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On synchronization of randomly coupled oscillators
We study a network o f  heterogeneous randomly coupled phase oscillators described by Kuramoto model. By 

analyzing the continuum limit, we study the mean-field type synchronization. Using this approach, we discuss 
the influence o f  network topology on the existence and properties o f  synchronized state i f  natural frequencies 
are normally distributed. We show that fo r  scale-free networks the intermediate state between coherent and 
desynchronized state is prevalent.
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Introduction

Complex networks play an important role in many 
natural and technological systems. One of the most 
fascinating phenomena in the behavior of complex 
dynamical systems made up of many elements is the 
spontaneous emergence of order and the phenomenon 
of collective synchronization, where a large number 
of the system’s constituents forms a common dynami
cal pattern, despite the differences in their individual 
dynamics. A classical model for the phase dynami
cs of weakly coupled oscillators is Kuramoto model, 
which assumes global connections. Kuramoto model 
formulation was motivated by the behavior of systems 
of chemical and biological oscillators, and it has found 
widespread applications such as in neuroscience. But 
the topology of real world networks is often very 
complex. Many networks have scale-free topology; 
the distribution of the degree obeys the power law 
[3], P (k)  ~  k  7. Additionally, they are characteri
zed by the existence of key nodes which drastically 
reduce the average distance between nodes, the so- 
called small-world property. In this paper we consider 
the case of undirected coupling networks with random 
coupling, and discuss the synchronization of phase 
oscillators using the approach, proposed in [4].

Background

We study the network with TV-nodes, at each node 
there exists an oscillator with the phase of the osci
llator 0*. Each of the oscillators is considered to have 
its own intrinsic natural frequency oJi and each is 
coupled equally to some other oscillators. Interactions 
are assumed to depend sinusoidally on the phase di
fference. This situation can be modeled by the equati
on,

= ш +  K  ^ 2  aij sin(Oj -  ві), (1) 
і

where K  is the coupling constant; is 1 if the nodes 
і and j  are connected, and 0 otherwise; uii — natural

frequency of oscillator, is a random number, whose 
distribution is given by the function <?(•). For simpli
city, we assume g{uf) =  g(—u).  (Section 3 is devoted 
to networks with unit normal distribution of natural 
frequencies.)

Let’s define P(k)  as the distribution of nodes wi
th degree k, and p(k, co; t, 6) the density of oscillators 
with phase 6 at time t, for given u  and k. We assume 
that p(k, oj; t, 9) is normalized as

/*27T
/  p(k,to;t,9)d9 = 1. (2)

Jo

Under this assumption the collective oscillation 
corresponds to the stable solution, =  0.

We use the order parameter and the continuum li
mit equation for the network of oscillators proposed 
in [4]:

Definition 1. Order parameter r is determined by an 
equality

«/, =  /  /  I  g(u)P(k)kp(k,Lj; t,6)ei6dLjd0dk 
Ve J d k P ( k ) k

By definition 0 < r < l , r  =  0 corresponds 
to desynchronized state when there is no coherence 
among the oscillators, r =  1 agrees with complete 
synchronization.

Proposition 1. [4] r satisfies the condition

r J  kP{k)dk  =

= K r  J  k2P ( k ) J  g { K k r w ) \ / 1 — un2duidk.

If r  0, then after some transformations we have

E k  =  K  J  k 2P(k)  J  g{Kkroj)y/1 — co2du)dk

(3)

©Kriukova G. V, 2013



28 НАУКОВІ ЗАПИСКИ. Том 139. Фізико-математичні науки

The l.h.s. of this equation is independent of r  and 
let’s define the r.h.s. of this equation as f ( r ) .  Ichi- 
nomiya showed [4], that

Fk
f ( r )  <  —  for 0 <  r  <  1, (4)

r

so /(1 )  is not larger than Ek,  therefore the sufficient 
condition that eq. (3) have solution at 0 <  r <  1 is 
that /(0 ) >  Ek ,  that is

Кд{0)тгЕк2 
2 E k (5)

We use equation 3 to evaluate value of order 
parameter.

Proposition 2. The following inequality holds for  
0 <  r < 1

H b ( i - ’')r ' <5)

Proof. Let’s use s/1 — W2 > l - M m ( 3 ) :

E k  = K  J k 2P ( k ) J  g{Kkruj)s /1 — u)2dwdk >

K  J  k2P ( k ) J  g(Kkruj)( l  -  \u\)dwdk >

K  f  k2P(k) (  g(Kkruj)(  1 — \oj\)dujdk =
J J —  OO

/ k2p ^ Y b r dk~ K / fc2p(fc) ^

>

>

E k  E\ oj\

(K k r f

>  (1 — r)r.

If  2 <  7  <  3 we have: l.h.s. of (7) is finite number; it 
tends to 0 is 7  tends to 2; if 7  =  3 l.h.s. of (7) is equal 
to so (7) does not matter for small K.

/ ( 0) =  J  k 2P(k )dk  J  \ / l  — uj2g(0)duj =

= ~ ^ =  [  k 2P(k )dk  [  s j l  -  ufldD = ^ = E k 2 
V 27t J  J - i  2V 2

In random scale-free network E k 2 diverges if 2 < 
7  <  3, so r  0.

For network with normally distributed natural 
frequencies

J  k2P(k)  J  g(Kkr c j ) s / l  — un2dhidk <

< J  k 2P{k) L  g(Kkru)dwdk =

=  j  ikep(k) .

Therefore /(1 ) <  E k  in this case.

f ' ( r )  = -  J  k 2P ( k ) J 1
LJ*

r  K r 2 '
Q.E.D.

If l.h.s. of (6) tends to 0, then possible values of r 
are close to r =  0 or r = 1 .

Scale-free networks with normally distributed 
natural frequencies of oscillators

Suppose that natural frequencies have unit normal 
distribution:

For network with scale-free topology the distri
bution of the degree obeys the power law: P(fc) ~  
A;- 7 , therefore E k  =  £(7 — 1), (((■) — Riemann zeta 
function).

In random scale-free network with unit natural di
stribution of natural frequencies of oscillators Picul =

s j l , E k  =  C(7 -  1). so we have:

- 1  V2ir

x e " 1 2 (iT2fc2ru;2) dujdk < 0,

for all 0 <  r < 1, so / ( 0 )  >  / ( n )  >  f ( r 2) > / ( 1 ) 
for all 0 <  r i  <  r 2 <  1. Therefore there is only one 
value r  =  ro, 0 <  r  <  1 that satisfies /(ro ) =  Ek.

Using that / ( r )  is a non-increasing function, 
equation (3) and inequality (6), it is easy to prove the 
following statement:

Proposition 3. I f  f {b )  > Ek, then r  > 1+^ 1 4

I f f { \ )  < Ek, then r < V KEk.

I f  f { \ )  = Ek,  then r 1 and  >  I
2 u n a  K E k  — 4 '

(7)

Moreover, we have shown that in random scale- 
free network with unit natural distribution of natural 
frequencies of oscillators ro 7  ̂ 0, ro ^  1. So we have 
discovered a remarkable state where the population of 
oscillators splits into two subpopulations, where one 
is synchronized and the other is desynchronized. This 
state is analogue to chimera state [1], when all osci
llators are identical.
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Numerical simulation

The analysis above is in good agreement with 
the results of the numerical simulations for N  = 
1000. To check our analysis we carried out the si
mulations on Erdos-Renyi random network model and 
Barabasi-Albert scale-free network model. We consi
dered two types of probability density for natural 
frequencies: normally distributed and uniformly distri
buted on [—1 , 1].

We considered scale-free network with different 
values of 2 <  7  <  3. With increasing 7 , the average 
value of order parameter increased respectively. For 
any 2 <  7  <  3 we observed order parameter r  >  0. 
We can remark that there is no threshold in the random 
scale-free network. These results suggest that in the 
infinite size scale-free network the critical coupling 
constant K c tends to 0, the same as in mean-field 
continuum limit equation. In this paper we showed 
how our theory described the behavior of the order 
parameter r  for a particular realization of the network 
and the frequencies. We compare the approximations 
described in this section with the numerical solution 
for different types of networks.

Conclusions

In this paper, we study the frequency synchroni
zation of the random oscillator network. By analyzi
ng the continuum limit equation, we find that mean- 
field type synchronization occurs in random network 
model. When K  is less than K c oscillators are uni
formly distributed across all possible phases, and the 
population is in a statistical steady-state. When coupli
ng K  is sufficiently large, a synchronized solution is 
possible. In the completely synchronized state, all the 
oscillators share a common frequency, although their 
phases can be different (difference tends to 0). We 
evaluate order parameter and study synchronization in 
scale-free networks with normally distributed natural 
frequencies of oscillators. The results of numerical si
mulations and recent results [2] are in good agreement 
with this analysis.
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Крюкова Г. В.

Про синхронізацію випадково зв’язаних осциляторів

Досліджено систему неоднорідних випадково з в ’язаних фазових осциляторів, а саме: узагальнену 
модель Курамото. Використовуючи підхід середнього поля, вивчено умови синхронізації, вплив структу
ри мережі на існування та властивості синхронізованих станів, якщо власні частоти осциляторів є 
випадковими величинами, що відповідають нормальному розподілу. Доведено, що в топології scale-free 
проміжний стан між поєною синхронізацією та десинхронізованим станом є домінуючим.

Ключові слова: модель Курамото, параметр впорядкованості, синхронізація.
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