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Abstract

The main focus of combinatorial dynamics is put on the structure of periodic
points (and the corresponding orbits) of topological dynamical systems. The
first result in this area is the famous Sharkovsky’s theorem which completely
describes the coexistence of periods of periodic points for a continuous map
from the closed unit interval to itself. One feature of this theorem is that it
can be proved using digraphs of a special type (the so-called periodic graphs).
In this paper we use Markov graphs (which are the natural generalization of
periodic graphs in case of dynamical systems on trees) as a tool to study several
classes of maps on trees. The emphasis is put on linear and metric maps.
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1 Introduction

Given a set X (finite or infinite) and a map f : X → X from X to itself the pair
(X, f) is called a (combinatorial) dynamical system. If X is a topological space and f
is a continuous map, then we obtain topological dynamical system. An element x ∈ X
is called periodic point for f if fn(x) = x for some n ≥ 1, where fn denotes the n-th
iterate function of f . If n is the smallest number with the above property, then it is
called the period of x. Fixed points are periodic points of period one. Combinatorial
dynamics mainly deals with the structure of periodic points and their orbits. The first
result in this area is the celebrated Sharkovsky’s theorem which completely describes
the coexistence of periods of periodic points for a continuous map from the closed unit
interval to itself. To present this result we must consider the following linear ordering
of natural numbers:

1C2C22 C · · ·C2nC · · ·C7 ·2nC5 ·2nC3 ·2nC · · ·C7 ·2C5 ·2C3 ·2C · · ·C7C5C3.

The ordering C is called Sharkovsky ordering and it plays an important role in
one-dimensional dynamics because of the following result.
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Theorem 1.1. [10] If the continuous map f : [0, 1]→ [0, 1] has a periodic point of
period n, then it also has a periodic point of period m for all m C n. Moreover, for
every m there exists a continuous map that has a periodic point of period m but does
not have periodic points of periods n, where mC n.

Sharkovsky’s theorem can be proved using purely combinatorial arguments which
involve digraphs of a special type (see [2, 11]). Namely, let f : [0, 1] → [0, 1] be
a continuous map and x ∈ [0, 1] be its periodic point of period n ≥ 2. Consider
the corresponding orbit orbf (x) = {x, f(x), . . . , fn−1(x)} and its natural ordering
inherited from the interval, i.e. let orbf (x) = {x1 < · · · < xn}. Since x is a periodic
point, the restriction of f to orbf (x) is a cyclic permutation of orbf (x). Periodic
graph is then defined as a directed graph with the vertex set {1, . . . , n − 1} (each
1 ≤ i ≤ n − 1 represents the minimal interval [xi, xi+1]) and with the arc set {(i, j) :
min{f(xi), f(xi+1)} ≤ xj < max{f(xi), f(xi+1)}}. Since f is continuous, each cycle in
the periodic graph corresponds to some periodic point of f . Moreover, if the cycle does
not consists of a smaller cycle traced several times, then the period of the corresponding
periodic point equals the length of a cycle.

In [1] Bernhardt used a similar approach to prove a Sharkovsky-type result for the
continuous maps on finite topological trees. The corresponding digraphs are called
Markov graphs and they resemble all important properties of periodic graphs.

Such a crucial role that Markov graphs play in combinatorial dynamics is a reason
to study these digraphs from graph-theoretic point of view. It seems that the first
results in this direction were obtained by Pavlenko [7, 8, 9]. In particular, the num-
ber of non-isomorphic periodic graphs with given number of vertices was calculated
in [7]. Graph-theoretic criteria for periodic graphs and for their induced subgraphs
were presented in [8] and [9], respectively.

In this paper we study several classes of maps on combinatorial trees via their
Markov graphs. The emphasis is put on linear and metric maps. Roughly speaking,
linear maps are those maps which preserve metric intervals between pairs of vertices
and metric maps are natural generalization of homomorphisms. We obtain several
“dual” criteria for linear and metric maps on trees and show that linear metric maps
can be characterized as maps which minimize the number of arcs in Markov graphs.
Moreover, we use linear maps to study one particular class of trees named spiders.

2 Definitions and preliminary results

To the end of this paper a map is just a function. If f : X → Y is a map and A ⊂ X is
some subset, then by f |A we denote the restriction of f to A. Also, the symbols Im f
and fix f denote the image and the set of all fixed points of a map f , respectively.
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2.1 Graphs

A graph G is a pair of sets (V,E), where V = V (G) is the set of vertices and E = E(G)
is the set of edges which are unordered pairs of vertices of G. Two vertices u, v ∈ V (G)
are adjacent if there is an edge uv ∈ E(G). The set NG(u) = {v ∈ V (G) : uv ∈ E(G)}
is called the neighborhood of a vertex u in a graph G. The number dG(u) = |NG(u)|
is called the degree of u. A graph G is called m-regular if dG(u) = m for all vertices
u ∈ V (G). Given a set of vertices A ⊂ V (G) we write G[A] for the subgraph of G
induced by A, that is G[A] = (A,E(A)), where E(A) = {uv ∈ E(G) : u, v ∈ A}.

Two graphs are isomorphic if there exists a bijection between their vertex sets which
preserves the adjacency in both ways. Every such a bijection is called an isomorphism.
If two graphs G1 and G2 are isomorphic, then we write G1 ' G2.

A graph is called connected if for any pair of its vertices there exists a path joining
them. The distance dG(u, v) between two vertices u, v ∈ V (G) in a connected graph
G is the number of edges in a shortest u− v path. The set of vertices [u, v]G = {x ∈
V (G) : dG(u, x) + dG(x, v) = dG(u, v)} is called an interval between u and v. It is also
convenient to write (u, v)X = [u, v]X − {u, v} for any pair of vertices u, v ∈ V (G). We
put diamG = max{dG(u, v) : u, v ∈ V (G)} for the diameter of a connected graph G.
For every set of vertices A ⊂ V (G) in a connected graph G we set diamA = diamG[A].

For an edge e = uv ∈ E(G) in a connected graph G we define the next “half-space”
AG(u, v) = {x ∈ V (G) : dG(u, x) ≤ dG(v, x)}.

A unique (up to isomorphism) connected 2-regular graph with n ≥ 3 vertices is
called a cycle and denoted by Cn.

The set of vertices A ⊂ V (G) in a graph G is called connected if the induced
subgraph G[A] is connected. By definition the empty set is connected. The set of
vertices A ⊂ V (G) in a connected graph G is called convex if for any pair of vertices
u, v ∈ A we have [u, v]G ⊂ A. Obviously, each convex set is connected. The convex
hull ConvG(A) of a given set A ⊂ V (G) is the smallest convex set containing A.
The set of vertices A ⊂ V (G) in a connected graph G is called Chebyshev if for
every vertex u ∈ V (G) there exists a unique vertex vu ∈ A such that dG(u, vu) =
dG(u,A) = min{dG(u, x) : x ∈ A}. The corresponding map prA : V (G) → V (G),
where prA(u) = vu is called a projection on a Chebyshev set A. Note that a constant
map is a projection on a singleton subset. Also, observe that a Chebyshev set of
vertices need not to be connected.

A connected graph G is called median if given a triple of its vertices u, v, w ∈ V (G)
the set [u, v]G ∩ [v, w]G ∩ [u,w]G is a singleton. The corresponding unique vertex is
called a median of the triple u, v, w and denoted by mG(u, v, w).

A tree is a connected acyclic graph. It is easy to see that each tree is a median
graph. Also, note that each connected set of vertices in a tree is Chebyshev. A vertex
u ∈ V (X) in a tree X is a leaf provided dX(u) = 1. The set of all leaf vertices of X is
denoted by L(X). A path is a tree X with |L(X)| ≤ 2. A path with n ≥ 1 vertices is
denoted by Pn. Similarly, a star is a tree X with |L(X)| ≥ |V (X)|−1. A tree is called
spider if it has at most one vertex of degree at least three. If such a vertex exists, it
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will be called the center of a spider. Paths and stars are prime examples of spiders.
A directed graph or just a digraph D is a pair of sets (V,A), where V = V (D) is

the set of vertices and A = A(D) ⊂ V ×V is the set of arcs of D. Sometimes we would
write x → y for the arc (x, y). A loop is an arc of the form x → x. The outdegree
d+
D(x) of a vertex x in a digraph D is the number of arcs of the form x→ y. Similarly,

the indegree d−D(x) of x is the number of arcs of the form y → x.
Suppose X is some set and f : X → X is a map from X to itself. A functional graph

of the map f is a digraph with the vertex set X and the arc set {(x, y) : y = f(x)}.
Thus, functional digraphs characterized as digraphs D with the property d+

D(x) = 1 for
every vertex x ∈ V (D). Similarly, a digraph D is called partial functional if d+

D(x) ≤ 1
for all vertices x ∈ V (D). Examples of functional and partial functional digraphs are
provided by directed cycles and paths.

For a given digraph D its converse digraph Dco has a vertex set V (Dco) = V (D)
and there is an arc x→ y in Dco if there is an arc y → x in D.

A digraph is called weakly connected if its underlying undirected graph is connected.
A weak component of a given digraph is its maximal weakly connected subgraph.

Having some fixed linear ordering on the set of vertices V (D) = {x1, . . . , xn} of a
digraph D, one can define its adjacency matrix which is a matrix MD = (aij), where
aij = 1 if xi → xj in D and aij = 0 otherwise. For every k ≥ 1 the k-th power Mk

D

of the adjacency matrix MD has the following interpretation: if Mk
D = (akij), then akij

equals the number of directed walks of length k from the vertex xi to the vertex xj in
D.

2.2 Classes of maps between graphs

Let G1 and G2 be two connected graphs. A map f : V (G1)→ V (G2) is called

1. homomorphism if uv ∈ E(G1) implies f(u)f(v) ∈ E(G2);

2. metric if dG2(f(u), f(v)) ≤ dG1(u, v) for all u, v ∈ V (G1);

3. linear if f([u, v]G1) ⊂ [f(u), f(v)]G2 for all u, v ∈ V (G1);

4. continuous if [f(u), f(v)]G2 ⊂ f([u, v]G1) for all u, v ∈ V (G1);

5. monotone if the pre-image f−1(y) of every vertex y ∈ V (G2) is a connected set
in G1 .

For example, each injective map is monotone. Similarly, if f : V (G1)→ V (G2) is a
linear map between two connected graphs G1 and G2, then for all y ∈ V (G2) and u, v ∈
f−1(y) we have f([u, v]G1) ⊂ [f(u), f(v)]G2 = {y}. This means that [u, v]G1 ⊂ f−1(y)
and therefore f−1(y) is a convex set. Thus, every linear map is monotone. However,
not every monotone map is linear. To see this consider the path G ' P3 with three
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vertices, where V (G) = {1, 2, 3}, E(G) = {12, 23} and its map f =

(
1 2 3
1 3 2

)
. Then

f is a bijective and thus a monotone map, but f([1, 3]G)− [f(1), f(3)]G = {3} 6= ∅.

Proposition 2.1. Let G be a connected graph and A ⊂ V (G) be a Chebyshev set.
Then the projection prA is a monotone map.

Proof. We prove that for every y ∈ A and every u ∈ pr−1
A (y) it holds [u, y]G ⊂ pr−1

A (y).
Namely, if x ∈ [u, y]G, then dG(u, prA(x)) ≤ dG(u, x) + dG(x, prA(x)) ≤ dG(u, x) +
dG(x, y) = dG(u, y) = dG(u, prA(u)). Therefore, prA(x) = prA(u) = y.

Proposition 2.2. Let G1, G2 be two connected graphs and f : V (G1)→ V (G2) be
some map. Then f is a metric map if and only if dG2(f(u), f(v)) ≤ 1 for all edges
uv ∈ E(G1).

Proof. The necessity of this condition is obvious. We prove the sufficiency using in-
duction on dG1(u, v). Induction basis trivially holds. Now let dG1(u, v) = n + 1.
Fix a vertex x ∈ [u, v]G1 with ux ∈ E(G1). Then dG1(x, v) = n and thus by in-
duction assumption dG2(f(x), f(v)) ≤ dG1(x, v) = n. Therefore, dG2(f(u), f(v)) ≤
dG2(f(u), f(x)) + dG2(f(x), f(v)) ≤ n+ 1 = dG1(u, v).

Corollary 2.3. Each homomorphism between two connected graphs is a metric
map.

Corollary 2.4. The image of a metric map between two connected graphs is always
a connected set.

Proof. Let G1, G2 be two connected graphs and f : V (G1) → V (G2) be a metric
map. Assume that the image Im f is disconnected. Then there exists a pair of sets
A,B ⊂ Im f with Im f = A t B and dG2(A,B) ≥ 2. We have V (G1) = f−1(A) t
f−1(B). Since G1 is a connected graph, there exist two vertices u ∈ f−1(A) and
v ∈ f−1(B) with uv ∈ E(G1). We have dG2(f(u), f(v)) ≥ dG2(A,B) ≥ 2 which
contradicts Proposition 2.2.

Further, suppose that f : V (G1) → V (G2) is a continuous map between two
connected graphsG1 andG2. Then for every edge uv ∈ E(G1) we have [f(u), f(v)]G2 ⊂
f([u, v]G1) = f({u, v}) = {f(u), f(v)}. Therefore, f(u) = f(v) or f(u)f(v) ∈ E(G2).
From Proposition 2.2 it follows that f is a metric map. However, not every metric
map is continuous. To see this consider the path G1 ' P4 with four vertices, where
V (G1) = {1, 2, 3, 4}, E(G1) = {12, 23, 34}, a cycle G2 ' C4 with four vertices, where
V (G2) = V (G1), E(G2) = {12, 23, 34, 14} and the identity map f : V (G1) → V (G2).
Then f is a metric map, but [f(1), f(3)]G2 = {1, 2, 3, 4} * {1, 2, 3} = f([1, 3]G1).

Proposition 2.5. Let G1 be a connected graph, G2 be a tree and f : V (G1)→ V (G2)
be some map. Then f is metric if and only if f is continuous.
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Proof. We must show only the necessity of the condition. Thus, let f be a met-
ric map. We use induction on dG1(u, v) to prove that [f(u), f(v)]G2 ⊂ f([u, v]G1)
for all pairs of vertices u, v ∈ V (G1). The induction basis trivially holds. Now let
dG1(u, v) = n + 1. Fix a vertex x ∈ [u, v]G1 with ux ∈ E(G1). By induction as-
sumption we have [f(x), f(v)]G2 ⊂ f([x, v]G1). Since dG1(u, x) = 1 and f is metric,
it holds dG2(f(u), f(x)) ≤ 1. But G2 is a tree. This means that [f(u), f(v)]G2 ⊂
{f(u)} ∪ [f(x), f(v)]G2 .

Finally, since {u}∪[x, v]G1 = [u, v]G1 , then [f(u), f(v)]G2 ⊂ {f(u)}∪[f(x), f(v)]G2 ⊂
{f(u)} ∪ f([x, v]G1) = f({u} ∪ [x, v]G1) = f([u, v]G1).

Proposition 2.6. Let G1, G2 be two median graphs and f : V (G1) → V (G2) be
some map. Then f is linear if and only if f preserves medians, i.e. f(mG1(u, v, w)) =
mG2(f(u), f(v), f(w)) for all triplets of vertices u, v, w ∈ V (G1).

Proof. Let f be a linear map. Then

{f(mG1(u, v, w))} = f([u, v]G1 ∩ [v, w]G1 ∩ [u,w]G1)

⊂ f([u, v]G1) ∩ f([v, w]G1) ∩ f([u,w]G1)

⊂ [f(u), f(v)]G2 ∩ [f(v), f(w)]G2 ∩ [f(u), f(w)]G2

= {mG2(f(u), f(v), f(w))}

which yields the desired equality f(mG1(u, v, w)) = mG2(f(u), f(v), f(w)). Con-
versely, suppose that x ∈ [u, v]G1 for u, v ∈ V (G1). Then mG1(u, x, v) = x and thus
f(x) = f(mG1(u, x, v)) = mG2(f(u), f(x), f(v)). This implies f(x) ∈ [f(u), f(v)]G2 .
Therefore, f([u, v]G1) ⊂ [f(u), f(v)]G2 for any pair of vertices u, v ∈ V (G1).

Proposition 2.7. Let G1, G2 be two connected graphs and f : V (G1) → V (G2)
be some map. Then for all vertices u, v ∈ V (G1) we have dG1(u, v) ≤ dG2(f(u), f(v))
if and only if f is injective and its inverse f−1 : f(V (G1)) → V (G1) is a (bijective)
homomorphism between the induced subgraph G2[f(V (G1))] and G1.

Proof. We prove the necessity of this condition. Let u, v ∈ V (G1) be two distinct
vertices. Then dG2(f(u), f(v)) ≥ dG1(u, v) ≥ 1 implying f(u) 6= f(v). Thus, f is
an injective map. Further, suppose that for a pair of vertices u, v ∈ V (G1) there
exists an edge f(u)f(v) ∈ E(G2). Then clearly u 6= v and therefore 1 ≤ dG1(u, v) ≤
dG2(f(u), f(v)) = 1. This implies uv ∈ E(G1). Thus, f−1 is a homomorphism.

To prove the sufficiency of this condition again consider two vertices u, v ∈ V (G1).
Since f−1 is a homomorphism, f−1 is a metric map which yields dG1(u, v) =

dG1(f
−1(f(u)), f−1(f(v))) ≤ dG2(f(u), f(v)).

Corollary 2.8. Let G be a connected graph. Then f : V (G) → V (G) is an auto-
morphism of G if and only if dG(u, v) ≤ dG(f(u), f(v)) for all u, v ∈ V (G).
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It is easy to see that for a given connected graph G the classes of metric and linear
maps of the form f : V (G)→ V (G) are closed under composition of maps. However,
the composition of two monotone maps may not be monotone itself. Moreover, the
following proposition holds.

Proposition 2.9. The class of monotone maps f : V (G) → V (G) for a given
connected graph G with n ≥ 2 vertices is a generating set of the semigroup of all
vertex maps V (X)V (X).

Proof. It is well-known that the full transformation semigroup Tn of all self-maps of an
n-element set {1, . . . , n} has a generating set consisting of the following three maps:

σ1 =

(
1 2 3 . . . n
2 2 3 . . . n

)
, σ2 =

(
1 2 3 . . . n
2 1 3 . . . n

)
and σ3 = (12 . . . n).

SinceG is connected and n ≥ 2, G has at least one edge. Fix an edge e = uv ∈ E(G)
and a bijection f : {1, . . . , n} → V (G) with f(1) = u, f(2) = v. Then f ◦ σi ◦ f−1

for 1 ≤ i ≤ 3 is a triple of monotone maps from V (X) to itself which generate all the
maps from V (X)V (X).

Furthermore, for a path X we can ensure that each map σ : V (X) → V (X) is a
composition of exactly two monotone maps.

Proposition 2.10. Let X be a path. Then for every map σ : V (X)→ V (X) there
exist two monotone maps σi : V (X)→ V (X), i = 1, 2 such that σ = σ2 ◦ σ1.

Proof. Suppose V (X) = {1, . . . , n} and E(X) = {ij : 1 ≤ i = j−1 ≤ n−1}. Also, let
Imσ = {i1 < · · · < im}. Construct σ1 in the following way. Let σ1 maps the pre-image
σ−1(i1) bijectively to {1, . . . , |σ−1(i1)|} and also maps the pre-image σ−1(ik) bijectively
to {

∑k−1
j=1 |σ−1(ij)|+ 1, . . . ,

∑k
j=1 |σ−1(ij)|} for each 2 ≤ k ≤ m. By construction, σ1 is

bijective and hence a monotone map. Similarly, let σ2 maps the set {1, . . . , |σ−1(i1)|}
to i1 and also maps {

∑k−1
j=1 |σ−1(ij)|+ 1, . . . ,

∑k
j=1 |σ−1(ij)|} to ik for each 2 ≤ k ≤ m.

It is easy to see that σ2 is also monotone and σ = σ2 ◦ σ1.

Also, note that the composition of two projections on connected Chebyshev sets
is not necessarily a projection itself. Namely, consider the graph G with V (G) =
{1, . . . , 8}, E(G) = {12, 16, 18, 23, 25, 34, 37, 45, 48, 56, 67} and two sets of vertices
A1 = {1, 2, 3}, A2 = {4, 5, 6}. Then A1 and A2 are connected Chebyshev sets, but

their composition prA2
◦ prA1

=

(
1 2 3 4 5 6 7 8
6 5 4 4 5 6 4 6

)
is not a projection on any

Chebyshev set in G.
Finally, if X is a tree and Ai ⊂ V (X), i = 1, 2 its two connected (and thus,

Chebyshev) sets, then prA2
◦ prA1

= prA1∩A2
if A1 ∩ A2 6= ∅ and prA2

◦ prA1
is a

constant map otherwise. In both cases the composition prA2
◦ prA1

is a projection on
a connected set.
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2.3 Markov graphs for maps on trees

Let X be a tree and σ : V (X) → V (X) be some map from the vertex set of X to
itself. The Markov graph is a digraph Γ = Γ(X, σ) with the vertex set V (Γ) = E(X)
and the arc set A(Γ) = {(u1v1, u2v2) : u2, v2 ∈ [σ(u1), σ(v1)]X}. Thus, vertices in Γ
are the edges of X and there is an arc u1v1 → u2v2 in Γ if the edge u1v1 “covers” u2v2

under σ. Note that periodic graphs are precisely Markov graphs Γ(X, σ) for paths X
and cyclic permutations σ.

Example 2.11. Let X be the tree with the vertex set V (X) = {1, . . . , 7} and the

edge setE(X) = {12, 23, 34, 45, 26, 37}. Also, consider the map σ =

(
1 2 3 4 5 6 7
4 1 3 6 2 4 2

)
(see Figure 1). Then the corresponding Markov graph Γ(X, σ) is shown in Figure 2.

1 2 3 4 5

6 7

Figure 1: The pair (X, σ) from Example 2.11.

34 26 45

12 23 37

Figure 2: Markov graph Γ(X, σ) for the pair (X, σ) from Example 2.11.

Proposition 2.12. [6] Let X be a tree and σ : V (X) → V (X) be some map. Put
E(σ) = {e ∈ E(X) : d−Γ (e) ≥ 1}. Then E(σ) = E(ConvX(Imσ)). In particular,
X[E(σ)] is the connected subgraph of X.

Now suppose that for a tree X some linear ordering of its edge set E(X) is fixed.
In [3] it was proved that the correspondence σ →MΓ(X,σ) gives a homomorphism from
the full transformation semigroup Tn to the semigroup Matn−1(F2) of (n−1)× (n−1)
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matrices over the two-element field. In particular, this correspondence induces an
injective homomorphism from the symmetric group Sn into the general linear group
Gln−1(F2).

Theorem 2.13. [3] Let X be a tree and suppose that some linear ordering of the
edge set E(X) is fixed. Then for any pair of maps σi : V (X)→ V (X), i = 1, 2 it holds
MΓ(X,σ2◦σ1) = MΓ(X,σ1)MΓ(X,σ2) mod 2.

For each treeX and its map σ : V (X)→ V (X) one can construct the corresponding
edge labeling τσ : E(X)→ V (X) ∪ {1,−1} in the following way:

τσ(e) =


u, if σ(u), σ(v) ∈ AX(u, v),

v, if σ(u), σ(v) ∈ AX(v, u),

1, if σ(u) ∈ AX(u, v) and σ(v) ∈ AX(v, u),

−1, if σ(u) ∈ AX(v, u) and σ(v) ∈ AX(u, v)

for every edge e = uv ∈ E(X). In other words, the edge e = uv gets an orientation
u→ v provided τσ(e) = v. Otherwise, the edge e is σ-positive or σ-negative depending
on the sign of τσ(e).

The definition of the labeling τσ naturally leads to the two extremal classes of maps
on trees. Namely, the map σ is called expansive if each vertex in the Markov graph
Γ(X, σ) has a loop. In other words, σ is expansive if Im τσ ⊂ {1,−1}. Similarly, the
map σ is called anti-expansive if Γ(X, σ) does not contain a vertex with a loop. In
this case, τσ is an orientation of the tree X.

Proposition 2.14. [4] Let X be a tree and σ : V (X)→ V (X) be an anti-expansive
map. Then σ has a unique fixed point.

3 Main results

In [3] automorphisms and projections on connected sets of vertices in trees were char-
acterized in terms of the corresponding Markov graphs. Also, from Proposition 2.2 it
directly follows that a map σ : V (X) → V (X) on a tree X is metric if and only if
the Markov graph Γ(X, σ) is partial functional. To obtain a “dual” criterion for linear
maps we need the following lemma.

Lemma 3.1. [3] Let X be a tree, σ : V (X)→ V (X) be some map and Γ = Γ(X, σ)
be its Markov graph. Then for every pair of vertices u, v ∈ V (X) and an edge xy ∈
E([σ(u), σ(v)]X) there exists an edge wz ∈ E([u, v]X) such that wz → xy in Γ. In
particular,

[σ(u), σ(v)]X ⊂
⋃

wz∈E([u,v]X)

[σ(w), σ(z)]X .
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Theorem 3.2. Let X be a tree, σ : V (X)→ V (X) be some map and Γ = Γ(X, σ)
be its Markov graph. Then σ is linear if and only if the converse digraph Γco is partial
functional.

Proof. First, we prove the necessity of this condition. To the contrary, suppose that σ
is linear, but there exists an edge e ∈ E(X) such that d−Γ (e) ≥ 2. Fix a pair of edges
e1, e2 ∈ N−Γ (e). Then u, v ∈ [σ(u1), σ(v1)]X ∩ [σ(u2), σ(v2)]X , where e = uv and ei =
uivi for i = 1, 2. Without loss of generality, we can assume that [v1, v2]X ⊂ [u1, u2]X .

Consider the composition pre ◦σ. Again, without loss of generality, suppose that
(pre ◦σ)(u1) = u. Then (pre ◦σ)(v1) = v. If (pre ◦σ)(v2) = u, then σ(v1) ∈ σ([u1, v2]X)−
[σ(u1), σ(v2)]X which contradicts to the fact that σ is a linear map. Similarly, if
(pre ◦σ)(v2) = v, then (pre ◦σ)(u2) = u. This means that σ(v1) ∈ σ([u1, u2]X) −
[σ(u1), σ(u2)]X . A contradiction again.

Now we prove the sufficiency of this condition. Suppose that Γco is partial func-
tional and u, v ∈ V (X). If dX(u, v) ≤ 1, then clearly σ([u, v]X) ⊂ [σ(u), σ(v)]X . Thus,
let dX(u, v) ≥ 2 and let x ∈ (u, v)X be some fixed vertex. We show that in this case
σ(x) ∈ [σ(u), σ(v)]X . Consider the vertex y = (pr[σ(u),σ(v)]X

◦σ)(x). Thus, we must
prove that σ(x) = y.

First, note that [σ(x), y]X ⊂ [σ(u), σ(x)]X∩[σ(x), σ(v)]X . Further, from Lemma 3.1
it follows that for every edge e ∈ E([σ(x), y]X) there exists an edge e1 ∈ E([u, x]X)
such that e1 → e in Γ and also there exists another edge e2 ∈ E([x, v]X) with e2 → e
in Γ. Since e1 6= e2, we obtain a contradiction with the partial functionality of Γco.
Therefore, the interval [σ(x), y]X does not contain an edge, i.e. σ(x) = y.

Corollary 3.3. Let X be a tree and σ : V (X)→ V (X) be some map. Then σ is a
linear metric map if and only if each weak component in Γ(X, σ) is a cycle or a path.

Proposition 3.4. Let X be a tree and σ : V (X) → V (X) be a linear map. Then
σ is a metric map if and only if the image Imσ is a connected set.

Proof. Corollary 2.4 asserts that we must prove only the sufficiency of this condition.
Assume that there exists an edge e = uv ∈ E(X) with dX(σ(u), σ(v)) ≥ 2. Fix
a vertex y ∈ (σ(u), σ(v))X . Since Imσ is a connected set, then y ∈ Imσ implying
there is a vertex x ∈ V (X) with σ(x) = y. If x ∈ AX(u, v), then u ∈ [x, v]X and
σ(u) /∈ [y, σ(v)]X = [σ(x), σ(v)]X . If x ∈ AX(v, u), then v ∈ [u, x]X and σ(v) /∈
[σ(u), y]X = [σ(u), σ(x)]X . In both cases σ is not a linear map.

It is easy to see that σ : V (X) → V (X) is a proper coloring of a tree X if and
only if d+

Γ (e) ≥ 1 for all edges e ∈ E(X). This implies the inequality |A(Γ(X, σ))| ≥
|V (X)| − 1 for each proper coloring σ. Similarly, σ is a constant map if and only if
|A(Γ(X, σ))| = 0. In [3] we obtained the following bounds for the number of arcs in
Markov graphs.

Proposition 3.5. [3] Let X be a tree, σ : V (X) → V (X) be some map and Γ =
Γ(X, σ). Then | Imσ| − 1 ≤ |A(Γ)| ≤ (n− 1) · diam Imσ.
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The next theorem gives a characterization of maps which attain the lower bound
from Proposition 3.5.

Theorem 3.6. Let X be a tree, σ : V (X)→ V (X) be some map and Γ = Γ(X, σ).
Then |A(Γ)| = | Imσ| − 1 if and only if σ is a linear metric map.

Proof. First, we prove the sufficiency of this condition using induction on |V (X)|.
Induction basis trivially holds. Suppose that |V (X)| ≥ 2. Fix a leaf vertex u ∈ L(X)
and the corresponding edge e = uu0. Also, put X ′ = X −{u} and σ′ = prV (X)−{u} ◦σ.
Obviously, X ′ is a tree and σ′ is a linear metric map on X ′. By induction assumption
|A(Γ′)| = | Imσ′| − 1, where Γ′ = Γ(X ′, σ′). Further, we consider the following four
cases.

Case 1: d+
Γ (e) = d−Γ (e) = 0.

If u ∈ Imσ, then from the equality d−Γ (e) = 0 it follows that σ is a constant
map and therefore we are done. Otherwise, let u /∈ Imσ. Since d+

Γ (e) = 0 implies
σ(u) = σ(u0), then Imσ = Imσ′. Also, in this case we have A(Γ) = A(Γ′) and the
desired is proved.

Case 2: d+
Γ (e) = 0 and d−Γ (e) = 1.

The equality d−Γ (e) = 1 implies u ∈ Imσ. Again, from the equality d+
Γ (e) = 0

it follows that σ(u) = σ(u0). In other words, in this case | Imσ| = | Imσ′| + 1. Let
e′ = xy ∈ E(X) be an edge with N+

Γ (e′) = {e}. Then N+
Γ′(e′) = ∅. Thus, in this case

|A(Γ)| = |A(Γ′)|+ 1 implying |A(Γ)| = | Imσ′| − 1 + 1 = | Imσ′| = | Imσ| − 1.
Case 3: d+

Γ (e) = 1 and d−Γ (e) = 0.
Since every linear map is monotone and σ(u) 6= σ(u0), then σ−1(σ(u)) = {u}. This

means that σ(u) ∈ Imσ, but σ(u) /∈ Imσ′. Meanwhile, if u ∈ Imσ, then from the
equality d−Γ (e) = 0 it follows that σ is a constant map and we are done. Otherwise,
u /∈ Imσ and thus | Imσ| = | Imσ′| + 1. Therefore, in this case |A(Γ)| = |A(Γ′)| + 1
which yields |A(Γ)| = | Imσ| − 1.

Case 4: d+
Γ (e) = d−Γ (e) = 1.

In this case we have |A(Γ)| = |A(Γ′)|+2. Also, clearly u, σ(u) ∈ Imσ− Imσ′. This
means that | Imσ| = | Imσ′|+ 2 and we are done.

Now we prove the necessity of this condition. Put E ′ = E(ConvX(Imσ)). By
Proposition 2.12, we have

| Imσ| − 1 = |A(Γ)| =
∑

e∈E(X)

d+
Γ (e) ≥ |{e ∈ E(X) : d−Γ (e) ≥ 1}| =

= |E ′| ≥ | Imσ| − 1

This means that d−Γ (e) ≤ 1 for all e ∈ E(X). Hence, the map σ is linear on X (see
Theorem 3.2). Moreover, the equality |E ′| = | Imσ|−1 asserts that Imσ is a connected
set. By Proposition 3.4 the map σ is metric on X.

Given a tree X and a pair of maps σi : V (X)→ V (X), i = 1, 2 we write σ1 ≤m σ2

if Γ(X, σ1) ⊂ Γ(X, σ2). In other words, σ1 ≤m σ2 if for all edges uv ∈ E(X) we
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have σ1(u) = σ1(v) and σ2(u) = σ2(v), or [σ1(u), σ1(v)]X ⊂ [σ2(u), σ2(v)]X . Relation
≤m establishes a preordering of the set V (X)V (X) which is called Markov preordering.
Indeed, for every two different constant maps σ1 and σ2 we have σ1 ≤m σ2 and σ2 ≤m
σ1 but σ1 6= σ2. Thus, generally speaking, ≤m is not an antisymmetric relation.
However, in [3] it was proved that Markov preordering is a partial ordering of the set
{σ ∈ V (X)V (X) : | Imσ| ≥ 3}. For the results about maximal elements in Markov
preordering see [4].

Theorem 3.7. Let X be a tree with |V (X)| ≥ 3 and f : V (X) → V (X) be some
map. Then

1. the map f is linear if and only if for every pair of maps σi : V (X)→ V (X), i =
1, 2 with σ1 ≤m σ2 we have f ◦ σ1 ≤m f ◦ σ2;

2. the map f is metric if and only if for every pair of maps σi : V (X)→ V (X), i =
1, 2 with σ1 ≤m σ2 we have σ1 ◦ f ≤m σ2 ◦ f ;

Proof. We prove the first claim. Let f be a linear map and uv ∈ E(X) be some
edge in X. If σ1|{u,v} and σ2|{u,v} is a pair of constant maps, then the compositions
f ◦ σ1|{u,v} and f ◦ σ2|{u,v} are also constant. Therefore, in this case N+

Γ(X,f◦σ1)(uv) =

N+
Γ(X,f◦σ2)(uv) = ∅.

Otherwise, we have σ1(u), σ1(v) ∈ [σ2(u), σ2(v)]X . This implies f(σ1(u)), f(σ1(v)) ∈
f([σ2(u), σ2(v)]X) ⊂ [f(σ2(u)), f(σ2(v))]X as f is linear. But an interval in a tree is
a convex set. Thus, [f(σ1(u)), f(σ1(v))]X ⊂ [f(σ2(u)), f(σ2(v))]X which means that
f ◦ σ1 ≤m f ◦ σ2.

Now suppose that f is a non-linear map. Then there exists a pair of vertices
u, v ∈ V (X) such that f([u, v]X) − [f(u), f(v)]X 6= ∅. In other words, there exists
a vertex w ∈ [u, v]X with f(w) /∈ [f(u), f(v)]X . Without loss of generality, we can
assume that u and w are adjacent in X. Consider two new maps σ1 = pr{u,w} and
σ2 = σ′ ◦ pr{u,w}, where σ′ : {u,w} → V (X), σ′(u) = u, σ′(w) = v. It is easy
to see that σ1 ≤m σ2. On the other hand, f ◦ σ1|{u,w} (as well as f ◦ σ2|{u,w}) is a
non-constant map and f(σ1(w)) = f(w) ∈ [f(σ1(u)), f(σ1(w))]X = [f(u), f(w)]X , but
f(w) /∈ [f(u), f(v)]X = [f(σ2(u)), f(σ2(w))]X . In other words, f ◦ σ1 �m f ◦ σ2.

Now we prove the second claim. Let f be a metric map. Then f(u) = f(v) or
f(u)f(v) ∈ E(X) for every edge uv ∈ E(X). If f(u) = f(v), then σ1 ◦ f |{u,v} and σ2 ◦
f |{u,v} are two constant maps. Therefore, in this caseN+

Γ(X,σ1◦f)(uv) = N+
Γ(X,σ2◦f)(uv) =

∅.
Let f(u)f(v) ∈ E(X). If σ1|{f(u),f(v)} and σ2|{f(u),f(v)} are two constant maps, then

σ1 ◦ f |{u,v} and σ2 ◦ f |{u,v} are also constant maps. Thus, σ1 ◦ f ≤m σ2 ◦ f . Otherwise,
[σ1(f(u)), σ1(f(v))]X ⊂ [σ2(f(u)), σ2(f(v))]X which also means that σ1 ◦ f ≤m σ2 ◦ f .

Suppose that f is a non-metric map. Then there exists an edge uv ∈ E(X) with
dX(f(u), f(v)) ≥ 2. Fix two vertices w, t ∈ [f(u), f(v)]X such that f(u) is adjacent
with w and w is adjacent with t (it could be t = f(v), but w ∈ (f(u), f(v))X since
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dX(f(u), f(v)) ≥ 2). Consider two maps σ1 = pr{f(u),w} and σ2 = σ′◦pr{f(u),w,t}, where
σ′ : {f(u), w, t} → V (X), σ′(f(u)) = σ′(t) = f(u), σ′(w) = w. It is easy to see that
σ1 ≤m σ2. Also, from the inequality dX(f(u), f(v)) ≥ 2 and definitions of σi, i = 1, 2 it
follows that σ1 ◦ f |{u,v} is non-constant. Moreover, σ1(f(u)) = f(u) and σ1(f(v)) = w,
but σ2(f(u)) = σ2(f(v)) = f(u). In other words, [σ1(f(u)), σ1(f(v))]X * [σ2(f(u)), σ2(f(v))]X =
{f(u)} which is equivalent to σ1 ◦ f �m σ2 ◦ f .

Corollary 3.8. Let X be a tree and σi : V (X)→ V (X), i = 1, 2 be a pair of maps.
The following conditions are equivalent:

1. σ1 ≤m σ2;

2. prA ◦σ1 ≤m prA ◦σ2 for every connected set A ⊂ V (X);

3. σ1 ◦ prA ≤m σ2 ◦ prA for every connected set A ⊂ V (X).

Proof. These are follow from the fact that each projection on a connected set of vertices
in a tree is a linear metric map and Theorem 3.7.

It is easy to see that for a tree X the existence of a map σ : V (X) → V (X) with
a Markov graph Γ(X, σ) which has a vertex of maximum degree (equal to |E(X)|)
implies that X is a path. Similarly, let X be a tree and σ : V (X)→ V (X) be a map
with Γ(X, σ) being a nontrivial symmetric sum of two digraphs. In [5] it is proved
that in this case X is a spider of degree at most three.

Theorem 3.9. Let X be a tree and σ : V (X) → V (X) be a map such that its
Markov graph Γ(X, σ) is a path. Then X is a spider.

Proof. We divide the proof into the following claims.
Claim 1: For every k ≥ 1 the Markov graph Γ(X, σk) has no loops.
Fix some linear ordering of the edge set E(X) = {e1, . . . , en−1}. From Theorem 2.13

it follows that MΓ(X,σk) = Mk
Γ(X,σ) mod 2. Therefore, the existence of a loop in Γ(X, σk)

is equivalent to the existence of 1 ≤ i ≤ n − 1 for which (Mk
Γ(X,σ))ii = 1 mod 2. This

implies (Mk
Γ(X,σ))ii ≥ 1 which means that there exists a closed walk of length k passing

through the edge ei in Γ(X, σ). Therefore, Γ(X, σ) contains a cycle which is impossible
since Γ(X, σ) is a path.

Claim 2: Each periodic point of σ is a fixed point.
To the contrary, suppose that u ∈ V (X) is a periodic point of σ with period m ≥ 2.

Then | fixσm| ≥ m ≥ 2 and thus from Proposition 2.14 it follows that Γ(X, σm) has a
loop. A contradiction with Claim 1.

Claim 3: Each vertex u ∈ V (X)− fixσ with dX(u) ≥ 3 is a periodic point of σ.
Fix three vertices x1, x2, x3 ∈ NX(u). Since σ(u) 6= u, it holds σ(xi) 6= σ(u) for

every 1 ≤ i ≤ 3. Thus, Γ(X, σ) has the following three arcs: uxi → σ(u)σ(xi), 1 ≤ i ≤
3.
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Since Γ(X, σ) is a path, without loss of generality, we can assume that there are
two directed walks: one from σ(u)σ(x1) to ux2 and another one from σ(u)σ(x2)
to ux3 in Γ(X, σ). In other words, there exist two numbers k,m ≥ 1 such that
{σk+1(u), σk+1(x1)} = {u, x2} and {σm+1(u), σm+1(x2)} = {u, x3}. If σk+1(u) = u
(similarly, σm+1(u) = u), then u is a periodic point of σ. Since σ(u) 6= u, u has a pe-
riod of at least two. Therefore, suppose σk+1(u) = x2, σk+1(x1) = u and σm+1(u) = x3,
σm+1(x2) = u. This implies σk+m+2(u) = σm+1(x2) = u. Thus, again u is a periodic
point for σ with period greater than one.

Combining Claim 2 and Claim 3, we can conclude that each vertex in X of degree
at least three is a fixed point of σ. However, the map σ is anti-expansive and therefore
using Proposition 2.14 we obtain that | fixσ| = 1 which completes the proof.

Note that not every spider X admits a map σ with Γ(X, σ) being a path. For
example, let X be a tree with V (X) = {1, . . . , 6} and E(X) = {12, 23, 34, 45, 26}.
Then X is a spider with the vertex 2 being its center. However, X does not admit
a map σ with a path Γ(X, σ). Nevertheless, paths and stars X admit maps σ with
Γ(X, σ) being a path. Moreover, in [3] it was proved that if Γ(X, σ) is a cycle, then
X is a star. Finally, note that for every proper coloring σ : V (X) → {u, v}, where
uv ∈ E(X) the Markov graph Γ(X, σ) is weakly connected and σ is a metric map.

Proposition 3.10. For every spider X there exists a linear map σ : V (X)→ V (X)
such that Γ(X, σ) is weakly connected.

Proof. At first, let X ' Pn be a path with n ≥ 1 vertices. Thus, let V (X) =
{u1, . . . , un} and E(X) = {uiuj : 1 ≤ i = j − 1 ≤ n− 1}. Consider the following map

σ(x) =

{
ui+1, if x = ui for 1 ≤ i ≤ n− 1,

un, if x = un

for all x ∈ V (X). Then Γ(X, σ) is a path.
Now let X be a nontrivial spider and u ∈ V (X) be its center. Put L(X) =

{v1, . . . , vn}. Therefore, V (X) =
⋃

1≤i≤n[u, vi]X and for each pair 1 ≤ i ≤ n, 1 ≤ j ≤
dX(u, vi) there exists a unique vertex xi,j ∈ [u, vi]X such that dX(u, xi,j) = j.

Without loss of generality, we can assume that dX(u, v1) ≥ · · · ≥ dX(u, vn). Put

σ(x) =


u, if x = u,

xi+1,dX(u,vi+1), if x = xi,j, 1 ≤ j ≤ dX(u, vi) and i 6= n,

x1,dX(u,v1), if x = xn,j and 1 ≤ j ≤ dX(u, vn)

for all x ∈ V (X). Then the map σ is linear and Γ(X, σ) is weakly connected.

Consider the tree X with V (X) = {1, . . . , 6}, E(X) = {12, 23, 34, 35, 26} and the

map σ =

(
1 2 3 4 5 6
4 2 2 6 1 2

)
. It is easy to see that σ is linear and the Markov

graph Γ(X, σ) is weakly connected. However, the tree X is not a spider as it has two
vertices of degree three.
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