk/openjdk11:jre-11.0.9.1_1-alpine

RUN mkdir /app

COPY --from=build /project/target/order-service.jar /app/order-service.jar

WORKDIR /app

CMD "java" "-jar" "order-service.jar"

The crucial aspect of multi-stage build is preventing sensitive information leak. It

is highly possible that connection to a private repository is required. In java application it

40

can be done in Maven settings.xml on local machine or build environment. When using

multistage builds the settings.xml can be copied to building container. The settings with

the credentials will not end up in final production image. Also, credentials as command

line arguments can be used safely because it will not end up in the production image.

Multiple stages can be created and only necessary results will be copied to final production

image. This is not a great way to separate concerns but in a such way developers can be

sure that data will not leak production environment.

Build one image for all environments. Docker containers are designed to run the

same anywhere. This means one image is built once, and can be run in all environments

(dev, qa, prod) by just changing config. Deploying one image into several target

environments can be achiever using externalized configuration. One of the biggest

container anti-pattern is building one image per environment. This idea is not new and

based on the principle of building one binary for all environments, as this section from

Continuous Delivery by Jez Humble and David Farley explains [14]: “The binaries that

get deployed into production should be exactly the same as those that went through the

acceptance test process… It must be possible to deploy these binaries to every

environment. This forces you to separate code, which remains the same between

environments, and configuration, which differs between environments.”

Containerization concept is about creating a single unit of deployment, or a single

concern. Container should not be modified once it is started. No matter what reasons

behind that - to deploy/undeploy applications, or modify/upgrade them. Instead, new

image should be built with all required changes. After that stop existing container, and

start a new one from created image.

Use tags appropriately.

Use immutable tags for production images. By immutable we understand specific tag

that reference on same artifact during the time and this reference cannot be changed. Avoid

41

to use latest tag since it is not idempotent and you make builds are not idempotent. This

means that when the result of each new build can be not the same as the previous one. The

latest images today can be different from the latest image tomorrow or next month. It is

critical to have reproducible deterministic behavior during rebuilding image.

Let’s review some typical problems that developers or operations teams can face when

using mutable tags. You are performing a non-deterministic deployment at any place

where container is deployed using an image tag. There is no guarantee that the tag

corresponds to the expected image. This applies to a simple docker run, or for

orchestration tools like docker-compose, Kubernetes, etc.

Here is a scenario that can cause problem:

• Developer 1 executes a container on local machine using image:latest. He pulls

application version 1.2 and runs it.

• Several hours later, developer 2 pulls and runs the same image:latest on his local

machine. He can be sure that this is the same version. Imagine situation that image

maintainer published version 1.3 couple of minutes ago and latest tag is referencing

to 1.3 now.

• Next mount, application was deployed to the production cluster. myimage:latest is

now pointing to version 2.5. In this version some breaking changes was introduced.

The application will crash in production.

Mutable tags are also useful in some scenarios:

• Mutable tag is used for artifact when it is not released in order to not create new

version on each change

• latest (the default tag if not specified) is always pointing to the latest version of an

image. alpine or slim is used to point to the latest corresponding versions.

42

• Quite common practice is using mutable tags to track versions in different

environments (dev, prod, qa). Tags are updated when a new version is deployed to

corresponding environment.

Some resources suggest to use digest for specifying docker image instead of named

tag. It gives guarantee that images will always be the same. However, if you are using

images from Docker hub from trusted vendors this recommendation might be redundant.

docker images --digests can be used to display the image digest. Example of such

digest is

sha256:4f600a95fa1288f7b12198aa32ca00b4fb13b83b31533fa6b40499bd9bdf192f).

Figure 3.2.2. Docker tags explanation [18]

43

Configuration

Application should not depend on configuration – such as database usernames and

passwords, or urls to external APIs. All this information should be provided at runtime.

This is one of the most important things which is violated quite often. This means that

configuration should be injected at runtime or other words provided by environment rather

then hardcoded into code or into Docker image.

This separation concern forces you to have clear understanding what is configuration

and what is code but at same time give you possibility to run same artifact or Docker

image in multiple environments just provide appropriate configuration.

Let’s consider some of the most common ways how configuration how configuration

can be provided to a Java app in a container:

• Mount a volume containing configuration files. For example .properties file

which can be red in Spring Boot using argument --spring.config.additional-

location

• Set environment variables. Use System.getEnv() or application framework

feature

• Use a network-based configuration service. For example, Spring Cloud Config

[17]

• Provide arguments to the JVM on startup by overriding the container’s

entrypoint. Use System.getProperty or features provided by application

framework

44

Figure 3.2.3. External configuration by Spring Cloud Config [19]

Following configuration externalization principle gives such benefit like

portability. Having one image and providing any configuration as part of the environment

to the container helps to be sure that same code is running on all environments. This makes

debug issues or recreate environments much easier. But if we are going to build different

Docker images for each target environment (dev, qa, prod) we will lose portability,

because each container image is hardly tied to a specific environment.

Versioning

Developers must use versioning for images. It is recommended to use versioning for

configurations files also.

45

Don't embed infrastructure into services.

All infrastructure staff like SSL termination, rate limiting, CORS and so on should be

configured using infrastructure not application.

Quotas for services

Leaks in resources for single service should not crush machine on which other

service might run. Also, it helps orchestrator to find appropriate node in cluster faster.

Java had some quirks while running in containers. It had some difficulties to

understand how much memory it was able to consume. It often ended up consuming too

much memory and it cases to container terminating by Docker. Sometimes it was

unaware of the number of CPUs it was working with. These issues were resolved in

more recent builds of Java. Thant is why so important to keep versions up to date. You

need to make sure you’re using Java SE Development Kit 8, Update 191 (JDK 8u191),

which was released in October 2018. It is recommended to use Java 11, which has

significant memory and CPU improvements and is long-term supported release, or any

other later version.

3.3. Security guidelines

Segregate services by security traits.

Services should be segregated by access type (public, internal and so on) and by

required privileges. PoLP principle should be used (principle of least privileges).

The principle of least privilege states that any process, program, user should have only

minimum privileges necessary to perform its function. For example, when we create user

account to read or write data from database, we should not grand admin permissions to it.

Developers should not have access to personal data records if they are writing line of codes

in legacy project. The PoLP principle can also be referred to as the principle of minimal

46

privilege (PoMP) or the principle of least authority (PoLA). It is considered a best practice

in information security to follow PoLP principle.

Let’s review the benefits of using PoLP principle:

• Better security: Edward Snowden was able to get millions of NSA files because

his task for creating database backups had admin privileges. Because of the

Snowden leaks, NSA to cut system administrators by 90 percent to limit data access

[23].

• Minimized attack surface: Hackers got access to 70 million Target customer

accounts. This is because of HVAC contractor who had permission to upload

executable files. Since PoLP principle was not followed, broad attack surface was

created.

• Limited malware propagation: Malware that infects a system which is designed

in comply with principle of least privilege is often contained in small module only

and is not propagated to other modules.

• Better stability: PoLP also increase system stability since it limits effects of

changes to the module in which they’re made.

• Improved audit readiness: PoLP principle can reduce scope of audit. Interested

point that, implementation of PoLP principle is required during audition by many

common regulations.

Validate inbound data.

All incoming requests, responses, messages and events must be validated before

application start to process them.

Don't expose sensitive data.

Attackers can use exposed sensitive data which may lead to fines from regulators.

Showing stack trace can be used to enable negative impact on system.

47

Usually sensitive data is exposed as a result of not enough protecting data storage. It

might be a result of weak encryption or even no encryption, software flaws or personal

mistake when person uploads data to wrong server.

Control dependencies versions.

Dependencies must be updated regularly because updates nest fixes for vulnerabilities.

3.4. Maintainability guidelines

Use branching strategy.

Branching strategy helps developers work separately and do not affect each other. All

changed in main branch should be done through pull requests.

Enable build automation.

Single build script for local developers’ machine and remote automation builds must

be used. All infrastructure tasks should be removed form build script. Example of

infrastructure tasks: static code analysis, vulnerabilities analysis, etc.

Use tests appropriately.

A Testing Pyramid is an abstraction which has main idea to group software tests into

different levels of detail. It gives a view of how many tests should be in each of these

groups. Also, it helps developers and QAs create high-quality software and reduces the

time required for developers to identify if a change they introduced breaks the code.

Testing Pyramid helps to create more reliable test suite.

48

Figure 3.4.1. Classic Testing Pyramid [19]

There are 2 main principle that should be used:

• There should be tests of different details;

• The higher the level of pyramid, the fewer tests should be written

According to Testing Pyramid shape test suite should contains:

• lot of small and quick unit tests;

• more general tests;

• very few high-level end-to-end tests;

Let’s review each level of Testing Pyramid.

Unit tests should form the major part of automation testing:

• Automation tasks are not closed until these scripts are launched on the

implemented functionality;

• Developing along with unit tests forces developers to think about the problem

they are solving and any edge cases they might face;

49

• Tests are detailed and can help pinpoint a defect;

• Runtime is fast because they don't need to rely on external systems like or UI;

• Unit tests are not expensive, easy to write, easy to maintain.

Integration tests should be in the middle of the pyramid. There are some aspect

related to this level or tests:

• This layer is used to test business logic without using the user interface (UI);

• By testing outside of the user interface, you can test the inputs and outputs of

APIs or services without all the complexity that the user interface introduces;

• These tests are slower and more complex than unit tests because they may need

access to a database or other components.

UI tests are placed at the top of the pyramid. There are some aspects of UI tests:

• Most of your code and business logic should already be tested to this level;

• UI tests are written to ensure that the interface itself is working correctly;

• UI tests are slower and harder to write and maintain, so should be kept to a

minimum.

However, classic testing pyramid can be extended to cover more different tests

types and It can look like in a next way.

50

Figure 3.4.2. Ideal Testing Pyramid [40]

Define feedback activities.

Define all activities and quality gates that must be passed before code will be

transferred to next stage. It helps shift feedback to the left part of feedback activity

diagram and find errors earlier.

Use code conventions.

It improves readability of the code. It is recommended to have single convention in

scope of all system but at least it should exist in scope of single team. Code convention

template can be exported into file and shared with team. All modern IDEs support such

feature.

51

Reduce code duplication.

It is recommended to try to have less than 3% of code duplication. Code review is

required because static code analysis cannot find semantic code duplication that is.

Remove dead code.

It is not necessary to have unused or commented code because it can be reverted form

git history.

Ensure methods and classes maintainability.

Use clean code principles. Robert C. Martyn in his book “Clean Code: A Handbook

of Agile Software Craftsmanship” describe these principles.

3.5. Prototype

To demonstrate all the recommendations, we will consider simple example that

consist of 2 java applications and 1 Kafka topic. It is an ordering system. First application

is responsible for managing user orders. The second one is Warehouse service. When user

want to create order, it provides all information about items and their amount to order

service. Order service call Warehouse service in order to verify whether all items are

available in required amount. After order was created Order service send corresponding

event to Kafka topic. To start Kafka broker and Zookeeper we have docker-compose-

kafka.yml in order-service repository in docker folder.

Let’s deep dive in prototype implementation. We have 2 java Spring Boot

microservices. Order service calls REST endpoint if Warehouse service using Spring

WebClient. When all necessary information for creating order is received it creates order

and send event to Kafka broker.

52

Figure 3.5.1. Project diagram

According to diagram Order service need to know URL of Warehouse service and

Kafka broker. Since configuration must be externalized and not part of codebase, we will

use environment variables in application.yml file.

server:
 port: 8090

order:
 service.warehouse.url: ${SERVICE_WAREHOUSE_URL:http://localhost:8091}

spring:
 kafka:
 producer:
 value-serializer: com.naukma.order.broker.KafkaSerializer
 key-serializer: org.apache.kafka.common.serialization.StringSerializer
 bootstrap-servers: ${KAFKA_BOOTSTRAP_SERVERS:localhost:9092}
 order-topic-name: ${ORDERS_TOPIC_NAME:orders_topic}

53

Let’s take a look what Docker file we will use for our project:

FROM openjdk:8-jre-alpine

COPY target/order-service-*.jar /deployment/order-service.jar

CMD ["java", "-Djava.security.egd=file:/dev/./urandom", "-jar",

"/deployment/order-service.jar"]

And command how to run it:

docker build -t order-service -f docker/Dockerfile .

 Build command should be executed in root project folder. There is no possibility to

run command in Docker folder and specify relative path to jar file. From Docker

documentation [15]: “The <src> path must be inside the context of the build; you cannot

ADD ../something/something, because the first step of a docker build is to send the

context directory (and subdirectories) to the docker daemon.” Dockerfile for Warehouse

service the same except names.

Let’s build order and warehouse services

Figure 3.5.2. Docker image build of Order service

54

Figure 3.5.3. Docker image build of Warehouse service

Now we are going to start whole platform. For this purpose, docker-compose.yml

file was created.

version: '2'
services:
 zookeeper:
 image: wurstmeister/zookeeper:3.4.6
 expose:
 - "2181"

 kafka:
 image: wurstmeister/kafka:2.11-2.0.0
 depends_on:
 - zookeeper
 ports:
 - "9092:9092"
 environment:
 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092
 KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092
 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

 warehouse-service:
 image: warehouse-service:1.0.0
 ports:
 - "8091:8091"

 order-service:
 image: order-service:1.0.0
 depends_on:
 - warehouse-service
 - kafka
 ports:
 - "8090:8090"

55

 environment:
 ORDERS_TOPIC_NAME: orders_topic
 SERVICE_WAREHOUSE_URL: http://warehouse-service:8091
 KAFKA_BOOTSTRAP_SERVERS: kafka:9092

 To configure Order service environment variables should be set. The same image

can be used for different environments (dev, uat, prod) only environment variables must

be changed. Using docker-compose up command all service can be started.

In Order service communicate with Warehouse service via REST is implemented

so we will use HTTP header X-Correlation-Id to send value. Also, we need to analyze

whether we already receive correlation ID and if not generate new one. For this purpose,

we will use CorrelationHeaderFilter, which is a standard Java EE Filter that inspects the

HttpServletRequest header for the presence of a correlation id. ThreadLocal variable will

be used to store value and we will write wrapper class RequestCorrelation to work with

it. If a correlation id is not found then CorrelationHeaderFilter generate new one. It is

necessary to make a note that this code will work on synchronous communication only.

To work with correlation id when you handle requests in non-blocking way

DeferredResult class in combination with the Servlet 3 asynchronous support can be used

but we have to deal with storing correlation id since thread that initially handles the request

will not be the thread doing the actual processing and ThreadLocal variable approach will

not work. This is separate topic and will not be covered in this work.

Also, we have to propagate correlation id to message that we send to Kafka topic.

Wo this purpose we create so called envelop message KafkaMessageEnvolope class which

consist of KafkaMessageInfo and data itself. Data is child class of KafkaSerializable. Each

time when we are going to send new event, we wrap data in KafkaMessageEnvolope and

add all context information. In our case it is correlation id but other context staff can be

added if needed.

56

Let’s try to call Order service in order to see how correlation id is propagated.

Figure 3.5.4. Consuming Kafka messages

To read message from kafka topic we will use consumer from kafka bin folder.

Using docker command we need to get access to kafka container bash.

After that we will print services logs into stdout. First of all, we need to know

containers ids. We can do this using docker ps command.

Figure 3.5.5. List of running containers

docker logs 45f88ff7c4a5

Figure 3.5.6 Order service logs

57

docker logs 45f88ff7c4a5

Figure 3.5.7 Warehouse service logs

 To read kafka messages we will use kafka-console-consumer utility.

docker exec -it 1ef8aaa91608 /opt/kafka/bin/kafka-console-consumer.sh --topic

orders_topic --from-beginning --bootstrap-server localhost:9092

Figure 3.5.8. Consuming Kafka messages

As we can see correlation id was generated on Order service side and propagated to

all other components of the system.

For correlation id logic 2 java classes are responsible. One of them is

RequestCorrelation which is correlation id value holder.

public class RequestCorrelation {

 public static final String CORRELATION_ID_HEADER = "X-Correlation-Id";

 private static final ThreadLocal<String> id = new ThreadLocal<String>();

 public static String getId() {
 return id.get();
 }

 public static void setId(String correlationId) {
 id.set(correlationId);
 }
}

The second one is filter which is listening incoming requests trying to retrieve value

from X-Correlation-Id header. If such header is missing, new value will be generated.

After that value is stored in ThreadLocal variable in RequestCorrelation class.

58

@Component
public class CorrelationHeaderFilter implements Filter {

 private static final Logger log = LogManager.getLogger(CorrelationHeaderFilter.class);

 @Override
 public void doFilter(ServletRequest servletRequest, ServletResponse servletResponse, FilterChain filterChain)
 throws IOException, ServletException {

 final HttpServletRequest httpServletRequest = (HttpServletRequest) servletRequest;
 String currentCorrId = httpServletRequest.getHeader(RequestCorrelation.CORRELATION_ID_HEADER);

 if (!currentRequestIsAsyncDispatcher(httpServletRequest)) {
 if (currentCorrId == null) {
 currentCorrId = UUID.randomUUID().toString();
 log.debug("No correlationId found in Header. Generated : " + currentCorrId);
 } else {
 log.debug("Found correlationId in Header : " + currentCorrId);
 }

 RequestCorrelation.setId(currentCorrId);
 }

 filterChain.doFilter(httpServletRequest, servletResponse);
 }

 private boolean currentRequestIsAsyncDispatcher(HttpServletRequest httpServletRequest) {
 return httpServletRequest.getDispatcherType().equals(DispatcherType.ASYNC);
 }
}

Common logic to work with correlation id moved to correlator library since it is

used in both Order and Warehouse services. This is Spring Boot starter and to start using

this logic we need to just add dependency in pom file.

<dependency>
 <groupId>com.naukma.common</groupId>
 <artifactId>correlator</artifactId>
 <version>1.0.0</version>
</dependency>

59

Let’s try to send request which will fail during validation in order to see error

response.

Figure 3.5.9. Order service error message

In our project we defined next error message format:

• erorrId – business error code

• message – meaningful human-readable message

• timestampt – data and time in ISO time format when error happens

• exception – since we use Java for building our service in this field, we have class

name of exception which occurs

There are several approaches how to implement Exception Handling with Spring Boot

for a REST API. We will use @ControllerAdvice annotation. We have

ErrorHandlingController class where we address all exceptions that happen during

service execution. Each exception is handled by separate method. Here we can see how

OrderValidationException is processed:

60

Each exception extends AbstractOrderServiceException with OrderPlatformError

which is enumeration error code representation.

public abstract class AbstractOrderServiceException extends RuntimeException {

 private final OrderPlatformError error;

 public AbstractOrderServiceException(OrderPlatformError error, String message) {
 super(message);
 this.error = error;
 }

 public OrderPlatformError getError() {
 return error;
 }
}

public enum OrderPlatformError {

 ORDER_NOT_FOUND(1),
 WRONG_ORDER_DATA(2),

 INTERNAL_SERVER_ERROR(500);

 private final int id;

 OrderPlatformError(int id) {
 this.id = id;
 }

 public static OrderPlatformError getErrorMessageById(int id) {
 for (OrderPlatformError orderPlatformErrorMessages : values()) {
 if (orderPlatformErrorMessages.getId() == id) {
 return orderPlatformErrorMessages;
 }
 }
 return null;
 }

 public int getId() {
 return id;
 }

}

For handling all errors ErrorHandlingController was implemented. It was annotated

@ControllerAdivce annotation. Each error handled by corresponding method.

61

@ControllerAdvice
public class ErrorHandlingController {

 private static final String TIMESTAMP_FIELD_NAME = "timestamp";
 private static final String EXCEPTION_FIELD_NAME = "exception";
 private static final String ERROR_FIELD_NAME = "error";
 private static final String ERROR_ID_FIELD_NAME = "errorId";
 private static final String MESSAGE_FIELD_NAME = "message";

 private static final Logger log = LogManager.getLogger(ErrorHandlingController.class);

 @ExceptionHandler(ObjectNotFoundException.class)
 @ResponseBody
 public Map handleObjectNotFoundException(ObjectNotFoundException exc, HttpServletResponse response) {
 return buildError(exc, response, HttpStatus.NOT_FOUND);
 }

 @ExceptionHandler(OrderValidationException.class)
 @ResponseBody
 public Map handleChatValidationException(OrderValidationException exc, HttpServletResponse response) {

 return buildError(exc, response, HttpStatus.BAD_REQUEST);
 }

 @ExceptionHandler(MethodArgumentNotValidException.class)
 @ResponseBody
 public Map handleJsonSchemaValidationExceptions(MethodArgumentNotValidException exc,
HttpServletResponse response) {
 ImmutableMap.Builder mapBuilder =
 getMapBuilderWithErrorMessageIdPair(OrderPlatformError.INTERNAL_SERVER_ERROR, exc.getMessage());
 return buildError(exc, response, HttpStatus.BAD_REQUEST, mapBuilder);
 }

 @ExceptionHandler(Exception.class)
 @ResponseBody
 public Map handleException(Exception exc, HttpServletResponse response) {
 ImmutableMap.Builder mapBuilder =
 getMapBuilderWithErrorMessageIdPair(OrderPlatformError.INTERNAL_SERVER_ERROR, exc.getMessage());
 return buildError(exc, response, HttpStatus.INTERNAL_SERVER_ERROR, mapBuilder);
 }

 private Map buildError(AbstractOrderServiceException exc, HttpServletResponse response, HttpStatus httpStatus)
{
 ImmutableMap.Builder mapBuilder =
 getMapBuilderWithErrorMessageIdPair(exc.getError(), exc.getMessage());
 return buildError(exc, response, httpStatus, mapBuilder);
 }

 private Map buildError(Exception exc,
 HttpServletResponse response,
 HttpStatus httpStatus,
 ImmutableMap.Builder<String, Object> mapBuilder) {
 log.error(exc.getMessage(), exc);
 response.setStatus(httpStatus.value());

 mapBuilder
 .put(TIMESTAMP_FIELD_NAME, DateUtils.nowAsIsoTimeFormatString())
 .put(ERROR_FIELD_NAME, httpStatus.getReasonPhrase())

62

 .put(EXCEPTION_FIELD_NAME, exc.getClass().getCanonicalName());

 return mapBuilder.build();
 }

 private ImmutableMap.Builder<String, Object> getMapBuilderWithErrorMessageIdPair(OrderPlatformError error,
String message) {
 ImmutableMap.Builder<String, Object> mapBuilder = ImmutableMap.builder();
 return mapBuilder
 .put(ERROR_ID_FIELD_NAME, error.getId())
 .put(MESSAGE_FIELD_NAME, message);
 }
}

 Since error handling logic used in both service and new Java services will need this

functionality also, new Spring Boot started was created. Just adding dependency is enough

to get all functionality.

<dependency>
 <groupId>com.naukma.common</groupId>
 <artifactId>error-handler</artifactId>
 <version>1.0.0</version>
</dependency>

In our project we are going to use default Spring Actuator implementation. This would

be enough for our purposes. To start using Spring Actuator we just need to add

dependency to maven pom file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

63

Let’s see what Spring Boot Actuator provides in default configuration. We need to

call GET /actuator endpoint.

Figure 3.5.10. Actuator endpoint response

64

We are interested in /actuator/health endpoint. We do not have any orchestration

tool but on real environment we most probably have some like Kubernetes, ECS or similar

one which will be using this endpoint to understand the status of service.

Figure 3.5.11. Health endpoint response

65

Results

In first part of this paper we defined what is microservice architecture, gave basic

aspects of such type of architecture and differences between monolithic architecture.

Reviewed existing twelve-factor application methodology with explanation of each

principle.

The second part is dedicated to requirements to services written using microservices

architecture. Questions what is the definition of requirements, what is the classification of

requirements with explanation of each one. Also, this part contains material about quality

attributes with definition of some of the most important one.

The third part contains guidelines grouped by quality attributes with detailed

explanation and example of realization for synthetic project written in Java language. Real

case example of issues that can happen if some important principle is ignored are

provided.

Existing methodology using guidelines can be used for building products using

microservices architecture. These guidelines can be extended further to cover aspects

more deeply.

66

References

1. https://www.oreilly.com/library/view/building-maintainable-

software/9781491955987/ch01.html

2. https://www.researchgate.net/publication/245390014_Reliability_and_maintainabilit

y_allocation_to_minimize_total_cost_of_ownership_in_a_series-parallel_system

3. https://medium.com/@flexbasenet/topic-software-maintainability-checklist-for-

software-architects-44527ae5f2af

4. https://martinfowler.com/articles/microservices.html

5. https://businessanalyst.techcanvass.com/types-of-requirements-as-per-babok/

6. IIBA, A Guide to the Business Analysis Body of Knowledge (BABOK Guide) 3rd

Edition

7. Oleksii Zhylenko, Distributed Systems Technical Audit

8. https://12factor.net/

9. https://www.magalix.com/blog/cloud-native-logging-and-monitoring-pattern

10. https://datatracker.ietf.org/doc/html/rfc7807

11. https://developers.facebook.com/docs/graph-api/using-graph-api/error-handling

12. https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-

does-it-matter/

13. http://openjdk.java.net/projects/portola/

14. https://continuousdelivery.com/

15. https://docs.docker.com/engine/reference/builder/

16. https://openliberty.io/blog/2018/06/29/optimizing-spring-boot-apps-for-docker.html

17. https://spring.io/projects/spring-cloud-config

18. https://sysdig.com/blog/toctou-tag-mutability/

19. https://medium.com/walmartglobaltech/manage-application-configuration-using-

spring-cloud-config-80b27ecb34b7

20. Steve McConnell: Code Complete

21. https://dzone.com/articles/an-overview-of-health-check-patterns

https://www.oreilly.com/library/view/building-maintainable-software/9781491955987/ch01.html
https://www.oreilly.com/library/view/building-maintainable-software/9781491955987/ch01.html
https://www.researchgate.net/publication/245390014_Reliability_and_maintainability_allocation_to_minimize_total_cost_of_ownership_in_a_series-parallel_system
https://www.researchgate.net/publication/245390014_Reliability_and_maintainability_allocation_to_minimize_total_cost_of_ownership_in_a_series-parallel_system
https://medium.com/@flexbasenet/topic-software-maintainability-checklist-for-software-architects-44527ae5f2af
https://medium.com/@flexbasenet/topic-software-maintainability-checklist-for-software-architects-44527ae5f2af
https://martinfowler.com/articles/microservices.html
https://businessanalyst.techcanvass.com/types-of-requirements-as-per-babok/
https://12factor.net/
https://www.magalix.com/blog/cloud-native-logging-and-monitoring-pattern
https://datatracker.ietf.org/doc/html/rfc7807
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
http://openjdk.java.net/projects/portola/
https://continuousdelivery.com/
https://docs.docker.com/engine/reference/builder/
https://openliberty.io/blog/2018/06/29/optimizing-spring-boot-apps-for-docker.html
https://spring.io/projects/spring-cloud-config
https://medium.com/walmartglobaltech/manage-application-configuration-using-spring-cloud-config-80b27ecb34b7
https://medium.com/walmartglobaltech/manage-application-configuration-using-spring-cloud-config-80b27ecb34b7
https://dzone.com/articles/an-overview-of-health-check-patterns

67

22. https://habr.com/ru/post/258739/

23. https://www.reuters.com/article/us-usa-security-nsa-leaks-

idUSBRE97801020130809

24. https://medium.com/@a0x8o/real-time-performance-profiling-analytics-for-

microservices-using-apache-spark-96d026083021

25. https://www.bmc.com/blogs/observability-vs-monitoring/

26. https://owasp.org/www-project-top-ten/

27. https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

28. Betsy Beyer, Chris Jones, Jennifer Petoff, Niall Richard Murphy, Site Reliability

Engineering: How Google Runs Production Systems

29. https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-

mutability.html

30. https://google.github.io/styleguide/javaguide.html

31. Robert C. Martyn, Clean Code: A Handbook of Agile Software Craftsmanship

32. https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf

33. https://jeffkreeftmeijer.com/git-flow/

34. https://medium.com/responsetap-engineering/monolith-to-microservices-to-

serverless-our-journey-745a2b9620ec

35. https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-

your-business/

36. https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-cons-

cc4b804022e9

37. https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-

faas-3hdp

38. https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

https://habr.com/ru/post/258739/
https://www.reuters.com/article/us-usa-security-nsa-leaks-idUSBRE97801020130809
https://www.reuters.com/article/us-usa-security-nsa-leaks-idUSBRE97801020130809
https://www.bmc.com/blogs/observability-vs-monitoring/
https://owasp.org/www-project-top-ten/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html
https://google.github.io/styleguide/javaguide.html
https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
https://jeffkreeftmeijer.com/git-flow/
https://medium.com/responsetap-engineering/monolith-to-microservices-to-serverless-our-journey-745a2b9620ec
https://medium.com/responsetap-engineering/monolith-to-microservices-to-serverless-our-journey-745a2b9620ec
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-cons-cc4b804022e9
https://hackernoon.com/what-is-serverless-architecture-what-are-its-pros-and-cons-cc4b804022e9
https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-faas-3hdp
https://dev.to/jignesh_simform/evolution-of-serverless-monolithic-microservices-faas-3hdp

68

39. https://dzone.com/articles/go-microservices-part-12-distributed-tracing-with

40. https://qastart.by/mainterms/64-pirama-testov-testirovaniya

https://dzone.com/articles/go-microservices-part-12-distributed-tracing-with

